Bioprocesses for Sustainable Bioeconomy: Fermentation, Benefits, and Constraints

  • Chapter
  • First Online:
A Sustainable Green Future
  • 671 Accesses

Abstract

The bioeconomy concept is a path from a fossil-based system to a bio-based one using renewable biological resources with a holistic approach. This concept aims for sustainable economic development by producing value-added products. The utilization of agro-industrial wastes for value-added end products focused on microbial fermentation. Industrial fermentation is the mass cultivation using cells in highly controlled, closed bioreactors. Although the basis of these bioprocesses depends on submerged fermentation (SMF), the solid-state fermentation (SSF) technique gained interest for producing several products in the last decades. The food and agricultural industries generate a considerable amount of agro-industrial wastes continuously which are rich in nutrients and have a high potential to be used as raw material. Food waste valorization is a potent tool for enabling the production of several products by benefiting the microorganisms and is a promising field from the bioeconomy perspective. Within the scope of this chapter, fermentation processes and applications, some of the value-added products related to the different biotechnology fields, and existing and potential integrated systems in terms of circular bioeconomy are examined by giving particular emphasis to SSF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Abdul Manan, C. Webb, Modern microbial solid state fermentation technology for future biorefineries for the production of added-value products. Biofuel Res. J 16, 730–740 (2017)

    Article  Google Scholar 

  2. D.N. Adhyaru, N.S. Bhatt, H.A. Modi, J. Divecha, Insight on xylanase from Aspergillus tubingensis FDHN1: Production, high yielding recovery optimization through statistical approach and application. Biocatal. Agric. Biotechnol 6, 51–57 (2016)

    Article  Google Scholar 

  3. T. Aggelopoulos, A. Bekatorou, A. Pandey, et al., Discarded oranges and brewer’s spent grains as promoting ingredients for microbial growth by submerged and solid state fermentation of agro-industrial waste mixtures. Appl. Biochem. Biotechnol. 170, 1885–1895 (2013)

    Google Scholar 

  4. J. Ariunbaatar, A. Panico, G. Esposito, et al., Pre-treatment methods to enhance anaerobic digestion of organic solid waste. Appl. Energy 123, 143–156 (2014)

    Article  CAS  Google Scholar 

  5. R. Auras, B. Harte, S. Selke, An overview of polylactides as packaging materials. Macromol. Biosci. 4, 835–864 (2004)

    Article  CAS  Google Scholar 

  6. Z. Alkan, Z. Erginkaya, G. Konuray, et al., Production of biosurfactant by lactic acid bacteria using whey as growth medium. Turk. J. Vet. Anim. Sci. 43(5), 676–683 (2019)

    Article  CAS  Google Scholar 

  7. T.E. Aruna, O.C. Aworh, A.O. Raji, et al., Protein enrichment of yam peels by fermentation with Saccharomyces cerevisiae (BY4743). Ann. Agric. Sci. 62, 33–37 (2017)

    Article  Google Scholar 

  8. T. Aydınoglu, S. Sargın, Production of laccase from Trametes versicolor by solid-state fermentation using olive leaves as a phenolic substrate. Bioprocess Biosyst. Eng. 36(2), 215–222 (2013)

    Article  Google Scholar 

  9. P. Bajpai, Single Cell Protein Production from Lignocellulosic Biomass (Springer, Berlin/Heidelberg, 2017), pp. 31–36

    Google Scholar 

  10. M.C.S. Barcelos, F.B. Lupki, C.A. Campolina, et al., The colors of biotechnology: General overview and developments of white, green and blue areas. FEMS Microbiol. Lett. 365, 1–11 (2018)

    Article  Google Scholar 

  11. S. Bhatia, History, Scope and Development of Biotechnology, Introduction to Pharmaceutical Biotechnology, Volume 1 Basic Techniques and Concepts (IOP Publishing Ltd, 2018), pp. 1–61

    Google Scholar 

  12. O. Bobleter, Hydrothermal degradation of polymers derived from plants. Prog. Polym. Sci. 19(5), 797–841 (1994)

    Article  CAS  Google Scholar 

  13. C.M. Braguglia, A. Gallipoli, A. Gianico, P. Pagliaccia, et al., Anaerobic bioconversion of food waste into energy: A critical review. Bioresour. Technol 248(Part A), 37–56 (2018)

    Article  CAS  Google Scholar 

  14. M. Bugge, T. Hansen, A. Klitkou, What is the bioeconomy? A review of the literature. Sustainability 8(7), 1–22 (2016)

    Article  Google Scholar 

  15. C. Caldeira, A. Vlysidis, G. Fiore, et al., Sustainability of food waste biorefinery: A review on valorisation pathways, techno-economic constraints, and environmental assessment. Bioresour. Technol. 312, 123575 (2020)

    Article  CAS  Google Scholar 

  16. J.M. Campos, T.L.M. Stamford, L.A. Sarubbo, et al., Microbial biosurfactants as additives for food industries. Biotechnol. Prog. 2013(29), 1097–1108 (2013)

    Article  Google Scholar 

  17. H. Carrere, G. Antonopoulou, R. Affes, Review of pretreatment strategies for improved feedstocks anaerobic biodegradability: From lab-scale research to full-scale application. Bioresour. Technol. 199(2016), 386–397 (2016)

    Article  CAS  Google Scholar 

  18. G. Capson-Tojo, M. Rouez, M. Crest, et al., Food waste valorization via anaerobic processes: A review. Rev. Environ. Sci. Bio/Technol. 15(3), 499–547 (2016)

    Article  CAS  Google Scholar 

  19. R.J.S. Castro, A. Ohara, T.G. Nishide, et al., A versatile system based on substrate formulation using agroindustrial wastes for protease production by Aspergillus niger under solid state fermentation. Biocatal. Agric. Biotechnol. 4, 678–684 (2015)

    Article  Google Scholar 

  20. E. Castro-Aguirre, F. Iniguez-Franco, H. Samsudin, et al., Poly (lactic acid) Mass production, processing, industrial applications, and end of life. Adv. Drug Deliv. Rev. 107, 333–366 (2016)

    Article  CAS  Google Scholar 

  21. A. Cerda, M. El-Bakry, T. Gea, A. Sánchez, Long term enhanced solid-state fermentation: Inoculation strategies for amylase production from soy and bread wastes by Thermomyces sp. in a sequential batch operation. J. Environ. Chem. Eng. 4, 2394–2401 (2016)

    Article  CAS  Google Scholar 

  22. A.K. Chandel, O.V. Singh, Weedy lignocellulosic feedstock and microbial metabolic engineering: Advancing the generation of “biofuel”. Appl. Microbiol. Biotechnol. 89, 1289–1303 (2011)

    Article  CAS  Google Scholar 

  23. L.S. Chafran, M.F. Paiva, J.O. França, et al., Preparation of PLA blends by polycondensation of D, L-lactic acid using supported 12-tungstophosphoric acid as a heterogeneous catalyst. Heliyon 5(5), e01810 (2019)

    Article  Google Scholar 

  24. V.S. Chedea, M. Jisaka, Lipoxygenase and carotenoids: A co-oxidation story. Afr. J. Biotechnol. 12(20), 2786 (2013)

    CAS  Google Scholar 

  25. X. Chen, J. Yan, J. Chen, et al., Potato pomace: An efficient resource for Monascus pigments production through solid-state fermentation. J. Biosci. Bioeng. 132(2), 167–173 (2021)

    Article  CAS  Google Scholar 

  26. D. Copeland, W.M. Belcher, Methods for refining vegetable oils and byproducts thereof. US Patent 6,172,248 (2001)

    Google Scholar 

  27. R.S. Couto, M.A. Sanroman, Application of solid-state fermentation to ligninolytic enzyme production. Biochem. Eng. J. 22, 211–219 (2005)

    Article  Google Scholar 

  28. S. Dahiya, A.N. Kumar, J.S. Sravan, et al., Food waste biorefinery: Sustainable strategy for circular bioeconomy. Bioresour. Technol. 248, 2–12 (2018)

    Article  CAS  Google Scholar 

  29. S. Darine, V. Christophe, D. Gholamreza, Production and functional properties of beef lung protein concentrates. Meat Sci. 84(3), 315–322 (2010)

    Article  CAS  Google Scholar 

  30. S.E. Dechent, A.W. Kleij, G.A. Luinstra, Fully bio-derived CO2 polymers for non-isocyanate based polyurethane synthesis. Green Chem. 22, 969–978 (2020)

    Article  CAS  Google Scholar 

  31. P. Dharmik, D. Jadhao, A. Gomashe, An effective move towards use of agro-industrial & dairy wastes for production of biosurfactants using Bacillus subtilis and Pseudomonas aeruginosa. Int. J. Appl. Pure Sci. Agric 9(03), 33–37 (2017)

    Google Scholar 

  32. G.S. Dhillon, S.K. Brar, S. Kaur, et al., Lactoserum as a moistening medium and crude inducer for fungal cellulase and hemicellulase induction through solid-state fermentation of apple pomace. Biomass Bioenergy 4, 165–174 (2012)

    Article  Google Scholar 

  33. A.B. Diaz, A. Blandino, I. Caro, Value added products from fermentation of sugars derived from agro-food residues. Trends Food Sci. Technol. 71, 52–64 (2018)

    Article  CAS  Google Scholar 

  34. A.I. El-Batal, N.M. ElKenawy, A.S. Yassin, M.A. Amin, Laccase production by Pleurotus ostreatus and its application in synthesis of gold nanoparticles. Biotechnol. Rep 5, 31–39 (2015)

    Article  Google Scholar 

  35. M.Y. El-Naggar, S.A. El-Assar, S.M. Abdul-Gawad, Solid-State Fermentation for the production of Meroparamycin by Streptomyces sp. strain MAR01. J. Microbiol. Biotechnol. 9(5), 468–473 (2009)

    Article  Google Scholar 

  36. M.A. El-Sheikh, J. Rajaselvam, E.M. Abdel-Salam, et al., Paecilomyces sp. ZB is a cell factory for the production of gibberellic acid using a cheap substrate in solid state fermentation. Saudi J. Biol. Sci 27, 2431–2438 (2020)

    Article  CAS  Google Scholar 

  37. M. Elsamadony, A. Tawfik, M. Suzuki, Surfactant-enhanced biohydrogen production from organic fraction of municipal solid waste (OFMSW) via dry anaerobic digestion. Appl. Energy 149, 272–282 (2015)

    Article  CAS  Google Scholar 

  38. E. Eren, A. Pekşen, Türkiye’de kültür mantarı sektörünün durumu ve geleceğine bakış. Türk Tarım- Gıda Bilim ve Teknoloji Dergisi 4(3), 189–196 (2016)

    Google Scholar 

  39. A. Farhat, A.S. Fabiano-Tixier, M. El Maataoui, et al., Microwave steam diffusion for extraction of essential oil from orange peel: Kinetic data, extract’s global yield and mechanism. Food Chem. 125(1), 255–261 (2011)

    Article  CAS  Google Scholar 

  40. S.W. Fatima, R. Tiwari, S.K. Khare, Utilization of agro-industrial waste for production of Transglutaminase from Streptomyces mobaraensis. Bioresour. Technol. 287, 121391 (2019)

    Article  CAS  Google Scholar 

  41. H. Fisgativa, A. Tremier, P. Dabert, Characterizing the variability of food waste quality: A need for efficient valorization through anaerobic digestion. Waste Manag. 50, 264–274 (2016)

    Article  CAS  Google Scholar 

  42. A. Gadhe, S.S. Sonawane, M.N. Varma, Ultrasonic pretreatment for enhancement of biohydrogen production from complex food waste. Int. J. Hydrog. Energy 39, 7721–7729 (2014)

    Article  CAS  Google Scholar 

  43. C.K. Gehring, J.C. Gigliotti, J.S. Moritz, et al., Functional and nutritional characteristics of proteins and lipids recovered by isoelectric processing of fish by-products and low-value fish: A review. Food Chem. 124(2), 422–431 (2011)

    Article  CAS  Google Scholar 

  44. J.A. Glaser, White biotechnology. Clean Techn. Environ. Policy 207, 233–235 (2005)

    Article  Google Scholar 

  45. A. Godfrey, Production of industrial enzymes and some applications in fermented food, in Microbiology of Fermented Foods, ed. by B.J.B. Wood, (1998), pp. 623–657

    Google Scholar 

  46. M.C. Groff, G. Scaglia, M. Gaido, et al., Kinetic modeling of fungal biomass growth and lactic acid production in Rhizopus oryzae fermentation by using grape stalk as a solid substrate. Biocatal. Agric. Biotechnol. 39(102255), 1–17 (2022)

    Google Scholar 

  47. R. Gudiukaite, A.K. Nadda, A. Gricajeva, et al., Bioprocesses for the recovery of bioenergy and value-added products from wastewater: A review. J. Environ. Manag. 300, 113831 (2021)

    Article  CAS  Google Scholar 

  48. M.P. Gundupalli, D. Bhattacharyya, Recovery of reducing sugar from food waste: Optimization of pretreatment parameters using response surface methodology, in Biofuels and Bioenergy (BICE2016), (Springer, Cham, 2017), pp. 161–172

    Chapter  Google Scholar 

  49. C.A.B. Gusmão, R.D. Rufino, L.A. Sarubbo, Laboratory production and characterization of a new biosurfactant from Candida glabrata UCP 1002 cultivated in vegetable fat waste applied to the removal of hydrophobic contaminant. World J. Microbiol. Biotechnol. 26, 1683–1692 (2010)

    Article  Google Scholar 

  50. J.C. Gustavsson, U. Cederberg, R. Sonesson, et al., Global Food Losses and Food Waste: Extent, Causes and Prevention. Study Conducted for the International Congress SAVE FOOD! at Interpack 2011. Düsseldorf, Germany food and Agriculture Organization of the United Nations, Rome (2011)

    Google Scholar 

  51. H.S. Hafid, U.K.M. Shah, A.S. Baharudin, Enhanced fermentable sugar production from kitchen waste using various pretreatments. J. Environ. Manag. 156, 290–298 (2015)

    Article  CAS  Google Scholar 

  52. S.H. Hyon, K. Jamshidi, Y. Ikada, Synthesis of polylactides with different molecular weights. Biomaterials 18, 1503–1508 (1997)

    Article  CAS  Google Scholar 

  53. M.H. Hartmann, High molecular weight polylactic acid polymers, in Biopolymers from Renewable Resources, ed. by D.L. Kaplan, (Springer, Heidelberg/Berling, 1998), pp. 367–411

    Chapter  Google Scholar 

  54. J. Hollmann, M.G. Lindhauer, Pilot-scale isolation of glucuronoarabinoxylans from wheat bran. Carbohydr. Polym. 59(2), 225–230 (2005)

    Article  CAS  Google Scholar 

  55. M. Irfan, M. Nadeem, Q. Syed, One-factor-at-a-time (OFAT) optimization of xylanase production from Trichoderma viride IR05 in solid-state fermentation. J. Radiat. Res. Appl. Sci. 7, 317–326 (2014)

    Article  Google Scholar 

  56. P. Kafarski, Rainbow code of biotechnology. Chemik 66(8), 811–816 (2012)

    Google Scholar 

  57. O.P. Karthikeyan, R. Balasubramanian, J.W.C. Wong, Chapter 7: Pre-treatment of solid organic substrates for bioenergy and biofuels, in Current Developments in Biotechnology and Bioengineering: Solid Waste Management, ed. by J.W.C. Wong, R. Tyagi, A. Pandey, vol. 2016, (Elsevier, 2016), pp. 135–156. (ISBN-9780444636645)

    Google Scholar 

  58. O.P. Karthikeyan, E. Trably, S. Mehariya, et al., Pretreatment of food waste for methane and hydrogen recovery: A review. Bioresour. Technol. 249, 1025–1039 (2018)

    Article  Google Scholar 

  59. E.U. Kiran, A.P. Trzcinski, W.J. Ng, Y. Liu, Bioconversion of food waste to energy: A review. Fuel 134, 389–399 (2014)

    Article  Google Scholar 

  60. M. Koller, Biodegradable and biocompatible polyhydroxy-alkanoates (PHA): Auspicious microbial macromolecules for pharmaceutical and therapeutic applications. Molecules 23(2), 362 (2018)

    Article  Google Scholar 

  61. L. Kupski, E. Cipolatti, M. Rocha, M. Santos Oliveira, et al., Solid-state fermentation for the enrichment and extraction of proteins and antioxidant compounds in rice bran by Rhizopus oryzae. Braz. Arch. Biol. Technol. 55(6), 937–942 (2012)

    Article  CAS  Google Scholar 

  62. J.K. Kurian, G.R. Nair, A. Hussain, V. Raghavan, Feedstocks, logistics and pre-treatment processes for sustainable lignocellulosic biorefineries: A comprehensive review. Renew. Sustain. Energy Rev. 25, 205–219 (2013)

    Article  Google Scholar 

  63. T.H. Kwan, Y. Hu, C.S.K. Lin, Techno-economic analysis of a food waste valorisation process for lactic acid, lactide and poly (lactic acid) production. J. Clean. Prod. 181, 72–87 (2018)

    Article  CAS  Google Scholar 

  64. H.Y. Leong, C. Chang, K.S. Khoo, et al., Waste biorefinery towards a sustainable circular bioeconomy: A solution to global issues. Biotechnol. Biofuels 148(87), 1–15 (2021)

    Google Scholar 

  65. T. Li, J. Li, W. Hu, et al., Shelf-life extension of crucian carp (Carassius auratus) using natural preservatives during chilled storage. Food Chem. 135(1), 140–145 (2012)

    Article  CAS  Google Scholar 

  66. L.T. Lim, R. Auras, M. Rubino, Processing technologies for poly (lactic acid). Prog. Polym. Sci. 33, 820–852 (2008)

    Article  CAS  Google Scholar 

  67. C.S.K. Lin, L.A. Pfaltzgraff, L. Herrero-Davila, et al., Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ. Sci. 6(2), 426–464 (2013)

    Article  CAS  Google Scholar 

  68. X. Liu, W. Wang, X. Gao, et al., Effect of thermal pretreatment on the physical and chemical properties of municipal biomass waste. Waste Manag. 32, 249–255 (2012)

    Article  Google Scholar 

  69. L. Londoño-Hernandez, H.A. Ruiz, T.C. Ramírez, et al., Fungal detoxification of coffee pulp by solid-state fermentation. Biocatal. Agric. Biotechnol. 23(101467), 1–9 (2020)

    Google Scholar 

  70. C. M. Machado, C. R. Soccol, B. H. de Oliveira, A. Pandey, Gibberellic acid production by solid-state fermentation in coffee husk. Appl. Biochem. Biotechnol. 102, 179–191 (2002)

    Google Scholar 

  71. K.M. Mahan, R.K. Le, T. Wells, et al., Production of single cell protein from agro-waste using Rhodococcus opacus. J. Ind. Microbiol. Biotechnol. 45, 795–801 (2018)

    Article  CAS  Google Scholar 

  72. S. Maneerat, Production of biosurfactants using substrates from renewable-resources. Songklanakarin J. Sci. Technol. 27, 675–683 (2005)

    Google Scholar 

  73. N. Mayeli, H. Motamedi, F. Heidarizadeh, Production of polyhydroxybutyrate by Bacillus axaraqunsis BIPC01 using petrochemical wastewater as carbon source. Braz. Arch. Biol. Technol. 58, 643–650 (2015)

    Article  CAS  Google Scholar 

  74. V.D. Mendhulkar, L.A. Shetye, Synthesis of biodegradable polymer polyhydroxyalkanoate (PHA) in cyanobacteria Synechococcus elongatus under mixotrophic nitrogen- and phosphate-mediated stress conditions. Ind. Biotechnol. 13, 85–93 (2017)

    Article  CAS  Google Scholar 

  75. R. Merugu, S. Girisham, S.M. Reddy, Production of PHB (Polyhydroxybutyrate) by Rhodopseudomonaspalustris Ku003 and Rhodobacter capsulatus Ku002 under phosphate limitation. IJABPT 1(3), 847–850 (2010)

    Google Scholar 

  76. H.P. Meyer, W. Minas, D. Schmidhalter, in Industrial-Scale Fermentation, Industrial Biotechnology: Products and Processes, ed. by C. Wittmann, J.C. Liao, 1st edn., (Wiley-VCH Verlag GmbH & Co.KGaA, 2017), p. 1–53

    Google Scholar 

  77. B.S. Mienda, A. Idi, A. Umar, Microbiological feature solid-state state fermentation and its applications - an overview. Res. Biotechnol 2(6), 21–26 (2011)

    Google Scholar 

  78. M.A. Milala, M. Yakubu, B. Burah, et al., Production and optimization of single cell protein from orange peels by Saccharomyces cerevisiae. J. Biosci. Biotechnol. Discov. 3, 99–104 (2018)

    Article  Google Scholar 

  79. A. K. Mondal, S. Sengupta, J. Bhowal, D. K. Bhattacharya, Utilization of fruit wastes in producing single cell protein. Int. J. Sci. Environ. Technol. 1(5), 430–438 (2012)

    Google Scholar 

  80. D. Mitchell, M. Berovic, Solid State Fermentation. Bioprocess Engineering Course, Edt M Berovic (National Institute of Chemistry, Slovenia, 1998), pp. 128–167

    Google Scholar 

  81. F. Monlau, C. Sambusiti, A. Barakat, et al., Predictive models of biohydrogen and biomethane production based on the compositional and structural features of lignocellulosic materials. Environ. Sci. Technol. 46, 12217–12225 (2012)

    Article  CAS  Google Scholar 

  82. S.I. Mussatto, E.M. Machado, L.M. Carneiro, J.A. Teixeira, Sugars metabolism and ethanol production by different yeast strains from coffee industry wastes hydrolysates. Appl. Energy 92, 763–768 (2012)

    Article  CAS  Google Scholar 

  83. A.T. Nasseri, S. Rasoul-Amini, M.H. Morowvat, et al., Single cell protein: Production and process. Am. J. Food Technol. 6, 103–116 (2011)

    Article  CAS  Google Scholar 

  84. U. Navaneethapandian, A.G. Kumar, K. Liduja, et al., Biocatalyst: Cellulase production in Solid State Fermentation (SSF) using Rice Bran as substrate. Biointerf. Res. Appl. Chem 11(1), 7689–7699 (2021)

    CAS  Google Scholar 

  85. J. Nikodinovic-Runic, M. Guzik, S.T. Kenny, et al., Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria. Adv. Appl. Microbiol. 84, 139–200 (2013)

    Article  CAS  Google Scholar 

  86. I. Ntaikou, C. Kourmentza, E.C. Koutrouli, et al., Exploitation of olive oil mill wastewater for combined biohydrogen and biopolymers production. Bioresour. Technol. 100, 3724–3730 (2009)

    Article  CAS  Google Scholar 

  87. H.K. Obied, P.D. Prenzler, K. Robards, Potent antioxidant biophenols from olive mill waste. Food Chem. 111(1), 171–178 (2008). https://doi.org/10.1016/j.foodchem.2008.03.058

    Article  CAS  Google Scholar 

  88. P.Z. Oliveira, L.P.S. Vandenberghe, C. Rodrigues, et al., Exploring cocoa pod husks as a potential substrate for citric acid production by solid-state fermentation using Aspergillus niger mutant strain. Process Biochem. 113, 107–112 (2022)

    Article  Google Scholar 

  89. A.A. Osama, M.S. Negm, M.E. Basiouny, et al., Protein enrichment of agro–industrial waste by Trichoderma harzianum EMCC 540 through solid state fermentation for use as animal feed. J. Geograp. Environ. Earth Sci. Int 13(4), 1–12 (2017)

    Google Scholar 

  90. P.S. Panesar, R. Kaur, G. Singla, R.S. Sangwan, Bio-processing of agro-industrial wastes for production of food-grade enzymes: Progress and prospects. Appl. Food Biotechnol 3(4), 208–227 (2016)

    CAS  Google Scholar 

  91. A. Pandey, C. Soccol, J.A. Leon, P. Nigam, Solid State Fermentation in Biotechnology: Fundamentals and Applications (Asiatech Publishers, Inc, New Delhi, 2001)

    Google Scholar 

  92. D. Pleissner, F. Demichelis, S. Mariano, Direct production of lactic acid based on simultaneous saccharification and fermentation of mixed restaurant food waste. J. Clean. Prod. 143, 615–623 (2017)

    Article  CAS  Google Scholar 

  93. D.N. Putri, A. Khootama, M.S. Perdani, et al., Optimization of Aspergillus niger lipase production by solid state fermentation of agro-industrial waste. Energy Rep. 6, 331–335 (2020)

    Article  Google Scholar 

  94. M. Raud, M. Tutt, J. Olt, T. Kikas, Effect of lignin content of lignocellulosic material on hydrolysis efficiency. Agron. Res. 13, 405–412 (2015)

    Google Scholar 

  95. M. Raimbault, General and microbiological aspects of solid substrate fermentation. Electron. J. Biotechnol. 1(3), 1–16 (1998)

    Google Scholar 

  96. J. Ren (ed.), Biodegradable Poly (Lactic Acid): Synthesis, Modification, Processing and Applications (Springer Science & Business Media, 2011)

    Google Scholar 

  97. B.D. Ribeiro, M.A.Z. Coelho, A.M. Castro, Principles of green chemistry and white biotechnology, in White Biotechnology for Sustainable Chemistry, (Royal Society of Chemistry, Cambridge, UK, 2015), pp. 1–8

    Google Scholar 

  98. T. Robinson, D. Singh, P. Nigam, Solid state fermentation: A promising microbial technology for secondary metabolite production. Appl. Microbiol. Biotechnol. 55, 284–289 (2001)

    Article  CAS  Google Scholar 

  99. J.G. Rosenboom, R. Langer, G. Traverso, Bioplastics for a circular economy. Nat. Rev. Mater 7, 117–137 (2022)

    Article  Google Scholar 

  100. W. Russ, R. Meyer-Pittroff, Utilizing waste products from the food production and processing industries. Crit. Rev. Food Sci. Nutr. 44(1), 57–62 (2004)

    Article  Google Scholar 

  101. P.K. Sadh, S. Duhan, J. Singh Dujan, Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresour. Bioproc 5(1), 1–15 (2018)

    Article  Google Scholar 

  102. M. Sahnoun, M. Kriaa, F. Elgharbi, et al., Aspergillus oryzae S2 alpha-amylase production under solid state fermentation: Optimization of culture conditions. Int. J. Biol. Macromol. 75, 73–80 (2015)

    Article  CAS  Google Scholar 

  103. A. Sala, S. Vittone, R. Barrena, et al., Scanning agro-industrial wastes as substrates for fungal biopesticide production: Use of Beauveria bassiana and Trichoderma harzianum in solid-state fermentation. J. Environ. Manag. 295(113113), 1–8 (2021)

    Google Scholar 

  104. D.K.F. Santos, Y.B. Brandão, R.D. Rufino, et al., Optimization of cultural conditions for biosurfactant production from Candida lipolytica. Biocatal. Agric. Biotechnol. 2014(3), 48–57 (2014)

    Article  Google Scholar 

  105. D.K.F. Santos, R.D. Rufino, J.M. Luna, et al., Biosurfactants: Multifunctional biomolecules of the 21st century. Int. J. Mol. Sci. 17(3), 40 (2016)

    Article  Google Scholar 

  106. V. Saravanan, S. Vijayakumar, Production of biosurfactant by Pseudomonas aeruginosa PB3A using agro-industrial wastes as a carbon source. Malays. J. Microbiol 10(1), 57–62 (2014)

    Google Scholar 

  107. S. Sargin, Y. Gezgin, R. Eltem, F. Vardar, Micropropagule production from Trichoderma harzianum EGE-K38 using solid-state fermentation and a comparative study for drying methods. Turk. J. Biol. 37(2), 139–146 (2013)

    CAS  Google Scholar 

  108. A.K. Singh, L. Sharma, Mallick, et al., Progress and challenges in producing polyhydroxyalkanoate biopolymers from cyanobacteria. J. Appl. Phycol. 29, 1213–1232 (2017)

    Article  CAS  Google Scholar 

  109. N. Schultz, L.F. Chang, A. Hauck, et al., Microbial production of single-cell protein from deproteinized whey concentrates. Appl. Microbiol. Biotechnol. 69, 515–520 (2006)

    Article  CAS  Google Scholar 

  110. S. Shankar, J.W. Rhim, Bionanocomposite films for food packaging applications. Reference module in food science 1, 1–10 (2018)

    Google Scholar 

  111. R.C.F.S. Silva, D.G. Almeida, J.M. Luna, et al., Applications of biosurfactants in the petroleum industry and the remediation of oil spills. Int. J. Mol. Sci. 15, 12523–12542 (2014)

    Article  Google Scholar 

  112. J.M.F.J. Da Silveira, I.D.C. Borges, A.M. Buainain, Biotecnologia e agricultura: da ciencia e tecnologia aos impactos da inovac ao. Sao Paulo em Perspect 19, 101–114 (2005)

    Article  Google Scholar 

  113. M.K. Singh, J. Singh, M. Kumar, I.S. Thakur, Novel lipase from basidiomycetes Schizophyllum commune ISTL04, produced by produced by solid state fermentation of Leucaena leucocephala seeds. J. Mol. Catal. B Enzym. 110, 92–99 (2014)

    Article  CAS  Google Scholar 

  114. R. Sirohi, J.P. Pandey, V.K. Gaur, E. Gnansounou, et al., Critical overview of biomass feedstocks as sustainable substrates for the production of polyhydroxybutyrate (PHB). Bioresour. Technol. 311, 123536 (2020)

    Article  CAS  Google Scholar 

  115. C.R. Soccol, E.S. Ferreira da Costa, L.A.J. Letti, et al., Recent developments and innovations in solid state fermentation. Biotechnol. Res. Innov 1, 52–71 (2017)

    Article  Google Scholar 

  116. P. Sudhakar-Babu, A.N. Vaidya, A.S. Bal, et al., Kinetics of biosurfactants production by Pseudomonas aeruginosa strain from industrial wastes. Biotechnol. Lett. 18, 263–268 (1996)

    Article  Google Scholar 

  117. R. Sun, J. Tomkinson, Comparative study of lignins isolated by alkali and ultrasound-assisted alkali extractions from wheat straw. Ultrason. Sonochem. 9(2), 85–93 (2002)

    Article  CAS  Google Scholar 

  118. I. Talhi, L. Dehimat, A. Jaouani, et al., Optimization of thermostable proteases production under agro-wastes solid-state fermentation by a new thermophilic Mycothermus thermophiles isolated from a hydrothermal spring Hammam Debagh. Chemosphere 131479, 1–13 (2022)

    Google Scholar 

  119. E. Tampio, S. Ervasti, T. Paavola, et al., Anaerobic digestion of autoclaved and untreated food waste. Waste Manag. 34, 370–377 (2014)

    Article  CAS  Google Scholar 

  120. D.N. Thompson, S.L. Fox, G.A. Bala, Biosurfactants from potato process effluents. Appl. Biochem. Biotechnol. 84, 917–930 (2000)

    Article  Google Scholar 

  121. A.D. Tripathi, A. Yadav, A. Jha, et al., Utilizing of sugar refinery waste (cane molasses) for production of bio-plastic under submerged fermentation process. J. Polym. Environ. 20, 446–453 (2012)

    Article  CAS  Google Scholar 

  122. A. Tropea, A.G. Potortì, V. Lo Turco, et al., Aquafeed production from fermented fish waste and lemon. Peel Ferment 7, 272 (2021)

    Article  CAS  Google Scholar 

  123. A. Tropea, A. Ferracane, A. Albergamo, et al., Single cell protein production through multi food-waste substrate fermentation. Fermentation 8(3), 91 (2022)

    Google Scholar 

  124. S.A. Tweib, R.A. Rahman, M.S. Kalil, A literature review on the composting, in International Conference on Environment and Industrial Innovation, (IACSIT Press, Singapore, 2011), pp. 124–127

    Google Scholar 

  125. UNEP – United Nations Environment Programme, Food Waste Index Report 2021. Nairobi (2021)

    Google Scholar 

  126. Z. Usmani, M. Sharma, J. Gaffey, et al., Valorization of dairy waste and by-products through microbial bioprocesses. Bioresour. Technol. 346, 126444 (2021)

    Article  Google Scholar 

  127. S. Varjani, P. Rakholiya, H.Y. Ng, et al., Microbial degradation of dyes: An overview. Bioresour. Technol. 314, 123728 (2020)

    Article  CAS  Google Scholar 

  128. J. Venus, Utilization of renewables for lactic acid fermentation. Biotechnol. J. 1(12), 1428–1432 (2006)

    Article  CAS  Google Scholar 

  129. J. Venus, K. Richter, Production of lactic acid from barley: Strain selection, phenotypic and medium optimization. Eng. Life Sci. 6(5), 492–500 (2006)

    Article  CAS  Google Scholar 

  130. E.T. Vink, S. Davies, Life cycle inventory and impact assessment data for 2014Ingeo™polylactide production. Ind. Biotechnol. 11(3), 167–180 (2015)

    Article  CAS  Google Scholar 

  131. J. Xu, B. Guo, Poly (butylene succinate) and its copolymers: Research, development and industrialization. Biotechnol. J. 5, 1149–1163 (2010)

    Article  CAS  Google Scholar 

  132. F. Yunus, M. Nadeem, F. Rashid, Single-cell protein production through microbial conversion of lignocellulosic residue (wheat bran) for animal feed. J. Inst. Brew. 121, 553–557 (2015)

    Article  CAS  Google Scholar 

  133. Y. Zhao, Z. Wang, J. Wang, et al., Direct synthesis of poly (D, L-lactic acid) by melt polycondensation and its application in drug delivery. J. Appl. Polym. Sci. 91, 2143–2150 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sait Sargin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aslan, E., Sargin, S. (2023). Bioprocesses for Sustainable Bioeconomy: Fermentation, Benefits, and Constraints. In: Oncel, S.S. (eds) A Sustainable Green Future. Springer, Cham. https://doi.org/10.1007/978-3-031-24942-6_6

Download citation

Publish with us

Policies and ethics

Navigation