Towards Improved Intermediate Layer Variational Inference for Uncertainty Estimation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13805))

Included in the following conference series:

Abstract

DNNs have been excelling on many computer vision tasks, achieving many milestones and are continuing to prove their validity. It is important for DNNs to express their uncertainties to be taken into account for the whole application output, whilst maintaining their performance. The intermediate layer variational inference has been a promising approach to estimate uncertainty in real-time beating state-of-the-art approaches. In this work, we propose an enhancement of the intermediate layer variational inference by adding Dirichlet distribution to the network architecture. This improves, on one hand, the uncertainty estimation reliability and on the other hand can detect out-of-distribution samples. Results show that with the addition of Dirichlet distributions the DNN is able to maintain its segmentation performance whilst boosting its uncertainty estimation capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kermany, D.S., et al.: Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172(5), 1122–1131 (2018)

    Google Scholar 

  2. Alexander Selvikvåg Lundervold and Arvid Lundervold: An overview of deep learning in medical imaging focusing on MRI. Zeitschrift für Medizinische Physik 29(2), 102–127 (2019)

    Google Scholar 

  3. Zhu, M., Wang, X., Wang, Y.: Human-like autonomous car-following model with deep reinforcement learning. Transp. Res. part C: Emerg. Technol. 97, 348–368 (2018)

    Article  Google Scholar 

  4. Wang, X., Jiang, R., Li, L., Lin, Y., Zheng, X., Wang, F.-Y.: Capturing car-following behaviors by deep learning. IEEE Trans. Intell. Transp. Syst. 19(3), 910–920 (2017)

    Article  Google Scholar 

  5. Wu, X., et al.: Sparse fuse dense: Towards high quality 3D detection with depth completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5418–5427, (2022)

    Google Scholar 

  6. Wang, C.-H., Chen, H.-W., Fu, L-C.: VPFNet: voxel-pixel fusion network for multi-class 3D object detection. ar**v preprint ar**v:2111.00966 (2021)

  7. Aradi, S.: Survey of deep reinforcement learning for motion planning of autonomous vehicles. IEEE Trans. Intell. Transp. Syst. 23, 740–759 (2020)

    Google Scholar 

  8. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  9. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. ar**v preprint ar**v:1804.02767. (2018)

  10. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)

    Google Scholar 

  11. Wang, J., et al.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3349–3364 (2020)

    Google Scholar 

  12. Willers, O., Sudholt, S., Raafatnia, S., Abrecht, S.: Safety concerns and mitigation approaches regarding the use of deep learning in safety-critical perception tasks. In: Casimiro, A., Ortmeier, F., Schoitsch, E., Bitsch, F., Ferreira, P. (eds.) SAFECOMP 2020. LNCS, vol. 12235, pp. 336–350. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55583-2_25

    Chapter  Google Scholar 

  13. Akhtar, N., Mian, A.: Threat of adversarial attacks on deep learning in computer vision: a survey. IEEE Access 6, 14410–14430 (2018)

    Article  Google Scholar 

  14. Ozdag, M.: Adversarial attacks and defenses against deep neural networks: a survey. Procedia Comput. Sci. 140, 152–161 (2018)

    Article  Google Scholar 

  15. Smuha, N.A.: The EU approach to ethics guidelines for trustworthy artificial intelligence. Comput. Law Rev. Int. 20(4), 97–106 (2019)

    Google Scholar 

  16. Dietterich, T.G.: Steps toward robust artificial intelligence. Ai Mag. 38(3), 3–24 (2017)

    Google Scholar 

  17. Kendall, A.: Geometry and uncertainty in deep learning for computer vision. PhD thesis, University of Cambridge, UK (2019)

    Google Scholar 

  18. Gal, Y.: Uncertainty in deep learning (2016)

    Google Scholar 

  19. Abdar, M., et al.: A review of uncertainty quantification in deep learning: techniques, applications and challenges. Inf. Fusion 76, 243–297 (2021)

    Google Scholar 

  20. Gawlikowski, J., et al.: A survey of uncertainty in deep neural networks. ar**v preprint ar**v:2107.03342 (2021)

  21. Hammam, A., Ghobadi, S.E., Bonarens, F., Stiller, C.: Real-time uncertainty estimation based on intermediate layer variational inference. In: Computer Science in Cars Symposium, pp. 1–9 (2021)

    Google Scholar 

  22. MacKay, D.J.C.: A practical bayesian framework for backpropagation networks. Neural Comput. 4(3), 448–472 (1992)

    Article  Google Scholar 

  23. Graves, A.: Practical variational inference for neural networks. In: Advances in Neural Information Processing Systems. 24 (2011)

    Google Scholar 

  24. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in neural network. In: International Conference on Machine Learning, pp. 1613–1622. PMLR (2015)

    Google Scholar 

  25. Mukhoti, J., Gal, Y.: Evaluating bayesian deep learning methods for semantic segmentation. ar**v preprint ar**v:1811.12709 (2018)

  26. Gustafsson, F.K., Danelljan, M., Schon, T.B.: Evaluating scalable bayesian deep learning methods for robust computer vision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 318–319 (2020)

    Google Scholar 

  27. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059. PMLR (2016)

    Google Scholar 

  28. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. ar**v preprint ar**v:1612.01474 (2016)

  29. Malinin, A., Gales, M.: Predictive uncertainty estimation via prior networks. In: Advances in Neural Information Processing Systems. 31 (2018)

    Google Scholar 

  30. Sensoy, M., Kaplan, L., Kandemir, M.: Evidential deep learning to quantify classification uncertainty. In: Advances in Neural Information Processing Systems 31 (2018)

    Google Scholar 

  31. Nandy, J., Hsu, W., Lee, M.L.: Towards maximizing the representation gap between in-domain & out-of-distribution examples. Adv. Neural Inf. Process. Syst. 33, 9239–9250 (2020)

    Google Scholar 

  32. Malinin, A., Gales, M.: Reverse KL-divergence training of prior networks: Improved uncertainty and adversarial robustness. In: Advances in Neural Information Processing Systems. 32 (2019)

    Google Scholar 

  33. Charpentier, B., Zügner, D., Günnemann, S.: Posterior network: uncertainty estimation without OOD samples via density-based pseudo-counts. Adv. Neural Inf. Process. Syst. 33, 1356–1367 (2020)

    Google Scholar 

  34. Drummond, N., Shearer, R.: The open world assumption. In eSI Workshop: The Closed World of Databases meets the Open World of the Semantic Web, vol. 15, pp. 1 (2006)

    Google Scholar 

  35. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. ar**v preprint ar**v:1610.02136 (2016)

  36. Yang, J., Zhou, K., Li, Y., Liu, Z.: Generalized out-of-distribution detection: a survey. ar**v preprint ar**v:2110.11334 (2021)

  37. Nitsch, J., et al.: Out-of-distribution detection for automotive perception. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), pp. 2938–2943. IEEE (2021)

    Google Scholar 

  38. Filos, A., Tigkas, P., McAllister, R., Rhinehart, N., Levine, S., Gal, Y.: Can autonomous vehicles identify, recover from, and adapt to distribution shifts? In: International Conference on Machine Learning, pp. 3145–3153. PMLR (2020)

    Google Scholar 

  39. Chan, R., et al.: SegmentMeifYouCan: a benchmark for anomaly segmentation. ar**v preprint ar**v:2104.14812 (2021)

  40. Vernekar, S., Gaurav, A., Abdelzad, V., Denouden, T., Salay, R., Czarnecki, K.: Out-of-distribution detection in classifiers via generation. ar**v preprint ar**v:1910.04241 (2019)

  41. Zhou, D.-W., Ye, H.-J., Zhan, D.-C.: Learning placeholders for open-set recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2021)

    Google Scholar 

  42. Hendrycks, D., Mazeika, M., Dietterich, T.: Deep anomaly detection with outlier exposure. ar**v preprint ar**v:1812.04606 (2018)

  43. Jourdan, N., Rehder, E., Franke, U.: Identification of uncertainty in artificial neural networks. In: Proceedings of the 13th Uni-DAS eV Workshop Fahrerassistenz und automatisiertes Fahren. vol. 2, pp. 12 (2020)

    Google Scholar 

  44. Vyas, A., Jammalamadaka, N., Zhu, X., Das, D., Kaul, B., Willke, T.L.: Out-of-distribution detection using an ensemble of self supervised leave-out classifiers. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 550–564 (2018)

    Google Scholar 

  45. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  46. Henne, M., Schwaiger, A., Roscher, K., Weiss, G.: Benchmarking uncertainty estimation methods for deep learning with safety-related metrics. In: SafeAI@ AAAI, pp. 83–90 (2020)

    Google Scholar 

  47. Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image detection in neural networks. ar**v preprint ar**v:1706.02690 (2017)

  48. Neumann, L., Zisserman, A., Vedaldi.: Relaxed softmax: efficient confidence auto-calibration for safe pedestrian detection (2018)

    Google Scholar 

  49. Naeini, M.P., Cooper, G., Hauskrecht, M.: Obtaining well calibrated probabilities using bayesian binning. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

Download references

Acknowledgments

The research leading to these results is partly funded by the German Federal Ministry for Economic Affairs and Climate Action within the project “Methoden und Maßnahmen zur Absicherung von KI basierten Wahrnehmungsfunktionen für das automatisierte Fahren (KI-Absicherung)”. The authors would like to thank the consortium for the successful cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Hammam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hammam, A., Bonarens, F., Ghobadi, S.E., Stiller, C. (2023). Towards Improved Intermediate Layer Variational Inference for Uncertainty Estimation. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13805. Springer, Cham. https://doi.org/10.1007/978-3-031-25072-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25072-9_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25071-2

  • Online ISBN: 978-3-031-25072-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation