Instance-Specific Augmentation of Brain MRIs with Variational Autoencoders

  • Conference paper
  • First Online:
Medical Applications with Disentanglements (MAD 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13823))

Included in the following conference series:

  • 384 Accesses

Abstract

Spatial data augmentation is a standard technique for regularizing deep segmentation networks that are tasked with localizing medical abnormalities. However, a typical spatial augmentation scheme is built upon ad hoc selections of spatial transformation parameters which are not determined by the data set and therefore may not capture spatial variations in the data. For segmentation networks trained in the low-data regime, these ad hoc transformation techniques often fail to encourage better generalization. To address this problem, we propose a variational autoencoder framework for spatial data augmentation. We show how this framework provides a natural, data-driven approach to probabilistic, instance-specific spatial augmentation. Further, we observe that U-Nets trained on data augmented using this framework compare favorably with U-Nets trained using standard spatial augmentation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019). https://doi.org/10.1109/TMI.2019.2897538. https://ieeexplore.ieee.org/document/8633930/

  2. Bepler, T., Zhong, E.D., Kelley, K., Brignole, E., Berger, B.: Explicitly disentangling image content from translation and rotation with spatial-VAE. In: Advances in Neural Information Processing Systems, pp. 15409–15419 (2019). http://arxiv.org/abs/1909.11663

  3. Detlefsen, N.S., Hauberg, S.: Explicit disentanglement of appearance and perspective in generative models. In: Advances in Neural Information Processing Systems, pp. 1016–1026 (2019). http://arxiv.org/abs/1906.11881

  4. Hauberg, S., Freifeld, O., Lindbo Larsen, A.B., Fisher, J.W., Hansen, L.K.: Dreaming more data: class-dependent distributions over diffeomorphisms for learned data augmentation. In: Proceedings of 19th International Conference on Artificial Intelligence and Statistics, pp. 342–350 (2016)

    Google Scholar 

  5. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021). https://doi.org/10.1038/s41592-020-01008-z. https://doi.org/10.1038/s41592-020-01008-zhttp://www.nature.com/articles/s41592-020-01008-z

  6. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, 2015-January, pp. 2017–2025 (2015)

    Google Scholar 

  7. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: 2nd International Conference on Learning Representations, ICLR 2014 - Conference Track Proceedings (ML), pp. 1–14 (2014)

    Google Scholar 

  8. Kuijf, H.J., et al.: Standardized assessment of automatic segmentation of white matter hyperintensities and results of the WMH segmentation challenge. IEEE Trans. Med. Imaging 38(11), 2556–2568 (2019). https://doi.org/10.1109/TMI.2019.2905770

    Article  Google Scholar 

  9. Locatello, F., et al.: A commentary on the unsupervised learning of disentangled representations. In: AAAI 2020–34th AAAI Conference on Artificial Intelligence, pp. 13681–13684 (2020). https://doi.org/10.1609/aaai.v34i09.7120. http://arxiv.org/abs/2007.14184

  10. Locatello, F., et al.: Challenging common assumptions in the unsupervised learning of disentangled representations. In: 36th International Conference on Machine Learning, ICML 2019, pp. 7247–7283 (2019)

    Google Scholar 

  11. Olut, S., Shen, Z., Xu, Z., Gerber, S., Niethammer, M.: Adversarial data augmentation via deformation statistics. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 643–659. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_38

    Chapter  Google Scholar 

  12. Orbes, M., et al.: PADDIT: probabilistic augmentation of data using diffeomorphic image transformation. In: Angelini, E.D., Landman, B.A. (eds.) Medical Imaging 2019 Image Processing, vol. 10949, p. 27. SPIE (2019). https://doi.org/10.1117/12.2512520

  13. Qin, C., Shi, B., Liao, R., Mansi, T., Rueckert, D., Kamen, A.: Unsupervised deformable registration for multi-modal images via disentangled representations. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 249–261. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_19

    Chapter  Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  15. Schwöbel, P., Warburg, F., Jørgensen, M., Madsen, K.H., Hauberg, S.: Probabilistic Spatial Transformer Networks. ar**v (2020). http://arxiv.org/abs/2004.03637

  16. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 1–48 (2019). https://doi.org/10.1186/s40537-019-0197-0

    Article  Google Scholar 

  17. Shu, Z., Sahasrabudhe, M., Alp Güler, R., Samaras, D., Paragios, N., Kokkinos, I.: Deforming autoencoders: unsupervised disentangling of shape and appearance. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 664–680. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_40

    Chapter  Google Scholar 

  18. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28

    Chapter  Google Scholar 

  19. Tang, Z., Chen, K., Pan, M., Wang, M., Song, Z.: An augmentation strategy for medical image processing based on statistical shape model and 3D thin plate spline for deep learning. IEEE Access 7, 133111–133121 (2019). https://doi.org/10.1109/ACCESS.2019.2941154

    Article  Google Scholar 

  20. Uzunova, H., Handels, H., Ehrhardt, J.: Guided filter regularization for improved disentanglement of shape and appearance in diffeomorphic autoencoders. In: Proceedings of Fourth Conference on Medical Imaging with Deep Learning, pp. 774–786. PMLR (2021). https://proceedings.mlr.press/v143/uzunova21a.html%7D

  21. Wyburd, M.K., Dinsdale, N.K., Namburete, A.I.L., Jenkinson, M.: TEDS-Net: enforcing diffeomorphisms in spatial transformers to guarantee topology preservation in segmentations. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 250–260. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_24

    Chapter  Google Scholar 

  22. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: MixUp: beyond empirical risk minimization. In: 6th International Conference on Learning Representations, ICLR 2018 - Conference Track Proceedings, pp. 1–13 (2018)

    Google Scholar 

  23. Zhao, A., Balakrishnan, G., Durand, F., Guttag, J.V., Dalca, A.V.: Data augmentation using learned transformations for one-shot medical image segmentation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8535–8545. IEEE (2019). https://doi.org/10.1109/CVPR.2019.00874. https://ieeexplore.ieee.org/document/8953991/

Download references

Acknowledgement

This work is supported by Innovation Fund Denmark.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon Middleton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Middleton, J., Bauer, M., Johansen, J., Nielsen, M., Sommer, S., Pai, A. (2023). Instance-Specific Augmentation of Brain MRIs with Variational Autoencoders. In: Fragemann, J., Li, J., Liu, X., Tsaftaris, S.A., Egger, J., Kleesiek, J. (eds) Medical Applications with Disentanglements. MAD 2022. Lecture Notes in Computer Science, vol 13823. Springer, Cham. https://doi.org/10.1007/978-3-031-25046-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25046-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25045-3

  • Online ISBN: 978-3-031-25046-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation