Video-Based Gait Analysis for Spinal Deformity

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 Workshops (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13805))

Included in the following conference series:

  • 1522 Accesses

Abstract

In this paper, we explore the area of classifying spinal deformities unintrusively using machine learning and RGB cameras. We postulate that any changes to posture due to spinal deformity can induce specific changes in people’s gait. These changes are not limited to the spine’s bending but manifest in the movement of the entire body, including the feet. Thus, spinal deformities such as Kyphosis and Lordosis can be classified much more effectively by observing people’s gait. To test our claim, we present a bidirectional long short-term memory (BiLSTM) based neural network that operates using the key points on the body to classify the deformity. To evaluate the system, we captured a dataset containing 29 people simulating Kyphosis, Lordosis and their normal gait under the supervision of an orthopaedic surgeon using an RGB camera. Results suggest that gait is a better indicator of spinal deformity than spine angle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ailon, T., Shaffrey, C.I., Lenke, L.G., Harrop, J.S., Smith, J.S.: Progressive spinal kyphosis in the aging population. Neurosurgery. 77(suppl_1), S164–S172 (2015)

    Google Scholar 

  2. Albuquerque, P., Machado, J.P., Verlekar, T.T., Correia, P.L., Soares, L.D.: Remote gait type classification system using markerless 2d video. Diagnostics 11(10), 1824 (2021)

    Article  Google Scholar 

  3. Albuquerque, P., Verlekar, T.T., Correia, P.L., Soares, L.D.: A spatiotemporal deep learning approach for automatic pathological gait classification. Sensors 21(18), 6202 (2021)

    Article  Google Scholar 

  4. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2d pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7291–7299 (2017)

    Google Scholar 

  5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  6. Jellish, J., et al.: A system for real-time feedback to improve gait and posture in Parkinson’s disease. IEEE J. Biomed. Health Inform. 19(6), 1809–1819 (2015)

    Article  Google Scholar 

  7. Kerrigan, C.K.: Gait analysis in The Science of Rehabilitation, vol. 2. Diane Publishing, Collingdale (2000)

    Google Scholar 

  8. Kozlowski, L.T., Cutting, J.E.: Recognizing the sex of a walker from a dynamic point-light display. Percept. Psychophys. 21(6), 575–580 (1977)

    Article  Google Scholar 

  9. Lee, H.M., Kim, Y.J., Cho, J.B., Jeon, J.Y., Kim, K.G.: Computer-aided diagnosis for determining sagittal spinal curvatures using deep learning and radiography. J. Digital Imaging. 35, 1–14 (2022)

    Article  Google Scholar 

  10. Loureiro, J., Correia, P.L.: Using a skeleton gait energy image for pathological gait classification. In: 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020), pp. 503–507. IEEE (2020)

    Google Scholar 

  11. Makihara, Y., Nixon, M.S., Yagi, Y.: Gait recognition: databases, representations, and applications. Computer Vision: A Reference Guide, pp. 1–13. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-03243-2_883-1

  12. Milne, J., Lauder, I.: Age effects in kyphosis and lordosis in adults. Ann. Hum. Biol. 1(3), 327–337 (1974)

    Article  Google Scholar 

  13. Muro-De-La-Herran, A., Garcia-Zapirain, B., Mendez-Zorrilla, A.: Gait analysis methods: an overview of wearable and non-wearable systems, highlighting clinical applications. Sensors 14(2), 3362–3394 (2014)

    Article  Google Scholar 

  14. Nieto-Hidalgo, M., Ferrández-Pastor, F.J., Valdivieso-Sarabia, R.J., Mora-Pascual, J., García-Chamizo, J.M.: Vision based gait analysis for frontal view gait sequences using RGB camera. In: García, C.R., Caballero-Gil, P., Burmester, M., Quesada-Arencibia, A. (eds.) UCAmI 2016. LNCS, vol. 10069, pp. 26–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48746-5_3

    Chapter  Google Scholar 

  15. Nieto-Hidalgo, M., García-Chamizo, J.M.: Classification of pathologies using a vision based feature extraction. In: Ochoa, S.F., Singh, P., Bravo, J. (eds.) UCAmI 2017. LNCS, vol. 10586, pp. 265–274. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67585-5_28

    Chapter  Google Scholar 

  16. Ortells, J., Herrero-Ezquerro, M.T., Mollineda, R.A.: Vision-based gait impairment analysis for aided diagnosis. Med. Biol. Eng. Comput. 56(9), 1553–1564 (2018). https://doi.org/10.1007/s11517-018-1795-2

    Article  Google Scholar 

  17. Rupprechter, S., et al.: A clinically interpretable computer-vision based method for quantifying gait in Parkinson’s disease. Sensors 21(16), 5437 (2021)

    Article  Google Scholar 

  18. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45(11), 2673–2681 (1997)

    Article  Google Scholar 

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. ar**v preprint ar**v:1409.1556 (2014)

  20. Slijepcevic, D., et al.: Automatic classification of functional gait disorders. IEEE J. Biomed. Health Inform. 22(5), 1653–1661 (2017)

    Article  Google Scholar 

  21. Troje, N.F.: Decomposing biological motion: a framework for analysis and synthesis of human gait patterns. J. Vis. 2(5), 2 (2002)

    Article  Google Scholar 

  22. Verlekar, T.T., De Vroey, H., Claeys, K., Hallez, H., Soares, L.D., Correia, P.L.: Estimation and validation of temporal gait features using a markerless 2d video system. Comput. Methods Programs Biomed. 175, 45–51 (2019)

    Article  Google Scholar 

  23. Verlekar, T.T., Soares, L.D., Correia, P.L.: Automatic classification of gait impairments using a markerless 2d video-based system. Sensors 18(9), 2743 (2018)

    Article  Google Scholar 

  24. Verlekar, T.T., Correia, P.L., Soares, L.D.: Using transfer learning for classification of gait pathologies. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 2376–2381. IEEE (2018)

    Google Scholar 

  25. Wahab, Y., Bakar, N.A.: Gait analysis measurement for sport application based on ultrasonic system. In: 2011 IEEE 15th International Symposium on Consumer Electronics (ISCE), pp. 20–24. IEEE (2011)

    Google Scholar 

  26. Wang, K., et al.: Differences between gait on stairs and flat surfaces in relation to fall risk and future falls. IEEE J. Biomed. Health Inform. 21(6), 1479–1486 (2017)

    Article  Google Scholar 

  27. Wang, W., Ackland, D.C., McClelland, J.A., Webster, K.E., Halgamuge, S.: Assessment of gait characteristics in total knee arthroplasty patients using a hierarchical partial least squares method. IEEE J. Biomed. Health Inform. 22(1), 205–214 (2017)

    Article  Google Scholar 

Download references

Acknowledgement

We thank the orthopaedic surgeon Dr. Hemant Patil for hel** us construct the spinal deformity dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanmay Tulsidas Verlekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Suman, H.K., Verlekar, T.T. (2023). Video-Based Gait Analysis for Spinal Deformity. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13805. Springer, Cham. https://doi.org/10.1007/978-3-031-25072-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25072-9_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25071-2

  • Online ISBN: 978-3-031-25072-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation