Role of Nitric Oxide Synthase and Nitric Oxide Signaling in the Neutrophil Ontogeny and Functions

  • Chapter
  • First Online:
Nitric Oxide: From Research to Therapeutics

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 22))

  • 389 Accesses

Abstract

Neutrophils are the essential guards of the immune system that inactivate different pathogens as well as instruct specific immune responses. Nitric oxide (NO), a pleiotropic signaling molecule produced from nitric oxide synthases, regulates neutrophils at diverse levels. This includes the development of neutrophils from hematopoietic stem cells through granulopoiesis processes; furthermore, nitric oxide regulates neutrophil maturation from committed progenitor cells. In addition, nitric oxide regulates most of the neutrophil functions, such as adhesion, chemotaxis, respiratory burst, apoptosis, NETosis, intruder killing, and tissue damage. Intriguingly, neutrophils provide substantial amount of NO with the presence of nitric oxide synthases and their regulation in inflammatory conditions. Overall, this work discusses the role of nitric oxide signaling in neutrophil ontogeny and functions.

Sachin Kumar and Samreen Sadaf authors have contributed equally

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lo Celso C, Scadden DT (2011) The haematopoietic stem cell niche at a glance. J Cell Sci 124(Pt 21):3529–3535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Trumpp A, Essers M, Wilson A (2010) Awakening dormant haematopoietic stem cells. Nat Rev Immunol 10(3):201–209

    Article  CAS  PubMed  Google Scholar 

  3. Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4(1–2):7–25

    CAS  PubMed  Google Scholar 

  4. Boulais PE, Frenette PS (2015) Making sense of hematopoietic stem cell niches. Blood 125(17):2621–2629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Morrison SJ, Weissman IL (1994) The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1(8):661–673

    Article  CAS  PubMed  Google Scholar 

  6. Morrison SJ, Wandycz AM, Hemmati HD, Wright DE, Weissman IL (1997) Identification of a lineage of multipotent hematopoietic progenitors. Development 124(10):1929–1939

    Article  CAS  PubMed  Google Scholar 

  7. Kondo M, Weissman IL, Akashi K (1997) Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91(5):661–672

    Article  CAS  PubMed  Google Scholar 

  8. Chotinantakul K, Leeanansaksiri W (2012) Hematopoietic stem cell development, niches, and signaling pathways. Bone Marrow Res 2012:270425

    Article  PubMed  PubMed Central  Google Scholar 

  9. Borregaard N, Cowland JB (1997) Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89(10):3503–3521

    Article  CAS  PubMed  Google Scholar 

  10. Bhatia M, Wang JC, Kapp U, Bonnet D, Dick JE (1997) Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc Natl Acad Sci USA 94(10):5320–5325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Conneally E, Cashman J, Petzer A, Eaves C (1997) Expansion in vitro of transplantable human cord blood stem cells demonstrated using a quantitative assay of their lympho-myeloid repopulating activity in nonobese diabetic-scid/scid mice. Proc Natl Acad Sci USA 94(18):9836–9841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gammaitoni L, Bruno S, Sanavio F, Gunetti M, Kollet O, Cavalloni G et al (2003) Ex vivo expansion of human adult stem cells capable of primary and secondary hemopoietic reconstitution. Exp Hematol 31(3):261–270

    Article  CAS  PubMed  Google Scholar 

  13. Miller CL, Eaves CJ (1997) Expansion in vitro of adult murine hematopoietic stem cells with transplantable lympho-myeloid reconstituting ability. Proc Natl Acad Sci USA 94(25):13648–13653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zandstra PW, Conneally E, Petzer AL, Piret JM, Eaves CJ (1997) Cytokine manipulation of primitive human hematopoietic cell self-renewal. Proc Natl Acad Sci USA 94(9):4698–4703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Metcalf D (2008) Hematopoietic cytokines. Blood 111(2):485–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lieschke GJ, Grail D, Hodgson G, Metcalf D, Stanley E, Cheers C et al (1994) Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 84(6):1737–1746

    Article  CAS  PubMed  Google Scholar 

  17. Liu F, Wu HY, Wesselschmidt R, Kornaga T, Link DC (1996) Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice. Immunity 5(5):491–501

    Article  CAS  PubMed  Google Scholar 

  18. Christopherson KW 2nd, Cooper S, Broxmeyer HE (2003) Cell surface peptidase CD26/DPPIV mediates G-CSF mobilization of mouse progenitor cells. Blood 101(12):4680–4686

    Article  CAS  PubMed  Google Scholar 

  19. Levesque JP, Takamatsu Y, Nilsson SK, Haylock DN, Simmons PJ (2001) Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood 98(5):1289–1297

    Article  CAS  PubMed  Google Scholar 

  20. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR et al (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109(5):625–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L et al (2002) G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 3(7):687–694

    Google Scholar 

  22. Winkler IG, Hendy J, Coughlin P, Horvath A, Levesque JP (2005) Serine protease inhibitors serpina1 and serpina3 are down-regulated in bone marrow during hematopoietic progenitor mobilization. J Exp Med 201(7):1077–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nagase H, Miyamasu M, Yamaguchi M, Imanishi M, Tsuno NH, Matsushima K et al (2002) Cytokine-mediated regulation of CXCR4 expression in human neutrophils. J Leukoc Biol 71(4):711–717

    Article  CAS  PubMed  Google Scholar 

  24. Kim HK, De La Luz SM, Williams CK, Gulino AV, Tosato G (2006) G-CSF down-regulation of CXCR4 expression identified as a mechanism for mobilization of myeloid cells. Blood 108(3):812–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Suratt BT, Petty JM, Young SK, Malcolm KC, Lieber JG, Nick JA et al (2004) Role of the CXCR4/SDF-1 chemokine axis in circulating neutrophil homeostasis. Blood 104(2):565–571

    Article  CAS  PubMed  Google Scholar 

  26. Martin C, Burdon PC, Bridger G, Gutierrez-Ramos JC, Williams TJ, Rankin SM (2003) Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity 19(4):583–593

    Article  CAS  PubMed  Google Scholar 

  27. Hernandez PA, Gorlin RJ, Lukens JN, Taniuchi S, Bohinjec J, Francois F et al (2003) Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet 34(1):70–74

    Article  CAS  PubMed  Google Scholar 

  28. Eash KJ, Means JM, White DW, Link DC (2009) CXCR4 is a key regulator of neutrophil release from the bone marrow under basal and stress granulopoiesis conditions. Blood 113(19):4711–4719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. von Vietinghoff S, Ley K (2008) Homeostatic regulation of blood neutrophil counts. J Immunol 181(8):5183–5188

    Article  Google Scholar 

  30. Ma Q, Jones D, Springer TA (1999) The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity 10(4):463–471

    Article  CAS  PubMed  Google Scholar 

  31. Moncada S, Palmer RM, Higgs EA (1989) Biosynthesis of nitric oxide from L-arginine. A pathway for the regulation of cell function and communication. Biochem Pharmacol 38(11):1709–15

    Google Scholar 

  32. Gross SS, Jaffe EA, Levi R, Kilbourn RG (1991) Cytokine-activated endothelial cells express an isotype of nitric oxide synthase which is tetrahydrobiopterin-dependent, calmodulin-independent and inhibited by arginine analogs with a rank-order of potency characteristic of activated macrophages. Biochem Biophys Res Commun 178(3):823–829

    Article  CAS  PubMed  Google Scholar 

  33. Bredt DS, Snyder SH (1994) Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem 63:175–195

    Article  CAS  PubMed  Google Scholar 

  34. Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357(Pt 3):593–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Helfrich MH, Evans DE, Grabowski PS, Pollock JS, Ohshima H, Ralston SH (1997) Expression of nitric oxide synthase isoforms in bone and bone cell cultures. J Bone Miner Res 12(7):1108–1115

    Article  CAS  PubMed  Google Scholar 

  36. Morton J, Coles B, Wright K, Gallimore A, Morrow JD, Terry ES et al (2008) Circulating neutrophils maintain physiological blood pressure by suppressing bacteria and IFNgamma-dependent iNOS expression in the vasculature of healthy mice. Blood 111(10):5187–5194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Srivastava P, Rajanikanth M, Raghavan SA, Dikshit M (2002) Role of endogenous reactive oxygen derived species and cyclooxygenase mediators in 5-hydroxytryptamine-induced contractions in rat aorta: relationship to nitric oxide. Pharmacol Res 45(5):375–382

    Article  CAS  PubMed  Google Scholar 

  38. Saini R, Patel S, Saluja R, Sahasrabuddhe AA, Singh MP, Habib S et al (2006) Nitric oxide synthase localization in the rat neutrophils: immunocytochemical, molecular, and biochemical studies. J Leukoc Biol 79(3):519–528

    Article  CAS  PubMed  Google Scholar 

  39. Saluja R, Bajpai VK, Mitra K, Habib S, Dikshit M (2007) Molecular characterization and distribution of nitric oxide synthase in human blood cells. Paper presented at Emerging trends in free radical and antioxidant research, Third Meeting of the Society for Free Radical Research-Asia (SFRR-Asia) & Sixth annual meeting of Society for Free Radical Research-India (SFRR-India), Mumbai, Lonavala, India, 177p

    Google Scholar 

  40. Chatterjee M, Saluja R, Tewari S, Barthwal MK, Goel SK, Dikshit M (2009) Augmented nitric oxide generation in neutrophils: oxidative and pro-inflammatory implications in hypertension. Free Radic Res 43(12):1195–1204

    Article  CAS  PubMed  Google Scholar 

  41. Saluja R, Saini R, Mitra K, Bajpai VK, Dikshit M (2010) Ultrastructural immunogold localization of nitric oxide synthase isoforms in rat and human eosinophils. Cell Tissue Res 340(2):381–388

    Article  CAS  PubMed  Google Scholar 

  42. Jyoti A, Singh AK, Dubey M, Kumar S, Saluja R, Keshari RS et al (2014) Interaction of inducible nitric oxide synthase with rac2 regulates reactive oxygen and nitrogen species generation in the human neutrophil phagosomes: implication in microbial killing. Antioxid Redox Signal 20(3):417–431

    Article  CAS  PubMed  Google Scholar 

  43. Jalnapurkar S, Singh S, Devi MR, Limaye L, Kale V (2016) Nitric oxide has contrasting age-dependent effects on the functionality of murine hematopoietic stem cells. Stem Cell Res Ther 7(1):171

    Article  PubMed  PubMed Central  Google Scholar 

  44. North TE, Goessling W, Peeters M, Li P, Ceol C, Lord AM et al (2009) Hematopoietic stem cell development is dependent on blood flow. Cell 137(4):736–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sadaf S, Awasthi D, Singh AK, Nagarkoti S, Kumar S, Barthwal MK, et al (2019) Pyroptotic and apoptotic cell death in iNOS and nNOS overexpressing K562 cells: a mechanistic insight. Biochem Pharmacol:113779.

    Google Scholar 

  46. Sadaf S, Singh AK, Awasthi D, Nagarkoti S, Agrahari AK, Srivastava RN, et al (2019) Augmentation of iNOS expression in myeloid progenitor cells expedites neutrophil differentiation. J Leukoc Biol

    Google Scholar 

  47. Shami PJ, Weinberg JB (1996) Differential effects of nitric oxide on erythroid and myeloid colony growth from CD34+ human bone marrow cells. Blood 87(3):977–982

    Article  CAS  PubMed  Google Scholar 

  48. Ishida A, Sasaguri T, Kosaka C, Nojima H, Ogata J (1997) Induction of the cyclin-dependent kinase inhibitor p21(Sdi1/Cip1/Waf1) by nitric oxide-generating vasodilator in vascular smooth muscle cells. J Biol Chem 272(15):10050–10057

    Article  CAS  PubMed  Google Scholar 

  49. Kumar S, Jyoti A, Keshari RS, Singh M, Barthwal MK, Dikshit M (2010) Functional and molecular characterization of NOS isoforms in rat neutrophil precursor cells. Cytometry A 77(5):467–477

    PubMed  Google Scholar 

  50. Enikolopov G, Banerji J, Kuzin B (1999) Nitric oxide and Drosophila development. Cell Death Differ 6(10):956–963

    Article  CAS  PubMed  Google Scholar 

  51. Kumar S, Barthwal MK, Dikshit M (2010) Cdk2 nitrosylation and loss of mitochondrial potential mediate NO-dependent biphasic effect on HL-60 cell cycle. Free Radical Biol Med 48(6):851–861

    Article  CAS  Google Scholar 

  52. Punjabi CJ, Laskin DL, Heck DE, Laskin JD (1992) Production of nitric oxide by murine bone marrow cells. Inverse correlation with cellular proliferation. J Immunol 149(6):2179–84

    Google Scholar 

  53. Maciejewski JP, Selleri C, Sato T, Cho HJ, Keefer LK, Nathan CF, et al (1995) Nitric oxide suppression of human hematopoiesis in vitro: contribution to inhibitory action of interferon-gamma and tumor necrosis factor-alpha. J Clin Invest 96(2):1085–92

    Google Scholar 

  54. Nolan S, Dixon R, Norman K, Hellewell P, Ridger V (2008) Nitric oxide regulates neutrophil migration through microparticle formation. Am J Pathol 172(1):265–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Krasnov P, Michurina T, Packer MA, Stasiv Y, Nakaya N, Moore KA et al (2008) Neuronal nitric oxide synthase contributes to the regulation of hematopoiesis. Mol Med 14(3–4):141–149

    Article  CAS  PubMed  Google Scholar 

  56. Noiri E, Lee E, Testa J, Quigley J, Colflesh D, Keese CR et al (1998) Podokinesis in endothelial cell migration: role of nitric oxide. Am J Physiol 274(1):C236–C244

    Article  CAS  PubMed  Google Scholar 

  57. Punjabi CJ, Laskin JD, Hwang SM, MacEachern L, Laskin DL (1994) Enhanced production of nitric oxide by bone marrow cells and increased sensitivity to macrophage colony-stimulating factor (CSF) and granulocyte-macrophage CSF after benzene treatment of mice. Blood 83(11):3255–3263

    Article  CAS  PubMed  Google Scholar 

  58. Aicher A, Heeschen C, Mildner-Rihm C, Urbich C, Ihling C, Technau-Ihling K et al (2003) Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 9(11):1370–1376

    Article  CAS  PubMed  Google Scholar 

  59. Nogueira-Pedro A, Dias CC, Regina H, Segreto C, Addios PC, Lungato L et al (2014) Nitric oxide-induced murine hematopoietic stem cell fate involves multiple signaling proteins, gene expression, and redox modulation. Stem Cells 32(11):2949–2960

    Article  CAS  PubMed  Google Scholar 

  60. Suda T, Arai F, Hirao A (2005) Hematopoietic stem cells and their niche. Trends Immunol 26(8):426–433

    Article  CAS  PubMed  Google Scholar 

  61. Sethi S, Dikshit M (2000) Modulation of polymorphonuclear leukocytes function by nitric oxide. Thromb Res 100(3):223–247

    Article  CAS  PubMed  Google Scholar 

  62. Michurina T, Krasnov P, Balazs A, Nakaya N, Vasilieva T, Kuzin B et al (2004) Nitric oxide is a regulator of hematopoietic stem cell activity. Mol Ther 10(2):241–248

    Article  CAS  PubMed  Google Scholar 

  63. Dubey M, Nagarkoti S, Awasthi D, Singh AK, Chandra T, Kumaravelu J et al (2016) Nitric oxide-mediated apoptosis of neutrophils through caspase-8 and caspase-3-dependent mechanism. Cell Death Dis 7(9):e2348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chenais B, Molle I, Jeannesson P (1999) Inhibitory effect of nitric oxide on chemically induced differentiation of human leukemic K562 cells. Biochem Pharmacol 58(5):773–778

    Article  CAS  PubMed  Google Scholar 

  65. Shami PJ, Sauls DL, Weinberg JB (1998) Schedule and concentration-dependent induction of apoptosis in leukemia cells by nitric oxide. Leukemia 12(9):1461–1466

    Article  CAS  PubMed  Google Scholar 

  66. Magrinat G, Mason SN, Shami PJ, Weinberg JB (1992) Nitric oxide modulation of human leukemia cell differentiation and gene expression. Blood 80(8):1880–1884

    Article  CAS  PubMed  Google Scholar 

  67. Diaz MF, Li N, Lee HJ, Adamo L, Evans SM, Willey HE et al (2015) Biomechanical forces promote blood development through prostaglandin E2 and the cAMP-PKA signaling axis. J Exp Med 212(5):665–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nasrallah R, Knezevic K, Thai T, Thomas SR, Gottgens B, Lacaud G et al (2015) Endoglin potentiates nitric oxide synthesis to enhance definitive hematopoiesis. Biol Open 4(7):819–829

    Article  PubMed  PubMed Central  Google Scholar 

  69. Tejedo JR, Tapia-Limonchi R, Mora-Castilla S, Cahuana GM, Hmadcha A, Martin F et al (2010) Low concentrations of nitric oxide delay the differentiation of embryonic stem cells and promote their survival. Cell Death Dis 1:e80

    Google Scholar 

  70. Mora-Castilla S, Tejedo JR, Hmadcha A, Cahuana GM, Martin F, Soria B et al (2010) Nitric oxide repression of Nanog promotes mouse embryonic stem cell differentiation. Cell Death Differ 17(6):1025–1033

    Article  CAS  PubMed  Google Scholar 

  71. Trento C, Marigo I, Pievani A, Galleu A, Dolcetti L, Wang CY et al (2017) Bone marrow mesenchymal stromal cells induce nitric oxide synthase-dependent differentiation of CD11b(+) cells that expedite hematopoietic recovery. Haematologica 102(5):818–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tiribuzi R, Crispoltoni L, Tartacca F, Orlacchio A, Martino S, Palmerini CA et al (2013) Nitric oxide depletion alters hematopoietic stem cell commitment toward immunogenic dendritic cells. Biochim Biophys Acta 1830(3):2830–2838

    Article  CAS  PubMed  Google Scholar 

  73. Iversen PO, Nicolaysen G, Benestad HB (1994) Endogenous nitric oxide causes vasodilation in rat bone marrow, bone, and spleen during accelerated hematopoiesis. Exp Hematol 22(13):1297–1302

    CAS  PubMed  Google Scholar 

  74. Sadaf S, Singh AK, Awasthi D, Nagarkoti S, Agrahari AK, Srivastava RN et al (2019) Augmentation of iNOS expression in myeloid progenitor cells expedites neutrophil differentiation. J Leukoc Biol 106(2):397–412

    Article  CAS  PubMed  Google Scholar 

  75. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K et al (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118(2):149–161

    Article  CAS  PubMed  Google Scholar 

  76. Cui X, Chen J, Zacharek A, Roberts C, Yang Y, Chopp M (2009) Nitric oxide donor up-regulation of SDF1/CXCR4 and Ang1/Tie2 promotes neuroblast cell migration after stroke. J Neurosci Res 87(1):86–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang Y, Wittner M, Bouamar H, Jarrier P, Vainchenker W, Louache F (2007) Identification of CXCR4 as a new nitric oxide-regulated gene in human CD34+ cells. Stem Cells 25(1):211–219

    Article  CAS  PubMed  Google Scholar 

  78. Lapidot T, Petit I (2002) Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol 30(9):973–981

    Article  CAS  PubMed  Google Scholar 

  79. Hall CJ, Flores MV, Oehlers SH, Sanderson LE, Lam EY, Crosier KE et al (2012) Infection-responsive expansion of the hematopoietic stem and progenitor cell compartment in zebrafish is dependent upon inducible nitric oxide. Cell Stem Cell 10(2):198–209

    Article  CAS  PubMed  Google Scholar 

  80. Rossner S, Voigtlander C, Wiethe C, Hanig J, Seifarth C, Lutz MB (2005) Myeloid dendritic cell precursors generated from bone marrow suppress T cell responses via cell contact and nitric oxide production in vitro. Eur J Immunol 35(12):3533–3544

    Article  PubMed  Google Scholar 

  81. Aicher A, Heeschen C, Dimmeler S (2004) The role of NOS3 in stem cell mobilization. Trends Mol Med 10(9):421–425

    Article  CAS  PubMed  Google Scholar 

  82. Jovcic G, Bugarski D, Petakov M, Krstic A, Vlaski M, Stojanovic N et al (2004) In vivo effects of interleukin-17 on haematopoietic cells and cytokine release in normal mice. Cell Prolif 37(6):401–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang CH, Hsieh WY, Shih LY, Lin HC, Liu CY, Chung KF et al (1999) Increased progenitor cell proliferation in the peripheral blood of patients with bronchial asthma: the role of nitric oxide. J Allergy Clin Immunol 104(4 Pt 1):803–810

    Article  CAS  PubMed  Google Scholar 

  84. Sollner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P et al (1993) SNAP receptors implicated in vesicle targeting and fusion. Nature 362(6418):318–324

    Article  CAS  PubMed  Google Scholar 

  85. Kumar S, Patel S, Jyoti A, Keshari RS, Verma A, Barthwal MK et al (2010) Nitric oxide-mediated augmentation of neutrophil reactive oxygen and nitrogen species formation: critical use of probes. Cytometry A 77(11):1038–1048

    Article  PubMed  Google Scholar 

  86. Kumar S, Barthwal MK, Dikshit M (2011) Nitrite-mediated modulation of HL-60 cell cycle and proliferation: involvement of cyclin-dependent kinase 2 activation. J Pharmacol Exp Ther 337(3):812–821

    Article  CAS  PubMed  Google Scholar 

  87. Salvemini D, de Nucci G, Gryglewski RJ, Vane JR (1989) Human neutrophils and mononuclear cells inhibit platelet aggregation by releasing a nitric oxide-like factor. Proc Natl Acad Sci USA 86(16):6328–6332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wright CD, Mulsch A, Busse R, Osswald H (1989) Generation of nitric oxide by human neutrophils. Biochem Biophys Res Commun 160(2):813–819

    Article  CAS  PubMed  Google Scholar 

  89. Rimele TJ, Sturm RJ, Adams LM, Henry DE, Heaslip RJ, Weichman BM et al (1988) Interaction of neutrophils with vascular smooth muscle: identification of a neutrophil-derived relaxing factor. J Pharmacol Exp Ther 245(1):102–111

    CAS  PubMed  Google Scholar 

  90. Dikshit M, Kumari R, Srimal RC (1993) Pulmonary thromboembolism-induced alterations in nitric oxide release from rat circulating neutrophils. J Pharmacol Exp Ther 265(3):1369–1373

    CAS  PubMed  Google Scholar 

  91. Chen LY, Mehta JL (1996) Further evidence of the presence of constitutive and inducible nitric oxide synthase isoforms in human platelets. J Cardiovasc Pharmacol 27(1):154–158

    Article  CAS  PubMed  Google Scholar 

  92. Faint RW, Mackie IJ, Machin SJ (1991) Platelet aggregation is inhibited by a nitric oxide-like factor released from human neutrophils in vitro. Br J Haematol 77(4):539–545

    Article  CAS  PubMed  Google Scholar 

  93. Sethi S, Singh MP, Dikshit M (1999) Nitric oxide-mediated augmentation of polymorphonuclear free radical generation after hypoxia-reoxygenation. Blood 93(1):333–340

    Article  CAS  PubMed  Google Scholar 

  94. Miles AM, Owens MW, Milligan S, Johnson GG, Fields JZ, Ing TS, et al (1995) Nitric oxide synthase in circulating vs. extravasated polymorphonuclear leukocytes. J Leukoc Biol 58(5):616–22

    Google Scholar 

  95. Evans TJ, Buttery LD, Carpenter A, Springall DR, Polak JM, Cohen J (1996) Cytokine-treated human neutrophils contain inducible nitric oxide synthase that produces nitration of ingested bacteria. Proc Natl Acad Sci U S A 93(18):9553–9558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wheeler MA, Smith SD, Garcia-Cardena G, Nathan CF, Weiss RM, Sessa WC (1997) Bacterial infection induces nitric oxide synthase in human neutrophils. J Clin Invest 99(1):110–116

    Google Scholar 

  97. Cedergren J, Follin P, Forslund T, Lindmark M, Sundqvist T, Skogh T (2003) Inducible nitric oxide synthase (NOS II) is constitutive in human neutrophils. APMIS 111(10):963–968

    Article  CAS  PubMed  Google Scholar 

  98. Greenberg SS, Ouyang J, Zhao X, Giles TD (1998) Human and rat neutrophils constitutively express neural nitric oxide synthase mRNA. Nitric Oxide 2(3):203–212

    Article  CAS  PubMed  Google Scholar 

  99. Greenberg SS, **e J, Zhao X, Jie O, Giles TD (1996) An in vivo cytokine and endotoxin-independent pathway for induction of nitric oxide synthase II mRNA, enzyme, and nitrate/nitrite in alveolar macrophages. Biochem Biophys Res Commun 227(1):160–167

    Article  CAS  PubMed  Google Scholar 

  100. Wallerath T, Gath I, Aulitzky WE, Pollock JS, Kleinert H, Forstermann U (1997) Identification of the NO synthase isoforms expressed in human neutrophil granulocytes, megakaryocytes and platelets. Thromb Haemost 77(1):163–167

    Article  CAS  PubMed  Google Scholar 

  101. de F, Sanchez de Miguel L, Farre J, Gomez J, Romero J, Marcos-Alberca P, et al (2001) Expression of an endothelial-type nitric oxide synthase isoform in human neutrophils: modification by tumor necrosis factor-alpha and during acute myocardial infarction. J Am Coll Cardiol 37(3):800–7

    Google Scholar 

  102. Gatto EM, Riobo NA, Carreras MC, Chernavsky A, Rubio A, Satz ML et al (2000) Overexpression of neutrophil neuronal nitric oxide synthase in Parkinson’s disease. Nitric Oxide 4(5):534–539

    Article  CAS  PubMed  Google Scholar 

  103. Chatterjee M, Saluja R, Kumar V, Jyoti A, Kumar Jain G, Kumar Barthwal M, et al (2008) Ascorbate sustains neutrophil NOS expression, catalysis, and oxidative burst. Free Radic Biol Med

    Google Scholar 

  104. Chatterjee M, Saluja R, Kanneganti S, Chinta S, Dikshit M (2007) Biochemical and molecular evaluation of neutrophil NOS in spontaneously hypertensive rats. Cell Mol Biol (Noisy-le-grand) 53(1):84–93

    Google Scholar 

  105. Sethi S, Sharma P, Dikshit M (2001) Nitric oxide- and oxygen-derived free radical generation from control and lipopolysaccharide-treated rat polymorphonuclear leukocyte. Nitric Oxide 5(5):482–493

    Article  CAS  PubMed  Google Scholar 

  106. Seth P, Kumari R, Dikshit M, Srimal RC (1994) Modulation of rat peripheral polymorphonuclear leukocyte response by nitric oxide and arginine. Blood 84(8):2741–2748

    Article  CAS  PubMed  Google Scholar 

  107. Seth P, Kumari R, Dikshit M (1997) Alterations in the free radical generation and nitric oxide release from rat peripheral polymorphonuclear leukocytes following thrombosis. Thromb Res 87(3):279–288

    Article  CAS  PubMed  Google Scholar 

  108. Barthwal MK, Srivastava N, Shukla R, Nag D, Seth PK, Srimal RC et al (1999) Polymorphonuclear leukocyte nitrite content and antioxidant enzymes in Parkinson’s disease patients. Acta Neurol Scand 100(5):300–304

    Article  CAS  PubMed  Google Scholar 

  109. Dikshit M, Sharma P (2002) Nitric oxide mediated modulation of free radical generation response in the rat polymorphonuclear leukocytes: a flowcytometric study. Methods Cell Sci 24(1–3):69–76

    Article  CAS  PubMed  Google Scholar 

  110. Sharma P, Raghavan SA, Dikshit M (2003) Role of ascorbate in the regulation of nitric oxide generation by polymorphonuclear leukocytes. Biochem Biophys Res Commun 309(1):12–17

    Article  CAS  PubMed  Google Scholar 

  111. Chatterjee M, Saluja R, Kumar V, Jyoti A, Kumar Jain G, Kumar M et al (2008) Ascorbate sustains neutrophil NOS expression, catalysis, and oxidative burst. Free Radical Biol Med 45(8):1084–1093

    Google Scholar 

  112. Sadaf S, Awasthi D, Singh AK, Nagarkoti S, Kumar S, Barthwal MK et al (2020) Pyroptotic and apoptotic cell death in iNOS and nNOS overexpressing K562 cells: a mechanistic insight. Biochem Pharmacol 176:113779

    Article  CAS  PubMed  Google Scholar 

  113. Neilly IJ, Copland M, Haj M, Adey G, Benjamin N, Bennett B (1995) Plasma nitrate concentrations in neutropenic and non-neutropenic patients with suspected septicaemia. Br J Haematol 89(1):199–202

    Article  CAS  PubMed  Google Scholar 

  114. Kothari N, Bogra J, Kohli M, Malik A, Kothari D, Srivastava S et al (2012) Role of active nitrogen molecules in progression of septic shock. Acta Anaesthesiol Scand 56(3):307–315

    Article  CAS  PubMed  Google Scholar 

  115. Kothari N, Keshari RS, Bogra J, Kohli M, Abbas H, Malik A, et al (2011) Increased myeloperoxidase enzyme activity in plasma is an indicator of inflammation and onset of sepsis. J Crit Care 26(4):435 e1–7

    Google Scholar 

  116. Babu CK, Ansari KM, Mehrotra S, Patel S, Dikshit M, Das M (2010) Activation of inflammatory response and apoptosis of polymorphonuclear leukocytes in patients with argemone oil poisoning. Chem Biol Interact 183(1):154–164

    Article  CAS  PubMed  Google Scholar 

  117. Kumar S, Dikshit M (2019) Reactive oxygen species generation in neutrophils: modulation by nitric oxide. Springer, Singapore

    Google Scholar 

  118. Jain M, Kumar A, Singh US, Kushwaha R, Singh AK, Dikshit M et al (2017) Cellular and plasma nitrite levels in myeloid leukemia: a pathogenetic decrease. Biol Chem 398(11):1259–1265

    Article  CAS  PubMed  Google Scholar 

  119. Singh AK, Awasthi D, Dubey M, Nagarkoti S, Kumar A, Chandra T et al (2016) High oxidative stress adversely affects NFkappaB mediated induction of inducible nitric oxide synthase in human neutrophils: implications in chronic myeloid leukemia. Nitric Oxide 58:28–41

    Article  CAS  PubMed  Google Scholar 

  120. Shukla R, Rajani M, Srivastava N, Barthwal MK, Dikshit M (2006) Nitrite and malondialdehyde content in cerebrospinal fluid of patients with Parkinson’s disease. Int J Neurosci 116(12):1391–1402

    Article  CAS  PubMed  Google Scholar 

  121. Srivastava N, Barthwal MK, Dalal PK, Agarwal AK, Nag D, Srimal RC et al (2001) Nitrite content and antioxidant enzyme levels in the blood of schizophrenia patients. Psychopharmacology 158(2):140–145

    Article  CAS  PubMed  Google Scholar 

  122. Srivastava N, Barthwal MK, Dalal PK, Agarwal AK, Nag D, Seth PK et al (2002) A study on nitric oxide, beta-adrenergic receptors and antioxidant status in the polymorphonuclear leukocytes from the patients of depression. J Affect Disord 72(1):45–52

    Article  CAS  PubMed  Google Scholar 

  123. Shukla R, Barthwal MK, Srivastava N, Nag D, Seth PK, Srimal RC et al (2001) Blood nitrite levels in patients with migraine during headache-free period. Headache 41(5):475–481

    Article  CAS  PubMed  Google Scholar 

  124. Shukla R, Rajani M, Barthwal MK, Srivastava N, Dikshit M (2003) Cerebrospinal fluid nitrite and malondialdehyde levels in patients with motor neuron disease. Int J Neurosci 113(8):1043–1054

    Article  CAS  PubMed  Google Scholar 

  125. Shukla R, Barthwal MK, Srivastava N, Sharma P, Raghavan SA, Nag D et al (2004) Neutrophil-free radical generation and enzymatic antioxidants in migraine patients. Cephalalgia 24(1):37–43

    Article  CAS  PubMed  Google Scholar 

  126. Kumar S, Dikshit M (2019) Metabolic insight of neutrophils in health and disease. Front Immunol 10:2099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Pontremoli S, Salamino F, Sparatore B, De Tullio R, Patrone M, Tizianello A et al (1989) Enhanced activation of the respiratory burst oxidase in neutrophils from hypertensive patients. Biochem Biophys Res Commun 158(3):966–972

    Article  CAS  PubMed  Google Scholar 

  128. Malawista SE, Montgomery RR, van Blaricom G (1992) Evidence for reactive nitrogen intermediates in killing of staphylococci by human neutrophil cytoplasts: a new microbicidal pathway for polymorphonuclear leukocytes. J Clin Invest 90(2):631–6

    Google Scholar 

  129. Davis KL, Martin E, Turko IV, Murad F (2001) Novel effects of nitric oxide. Annu Rev Pharmacol Toxicol 41:203–236

    Article  CAS  PubMed  Google Scholar 

  130. Li CQ, Wogan GN (2005) Nitric oxide as a modulator of apoptosis. Cancer Lett 226(1):1–15

    Article  CAS  PubMed  Google Scholar 

  131. Taylor EL, Megson IL, Haslett C, Rossi AG (2003) Nitric oxide: a key regulator of myeloid inflammatory cell apoptosis. Cell Death Differ 10(4):418–430

    Article  CAS  PubMed  Google Scholar 

  132. Akgul C, Moulding DA, Edwards SW (2001) Molecular control of neutrophil apoptosis. FEBS Lett 487(3):318–322

    Article  CAS  PubMed  Google Scholar 

  133. Dubey M, Singh AK, Awasthi D, Nagarkoti S, Kumar S, Ali W et al (2015) L-Plastin S-glutathionylation promotes reduced binding to beta-actin and affects neutrophil functions. Free Radical Biol Med 86:1–15

    Article  CAS  Google Scholar 

  134. Awasthi D, Nagarkoti S, Sadaf S, Chandra T, Kumar S, Dikshit M (2019) Glycolysis dependent lactate formation in neutrophils: a metabolic link between NOX-dependent and independent NETosis. Biochim Biophys Acta Mol Basis Dis 1865(12):165542

    Article  CAS  PubMed  Google Scholar 

  135. Kubes P, Suzuki M, Granger DN (1991) Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 88(11):4651–4655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Akimitsu T, Gute DC, Korthuis RJ (1995) Leukocyte adhesion induced by inhibition of nitric oxide production in skeletal muscle. J Appl Physiol 78(5):1725–1732

    Article  CAS  PubMed  Google Scholar 

  137. Mitchell DJ, Yu J, Tyml K (1998) Local L-NAME decreases blood flow and increases leukocyte adhesion via CD18. Am J Physiol 274(4 Pt 2):H1264–H1268

    CAS  PubMed  Google Scholar 

  138. Granger DN, Kubes P (1994) The microcirculation and inflammation: modulation of leukocyte-endothelial cell adhesion. J Leukoc Biol 55(5):662–675

    Article  CAS  PubMed  Google Scholar 

  139. Terada LS (1996) Hypoxia-reoxygenation increases O2: efflux which injures endothelial cells by an extracellular mechanism. Am J Physiol 270(3 Pt 2):H945–50

    Google Scholar 

  140. Johnston B, Kanwar S, Kubes P (1996) Hydrogen peroxide induces leukocyte rolling: modulation by endogenous antioxidant mechanisms including NO. Am J Physiol 271(2 Pt 2):H614–H621

    CAS  PubMed  Google Scholar 

  141. Gaboury J, Woodman RC, Granger DN, Reinhardt P, Kubes P (1993) Nitric oxide prevents leukocyte adherence: role of superoxide. Am J Physiol 265(3 Pt 2):H862–H867

    CAS  PubMed  Google Scholar 

  142. Hickey MJ, Sharkey KA, Sihota EG, Reinhardt PH, Macmicking JD, Nathan C et al (1997) Inducible nitric oxide synthase-deficient mice have enhanced leukocyte-endothelium interactions in endotoxemia. FASEB J Official Publ Fed Am Soc Exp Biol 11(12):955–964

    CAS  Google Scholar 

  143. Dal Secco D, Moreira AP, Freitas A, Silva JS, Rossi MA, Ferreira SH et al (2006) Nitric oxide inhibits neutrophil migration by a mechanism dependent on ICAM-1: role of soluble guanylate cyclase. Nitric Oxide 15(1):77–86

    Article  Google Scholar 

  144. Oka S, Sasada M, Yamamoto K, Nohgawa M, Takahashi A, Yamashita K et al (2005) Nitric oxide derived from human umbilical vein endothelial cells inhibits transendothelial migration of neutrophils. Int J Hematol 81(3):220–227

    Article  CAS  PubMed  Google Scholar 

  145. Forslund T, Nilsson HM, Sundqvist T (2000) Nitric oxide regulates the aggregation of stimulated human neutrophils. Biochem Biophys Res Commun 274(2):482–487

    Article  CAS  PubMed  Google Scholar 

  146. Banick PD, Chen Q, Xu YA, Thom SR (1997) Nitric oxide inhibits neutrophil beta 2 integrin function by inhibiting membrane-associated cyclic GMP synthesis. J Cell Physiol 172(1):12–24

    Article  CAS  PubMed  Google Scholar 

  147. Kosonen O, Kankaanranta H, Malo-Ranta U, Moilanen E (1999) Nitric oxide-releasing compounds inhibit neutrophil adhesion to endothelial cells. Eur J Pharmacol 382(2):111–117

    Google Scholar 

  148. Gluckman TL, Grossman JE, Folts JD, Kruse-Elliott KT (2000) Regulation of leukocyte function by nitric oxide donors: the effect of S-nitroso-thiol complexes. J Toxicol Environ Health A 61(1):9–26

    Article  CAS  PubMed  Google Scholar 

  149. Pernow J, Uriuda Y, Wang QD, Li XS, Nordlander R, Rydeen L (1994) The protective effect of L-arginine on myocardial injury and endothelial function following ischaemia and reperfusion in the pig. Eur Heart J 15(12):1712–1719

    Article  CAS  PubMed  Google Scholar 

  150. Nakanishi K, Vinten-Johansen J, Lefer DJ, Zhao Z, Fowler WC 3rd, McGee DS et al (1992) Intracoronary L-arginine during reperfusion improves endothelial function and reduces infarct size. Am J Physiol 263(6 Pt 2):H1650–H1658

    Google Scholar 

  151. Siegfried MR, Erhardt J, Rider T, Ma XL, Lefer AM (1992) Cardioprotection and attenuation of endothelial dysfunction by organic nitric oxide donors in myocardial ischemia-reperfusion. J Pharmacol Exp Ther 260(2):668–675

    CAS  PubMed  Google Scholar 

  152. Kurose I, Wolf R, Grisham MB, Aw TY, Specian RD, Granger DN (1995) Microvascular responses to inhibition of nitric oxide production role of active oxidants. Circ Res 76(1):30–39

    Article  CAS  PubMed  Google Scholar 

  153. Sato H, Zhao ZQ, Vinten-Johansen J (1996) L-Arginine inhibits neutrophil adherence and coronary artery dysfunction. Cardiovasc Res 31(1):63–72

    Google Scholar 

  154. Fukatsu K, Saito H, Han I, Furukawa S, Lin MT, Matsuda T et al (1998) Nitric oxide donor decreases neutrophil adhesion in both lung and peritoneum during peritonitis. J Surg Res 74(2):119–124

    Article  CAS  PubMed  Google Scholar 

  155. Okayama N, Ichikawa H, Coe L, Itoh M, Alexander JS (1998) Exogenous NO enhances hydrogen peroxide-mediated neutrophil adherence to cultured endothelial cells. Am J Physiol 274(5 Pt 1):L820–L826

    CAS  PubMed  Google Scholar 

  156. Okayama N, Coe L, Itoh M, Alexander JS (1999) Exogenous nitric oxide increases neutrophil adhesion to cultured human endothelial monolayers through a protein kinase G dependent mechanism. Inflammation 23(1):37–50

    Article  CAS  PubMed  Google Scholar 

  157. VanUffelen BE, de Koster BM, Van den Broek PJ, VanSteveninck J, Elferink JG (1996) Modulation of neutrophil migration by exogenous gaseous nitric oxide. J Leukoc Biol 60(1):94–100

    Article  CAS  PubMed  Google Scholar 

  158. Crosara-Alberto DP, Darini AL, Inoue RY, Silva JS, Ferreira SH, Cunha FQ (2002) Involvement of NO in the failure of neutrophil migration in sepsis induced by Staphylococcus aureus. Br J Pharmacol 136(5):645–658

    Google Scholar 

  159. Benjamim CF, Silva JS, Fortes ZB, Oliveira MA, Ferreira SH, Cunha FQ (2002) Inhibition of leukocyte rolling by nitric oxide during sepsis leads to reduced migration of active microbicidal neutrophils. Infect Immun 70(7):3602–3610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ajuebor MN, Virag L, Flower RJ, Perretti M, Szabo C (1998) Role of inducible nitric oxide synthase in the regulation of neutrophil migration in zymosan-induced inflammation. Immunology 95(4):625–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Wanikiat P, Woodward DF, Armstrong RA (1997) Investigation of the role of nitric oxide and cyclic GMP in both the activation and inhibition of human neutrophils. Br J Pharmacol 122(6):1135–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Kaplan SS, Billiar T, Curran RD, Zdziarski UE, Simmons RL, Basford RE (1989) Inhibition of chemotaxis NG-monomethyl-L-arginine: a role for cyclic GMP. Blood 74(6):1885–1887

    Article  CAS  PubMed  Google Scholar 

  163. Beauvais F, Michel L, Dubertret L (1995) Exogenous nitric oxide elicits chemotaxis of neutrophils in vitro. J Cell Physiol 165(3):610–614

    Article  CAS  PubMed  Google Scholar 

  164. Malawista SE, de Boisfleury CA (1997) Chemotaxis by human neutrophils and their cytokineplasts treated with inhibitors of nitric oxide synthase: no suppression of orientation or trajectory. J Leukoc Biol 61(1):58–62

    Article  CAS  PubMed  Google Scholar 

  165. Corriveau CC, Madara PJ, Van Dervort AL, Tropea MM, Wesley RA, Danner RL (1998) Effects of nitric oxide on chemotaxis and endotoxin-induced interleukin-8 production in human neutrophils. J Infect Dis 177(1):116–126

    Article  CAS  PubMed  Google Scholar 

  166. Moffat FL Jr, Han T, Li ZM, Peck MD, Jy W, Ahn YS et al (1996) Supplemental L-arginine HCl augments bacterial phagocytosis in human polymorphonuclear leukocytes. J Cell Physiol 168(1):26–33

