Hyper- and Multi-spectral Imaging Technologies

  • Reference work entry
  • First Online:
Encyclopedia of Digital Agricultural Technologies

Definition

Spectral imaging is a technique used to capture and analyze the spectrum of light reflected, transmitted or emitted by an object. The technology combines imaging and spectroscopy in a single system to obtain both spatial and spectral information of the material being studied. The difference between multi- and hyper- spectral imaging is defined as a function of the number of spectral bands measured. Multispectral data sets are usually composed of <10 spectral bands of relatively wide bandwidths (70–400 nm), while hyperspectral data sets are generally composed of >100 contiguous spectral bands of relatively narrow bandwidths (5–10 nm). In addition, they can also be defined as a function of the wavelength region used to obtain the images, visible (400–700 nm), and near infrared (800–2500 nm). Sensors based on hyper- and multi-spectral imaging technologies are widely used in precision agriculture for monitoring and characterizing vegetation at different spatial, spectral, and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Albetis J, Duthoit S, Guttler F, Jacquin A, Goulard M, Poilvé H, Féret J-B, Dedieu G (2017) Detection of Flavescence dorée grapevine disease using unmanned aerial vehicle (UAV) multispectral imagery. Remote Sens 9(4):308

    Article  Google Scholar 

  • Aldana-Jague E, Heckrath G, Macdonald A, van Wesemael B, Van Oost K (2016) UAS-based soil carbon map** using VIS-NIR (480–1000 nm) multi-spectral imaging: Potential and limitations. Geoderma 275:55–66

    Google Scholar 

  • Amigo JM (2020) Hyperspectral and multispectral imaging: setting the scene. In: Data handling in science and technology, vol 32. Elsevier, pp 3–16. https://doi.org/10.1016/B978-0-444-63977-6.00001-8

    Chapter  Google Scholar 

  • Amigo JM, Grassi S (2020a) Configuration of hyperspectral and multispectral imaging systems. Data Handl Sci Technol 32:17–34. https://doi.org/10.1016/B978-0-444-63977-6.00002-X

    Article  Google Scholar 

  • Amigo JM, Grassi S (2020b) Configuration of hyperspectral and multispectral imaging systems. In: Data handling in science and technology, vol 32. Elsevier, pp 17–34. https://doi.org/10.1016/B978-0-444-63977-6.00002-X

    Chapter  Google Scholar 

  • Bajgain R, Kawasaki Y, Akamatsu Y, Tanaka Y, Kawamura H, Katsura K, Shiraiwa T (2015) Biomass production and yield of soybean grown under converted paddy fields with excess water during the early growth stage. Field Crop Res 180:221–227

    Article  Google Scholar 

  • Baluja J, Diago MP, Balda P, Zorer R, Meggio F, Morales F, Tardaguila J (2012) Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV). Irrig Sci 30:511–522

    Article  Google Scholar 

  • Castaldi F, Hueni A, Chabrillat S, Ward K, Buttafuoco G, Bomans B, Vreys K, Brell M, van Wesemael B (2019) Evaluating the capability of the sentinel 2 data for soil organic carbon prediction in croplands. ISPRS J Photogramm Remote Sens 147:267–282

    Article  Google Scholar 

  • Chang A, Jung J, Yeom J, Maeda MM, Landivar JA, Enciso JM et al (2021) Unmanned aircraft system-(UAS-) based high-throughput phenoty** (HTP) for tomato yield estimation. J Sens 2021:1–14

    Article  Google Scholar 

  • Chechliński Ł, Siemiątkowska B, Majewski M (2019) A system for weeds and crops identification—reaching over 10 fps on raspberry pi with the usage of mobilenets, densenet and custom modifications. Sensors 19(17):3787

    Article  PubMed  PubMed Central  Google Scholar 

  • Costa L, Kunwar S, Ampatzidis Y, Albrecht U (2021) Determining leaf nutrient concentrations in citrus trees using UAV imagery and machine learning. Precis Agric 23:1–22

    Google Scholar 

  • DadrasJavan F, Samadzadegan F, Seyed Pourazar SH, Fazeli H (2019) UAV-based multispectral imagery for fast citrus greening detection. J Plant Dis Protect 126:307–318

    Article  Google Scholar 

  • Feng J, Zeng L, He L (2019) Apple fruit recognition algorithm based on multi-spectral dynamic image analysis. Sensors 19(4):949

    Article  PubMed  PubMed Central  Google Scholar 

  • Gholizadeh A, Žižala D, Saberioon M, Borůvka L (2018) Soil organic carbon and texture retrieving and map** using proximal, airborne and Sentinel-2 spectral imaging. Remote Sensing of Environment 218:89–103

    Google Scholar 

  • Goetz AFH (1995) Imaging spectrometry for remote sensing, vision of reality in 15 years. Proc SPIE 2480:2–13

    Article  Google Scholar 

  • Goetz AFH, Vane G, Solomon JE, Rock BN (1985) Imaging spectroscopy for earth remote sensing. Science 228:1147–1153

    Article  CAS  PubMed  Google Scholar 

  • Gowen AA, O’Donnell CP, Cullen PJ, Downey G, Frias JM (2007) Hyperspectral imaging–an emerging process analytical tool for food quality and safety control. Trends Food Sci Technol 18(12):590–598

    Article  CAS  Google Scholar 

  • Guo Y, Yan Z, Gheyret G, Zhou G, **e Z, Tang Z (2020) The community-level scaling relationship between leaf nitrogen and phosphorus changes with plant growth, climate and nutrient limitation. J Ecol 108(4):1276–1286

    Article  CAS  Google Scholar 

  • Holman FH, Riche AB, Michalski A, Castle M, Wooster MJ, Hawkesford MJ (2016) High throughput field phenoty** of wheat plant height and growth rate in field plot trials using UAV based remote sensing. Remote Sens 8(12):1031

    Article  Google Scholar 

  • ** S, Su Y, Wu F, Pang S, Gao S, Hu T et al (2018) Stem–leaf segmentation and phenotypic trait extraction of individual maize using terrestrial LiDAR data. IEEE Trans Geosci Remote Sens 57(3):1336–1346

    Article  Google Scholar 

  • Kounalakis T, Triantafyllidis GA, Nalpantidis L (2019) Deep learning-based visual recognition of rumex for robotic precision farming. Comput Electron Agric 165:104973

    Article  Google Scholar 

  • Loggenberg K, Strever A, Greyling B, Poona N (2018) Modelling water stress in a shiraz vineyard using hyperspectral imaging and machine learning. Remote Sens 10(2):202

    Article  Google Scholar 

  • Mostafa H, Saha KK, Tsoulias N, Zude-Sasse M (2022) Using LiDAR technique and modified community land model for calculating water interception of cherry tree canopy. Agric Water Manag 272:107816

    Article  Google Scholar 

  • Mulla, D.J. (2021). Satellite Remote Sensing for Precision Agriculture. In: Kerry, R., Escolà, A. (eds) Sensing Approaches for Precision Agriculture. Progress in Precision Agriculture. Springer, Cham

    Google Scholar 

  • Okamoto H, Lee WS (2009) Green citrus detection using hyperspectral imaging. Comput Electron Agric 66(2):201–208

    Article  Google Scholar 

  • Okamoto H, Murata T, Kataoka T, Hata SI (2007) Plant classification for weed detection using hyperspectral imaging with wavelet analysis. Weed Biol Manag 7(1):31–37

    Article  Google Scholar 

  • Penzel M, Lakso AN, Tsoulias N, Zude-Sasse M (2020) Carbon consumption of develo** fruit and the fruit bearing capacity of individual RoHo 3615 and Pinova apple trees. Int Agrophys 34(4):409–423. https://doi.org/10.31545/intagr/127540

  • Pongpattananurak N, Reich RM, Khosla R, Aguirre-Bravo C (2012) Modeling the spatial distribution of soil texture in the state of Jalisco, Mexico. Soil Science Society of America Journal 76(1):199–209

    Google Scholar 

  • Rapaport T, Hochberg U, Shoshany M, Karnieli A, Rachmilevitch S (2015) Combining leaf physiology, hyperspectral imaging and partial least squares-regression (PLS-R) for grapevine water status assessment. ISPRS J Photogramm Remote Sens 109:88–97

    Article  Google Scholar 

  • Rasmussen J, Nielsen J, Garcia-Ruiz F, Christensen S, Streibig JC (2013) Potential uses of small unmanned aircraft systems (UAS) in weed research. Weed Res 53(4):242–248

    Article  Google Scholar 

  • Romero M, Luo Y, Su B, Fuentes S (2018) Vineyard water status estimation using multispectral imagery from an UAV platform and machine learning algorithms for irrigation scheduling management. Comput Electron Agric 147:109–117

    Article  Google Scholar 

  • Rossini M, Fava F, Cogliati S, Meroni M, Marchesi A, Panigada C et al (2013) Assessing canopy PRI from airborne imagery to map water stress in maize. ISPRS J Photogramm Remote Sens 86:168–177

    Article  Google Scholar 

  • Rubio-Delgado J, Pérez CJ, Vega-Rodríguez MA (2021) Predicting leaf nitrogen content in olive trees using hyperspectral data for precision agriculture. Precis Agric 22:1–21

    Article  CAS  Google Scholar 

  • Ruigrok T, van Henten E, Booij J, van Boheemen K, Kootstra G (2020) Application-specific evaluation of a weed-detection algorithm for plant-specific spraying. Sensors 20(24):7262

    Article  PubMed  PubMed Central  Google Scholar 

  • Severtson D, Callow N, Flower K, Neuhaus A, Olejnik M, Nansen C (2016) Unmanned aerial vehicle canopy reflectance data detects potassium deficiency and green peach aphid susceptibility in canola. Precis Agric 17:659–677

    Article  Google Scholar 

  • Shendryk Y, Sofonia J, Garrard R, Rist Y, Skocaj D, Thorburn P (2020) Fine-scale prediction of biomass and leaf nitrogen content in sugarcane using UAV LiDAR and multispectral imaging. Int J Appl Earth Obs Geoinf 92:102177

    Google Scholar 

  • Siegfried J, Longchamps L, Khosla R (2019) Multispectral satellite imagery to quantify in-field soil moisture variability. J Soil Water Conserv 74(1):33–40

    Article  Google Scholar 

  • Smigaj M, Gaulton R, Suárez JC, Barr SL (2019) Combined use of spectral and structural characteristics for improved red band needle blight detection in pine plantation stands. For Ecol Manag 434:213–223

    Article  Google Scholar 

  • Suzuki Y, Okamoto H, Kataoka T (2008) Image segmentation between crop and weed using hyperspectral imaging for weed detection in soybean field. Environ Control Biol 46(3):163–173

    Article  Google Scholar 

  • Tsoulias N, Saha KK, Zude-Sasse M (2023) In-situ fruit analysis by means of LiDAR 3D point cloud of normalized difference vegetation index (NDVI). Comput Electron Agric 205:107611

    Article  Google Scholar 

  • Veysi S, Naseri AA, Hamzeh S, Bartholomeus H (2017) A satellite based crop water stress index for irrigation scheduling in sugarcane fields. Agric Water Manag 189:70–86

    Article  Google Scholar 

  • Whelan B, Taylor J (2013) Precision agriculture for grain production systems. Csiro Publishing

    Book  Google Scholar 

  • Wu D, Sun DW (2013) Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: a review—part I: fundamentals. Innovative Food Sci Emerg Technol 19:1–14

    Article  Google Scholar 

  • Wu X, Aravecchia S, Lottes P, Stachniss C, Pradalier C (2020) Robotic weed control using automated weed and crop classification. J Field Rob 37(2):322–340

    Article  Google Scholar 

  • Zarco-Tejada PJ, González-Dugo V, Williams LE, Suarez L, Berni JA, Goldhamer D, Fereres E (2013) A PRI-based water stress index combining structural and chlorophyll effects: assessment using diurnal narrow-band airborne imagery and the CWSI thermal index. Remote Sens Environ 138:38–50

    Article  Google Scholar 

  • Zovko M, Žibrat U, Knapič M, Kovačić MB, Romić D (2019) Hyperspectral remote sensing of grapevine drought stress. Precis Agric 20:335–347

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Argyropoulos .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tsoulias, N., Zhao, M., Paraforos, D.S., Argyropoulos, D. (2023). Hyper- and Multi-spectral Imaging Technologies. In: Zhang, Q. (eds) Encyclopedia of Digital Agricultural Technologies. Springer, Cham. https://doi.org/10.1007/978-3-031-24861-0_65

Download citation

Publish with us

Policies and ethics

Navigation