    Article  CAS  PubMed  Google Scholar 

  167. Nagarkoti S, Sadaf S, Awasthi D, Chandra T, Jagavelu K, Kumar S et al (2019) L-Arginine and tetrahydrobiopterin supported nitric oxide production is crucial for the microbicidal activity of neutrophils. Free Radic Res 53(3):281–292

    Article  CAS  PubMed  Google Scholar 

  168. Forslund T, Sundqvist T (1997) Nitric oxide-releasing particles inhibit phagocytosis in human neutrophils. Biochem Biophys Res Commun 233(2):492–495

    Article  CAS  PubMed  Google Scholar 

  169. Saha P, Yeoh BS, Olvera RA, **ao X, Singh V, Awasthi D et al (2017) Bacterial siderophores hijack neutrophil functions. J Immunol 198(11):4293–4303

    Article  CAS  PubMed  Google Scholar 

  170. Sengelov H, Kjeldsen L, Borregaard N (1993) Control of exocytosis in early neutrophil activation. J Immunol 150(4):1535–1543

    Article  CAS  PubMed  Google Scholar 

  171. Moilanen E, Vuorinen P, Kankaanranta H, Metsa-Ketela T, Vapaatalo H (1993) Inhibition by nitric oxide-donors of human polymorphonuclear leucocyte functions. Br J Pharmacol 109(3):852–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. VanUffelen BE, VanSteveninck J, Elferink JG (1997) Potentiation and inhibition of fMLP-activated exocytosis in neutrophils by exogenous nitric oxide. Immunopharmacology 37(2–3):257–267

    Article  CAS  PubMed  Google Scholar 

  173. Ignarro LJ (1974) Stimulation of phagocytic release of neutral protease from human neutrophils by cholinergic amines and cyclic 3’,5’-guanosine monophosphate. J Immunol 112(1):210–214

    Article  CAS  PubMed  Google Scholar 

  174. Bladridge CW, Gerard RW (1932) The extra respiration of phagocytes. Am J Physiol 103(3):235–236

    Article  Google Scholar 

  175. Babior BM, Kipnes RS, Curnutte JT (1973) Biological defense mechanisms: the production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 52(3):741–4

    Google Scholar 

  176. Babior BM, Lambeth JD, Nauseef W (2002) The neutrophil NADPH oxidase. Arch Biochem Biophys 397(2):342–344

    Article  CAS  PubMed  Google Scholar 

  177. Segal AW (2005) How neutrophils kill microbes. Annu Rev Immunol 23:197–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Sharma P, Barthwal MK, Dikshit M (2002) NO synthesis and its regulation in the arachidonic-acid-stimulated rat polymorphonuclear leukocytes. Nitric Oxide 7(2):119–126

    Article  CAS  PubMed  Google Scholar 

  179. Nagarkoti S, Dubey M, Awasthi D, Kumar V, Chandra T, Kumar S et al (2018) S-Glutathionylation of p47phox sustains superoxide generation in activated neutrophils. Biochim Biophys Acta 1865(2):444–454

    Article  CAS  Google Scholar 

  180. Raghavan SA, Sharma P, Dikshit M (2003) Role of ascorbic acid in the modulation of inhibition of platelet aggregation by polymorphonuclear leukocytes. Thromb Res 110(2–3):117–126

    Article  CAS  PubMed  Google Scholar 

  181. Patel S, Vemula J, Konikkat S, Barthwal MK, Dikshit M (2009) Ion channel modulators mediated alteration in NO-induced free radical generation and neutrophil membrane potential. Free Radical Res

    Google Scholar 

  182. Clancy RM, Leszczynska-Piziak J, Abramson SB (1992) Nitric oxide, an endothelial cell relaxation factor, inhibits neutrophil superoxide anion production via a direct action on the NADPH oxidase. J Clin Invest 90(3):1116–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Fujii H, Ichimori K, Hoshiai K, Nakazawa H (1997) Nitric oxide inactivates NADPH oxidase in pig neutrophils by inhibiting its assembling process. J Biol Chem 272(52):32773–32778

    Article  CAS  PubMed  Google Scholar 

  184. Lee C, Miura K, Liu X, Zweier JL (2000) Biphasic regulation of leukocyte superoxide generation by nitric oxide and peroxynitrite. J Biol Chem 275(50):38965–38972

    Article  CAS  PubMed  Google Scholar 

  185. Klink M, Jastrzembska K, Bednarska K, Banasik M, Sulowska Z (2009) Effect of nitric oxide donors on NADPH oxidase signaling pathway in human neutrophils in vitro. Immunobiology

    Google Scholar 

  186. Roos D, Winterbourn CC (2002) Lethal weapons. Science 296(5568):669–671

    Article  CAS  PubMed  Google Scholar 

  187. Kim YM, Kim TH, Seol DW, Talanian RV, Billiar TR (1998) Nitric oxide suppression of apoptosis occurs in association with an inhibition of Bcl-2 cleavage and cytochrome c release. J Biol Chem 273(47):31437–31441

    Article  CAS  PubMed  Google Scholar 

  188. Luo HR, Loison F (2008) Constitutive neutrophil apoptosis: mechanisms and regulation. Am J Hematol 83(4):288–295

    Article  CAS  PubMed  Google Scholar 

  189. Kim KM, Kim PK, Kwon YG, Bai SK, Nam WD, Kim YM (2002) Regulation of apoptosis by nitrosative stress. J Biochem Mol Biol 35(1):127–133

    CAS  PubMed  Google Scholar 

  190. Misso NL, Peacock CD, Watkins DN, Thompson PJ (2000) Nitrite generation and antioxidant effects during neutrophil apoptosis. Free Radical Biol Med 28(6):934–943

    Article  CAS  Google Scholar 

  191. Ward C, Wong TH, Murray J, Rahman I, Haslett C, Chilvers ER et al (2000) Induction of human neutrophil apoptosis by nitric oxide donors: evidence for a caspase-dependent, cyclic-GMP-independent, mechanism. Biochem Pharmacol 59(3):305–314. Article no S0006295299003299

    Google Scholar 

  192. Blaylock MG, Cuthbertson BH, Galley HF, Ferguson NR, Webster NR (1998) The effect of nitric oxide and peroxynitrite on apoptosis in human polymorphonuclear leukocytes. Free Radic Biol Med 25(6):748–752. Article no S0891584998001087

    Google Scholar 

  193. Fortenberry JD, Owens ML, Brown LAS (1999) Am J Physiol-Lung Cell Mol Physiol 276(3):L435–L442. https://doi.org/10.1152/ajplung.1999.276.3.L435

  194. Shibata T, Nagata K, Kobayashi Y (2007) Cutting edge: a critical role of nitric [corrected] oxide in preventing inflammation upon apoptotic cell clearance. J Immunol 179(6):3407–3411

    Article  CAS  PubMed  Google Scholar 

  195. Nagarkoti S, Dubey M, Sadaf S, Awasthi D, Chandra T, Jagavelu K et al (2019) Catalase S-Glutathionylation by NOX2 and mitochondrial-derived ROS adversely affects mice and human neutrophil survival. Inflammation 42(6):2286–2296

    Article  CAS  PubMed  Google Scholar 

  196. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS et al (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535

    Article  CAS  PubMed  Google Scholar 

  197. Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V et al (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176(2):231–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Branzk N, Lubojemska A, Hardison SE, Wang Q, Gutierrez MG, Brown GD et al (2014) Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol 15(11):1017–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Metzler KD, Fuchs TA, Nauseef WM, Reumaux D, Roesler J, Schulze I, et al (2011) Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood 117(3):953–9

    Google Scholar 

  200. Nakashima K, Hagiwara T, Yamada M (2002) Nuclear localization of peptidylarginine deiminase V and histone deimination in granulocytes. J Biol Chem 277(51):49562–49568

    Article  CAS  PubMed  Google Scholar 

  201. Wang Y, Wysocka J, Sayegh J, Lee YH, Perlin JR, Leonelli L et al (2004) Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306(5694):279–283

    Article  CAS  PubMed  Google Scholar 

  202. Li JM, Fan LM, George VT, Brooks G (2007) Nox2 regulates endothelial cell cycle arrest and apoptosis via p21cip1 and p53. Free Radic Biol Med 43(6):976–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Keshari RS, Jyoti A, Dubey M, Kothari N, Kohli M, Bogra J et al (2012) Cytokines induced neutrophil extracellular traps formation: implication for the inflammatory disease condition. PLoS ONE 7(10):e48111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Rossaint J, Herter JM, Van Aken H, Napirei M, Doring Y, Weber C et al (2014) Synchronized integrin engagement and chemokine activation is crucial in neutrophil extracellular trap-mediated sterile inflammation. Blood 123(16):2573–2584

    Article  CAS  PubMed  Google Scholar 

  205. Patel S, Kumar S, Jyoti A, Srinag BS, Keshari RS, Saluja R et al (2010) Nitric oxide donors release extracellular traps from human neutrophils by augmenting free radical generation. Nitric Oxide 22(3):226–234

    Article  CAS  PubMed  Google Scholar 

  206. Awasthi D, Nagarkoti S, Kumar A, Dubey M, Singh AK, Pathak P et al (2016) Oxidized LDL induced extracellular trap formation in human neutrophils via TLR-PKC-IRAK-MAPK and NADPH-oxidase activation. Free Radical Biol Med 93:190–203

    Article  CAS  Google Scholar 

  207. Remijsen Q, Vanden T, Wirawan E, Asselbergh B, Parthoens E, De Rycke R et al (2011) Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res 21(2):290–304

    Google Scholar 

  208. Douda DN, Khan MA, Grasemann H, Palaniyar N (2015) SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. Proc Natl Acad Sci USA 112(9):2817–2822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Arai Y, Nishinaka Y, Arai T, Morita M, Mizugishi K, Adachi S et al (2014) Uric acid induces NADPH oxidase-independent neutrophil extracellular trap formation. Biochem Biophys Res Commun 443(2):556–561

    Article  CAS  PubMed  Google Scholar 

  210. Chen K, Nishi H, Travers R, Tsuboi N, Martinod K, Wagner DD et al (2012) Endocytosis of soluble immune complexes leads to their clearance by FcgammaRIIIB but induces neutrophil extracellular traps via FcgammaRIIA in vivo. Blood 120(22):4421–4431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Pilsczek FH, Salina D, Poon KK, Fahey C, Yipp BG, Sibley CD et al (2010) A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol 185(12):7413–7425

    Article  CAS  PubMed  Google Scholar 

  212. Ramirez-Weber FA, Kornberg TB (1999) Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell 97(5):599–607

    Article  CAS  PubMed  Google Scholar 

  213. Hsiung F, Ramirez-Weber FA, Iwaki DD, Kornberg TB (2005) Dependence of Drosophila wing imaginal disc cytonemes on Decapentaplegic. Nature 437(7058):560–563

    Article  CAS  PubMed  Google Scholar 

  214. Karp GC, Solursh M (1985) Dynamic activity of the filopodia of sea urchin embryonic cells and their role in directed migration of the primary mesenchyme in vitro. Dev Biol 112(2):276–283

    Article  CAS  PubMed  Google Scholar 

  215. Galkina SI, Fedorova NV, Serebryakova MV, Romanova JM, Golyshev SA, Stadnichuk VI et al (2012) Proteome analysis identified human neutrophil membrane tubulovesicular extensions (cytonemes, membrane tethers) as bactericide trafficking. Biochim Biophys Acta 1820(11):1705–1714

    Article  CAS  PubMed  Google Scholar 

  216. Galkina SI, Fedorova NV, Serebryakova MV, Arifulin EA, Stadnichuk VI, Gaponova TV et al (2015) Inhibition of the GTPase dynamin or actin depolymerisation initiates outward plasma membrane tubulation/vesiculation (cytoneme formation) in neutrophils. Biol Cell 107(5):144–158

    Article  CAS  PubMed  Google Scholar 

  217. Galkina SI, Fedorova NV, Stadnichuk VI, Sud’ina GF (2013) Membrane tubulovesicular extensions (cytonemes): secretory and adhesive cellular organelles. Cell Adh Migr 7(2):174–186

    Article  PubMed  PubMed Central  Google Scholar 

  218. Galkina SI, Fedorova NV, Golenkina EA, Stadnichuk VI, Sud'ina GF (2020) Cytonemes versus neutrophil extracellular traps in the fight of neutrophils with microbes. Int J Mol Sci 21(2)

    Google Scholar 

  219. Galkina SI, Romanova JM, Stadnichuk VI, Molotkovsky JG, Sud’ina GF, Klein T (2009) Nitric oxide-induced membrane tubulovesicular extensions (cytonemes) of human neutrophils catch and hold Salmonella enterica serovar Typhimurium at a distance from the cell surface. FEMS Immunol Med Microbiol 56(2):162–171

    Article  CAS  PubMed  Google Scholar 

  220. Keshari RS, Jyoti A, Kumar S, Dubey M, Verma A, Srinag BS et al (2012) Neutrophil extracellular traps contain mitochondrial as well as nuclear DNA and exhibit inflammatory potential. Cytometry A 81(3):238–247

    Article  PubMed  Google Scholar 

  221. Keshari RS, Verma A, Barthwal MK, Dikshit M (2013) Reactive oxygen species-induced activation of ERK and p38 MAPK mediates PMA-induced NETs release from human neutrophils. J Cell Biochem 114(3):532–540

    Article  CAS  PubMed  Google Scholar 

  222. Patel S, Kumar S, Jyoti A, Srinag BS, Keshari RS, Saluja R, et al (2010) Nitric oxide donors release extracellular traps from human neutrophils by augmenting free radical generation. Nitric Oxide 22(3):226–34

    Google Scholar 

  223. Lim MB, Kuiper JW, Katchky A, Goldberg H, Glogauer M (2011) Rac2 is required for the formation of neutrophil extracellular traps. J Leukoc Biol 90(4):771–776

    Article  CAS  PubMed  Google Scholar 

  224. Das SK, Yuan YF, Li MQ (2018) Specific PKC betaII inhibitor: one stone two birds in the treatment of diabetic foot ulcers. Biosci Rep 38(5)

    Google Scholar 

  225. Zhao ML, Chi H, Sun L (2017) Neutrophil extracellular traps of cynoglossus semilaevis: production characteristics and antibacterial effect. Front Immunol 8:290

    Article  PubMed  PubMed Central  Google Scholar 

  226. Manda-Handzlik A, Bystrzycka W, Cieloch A, Glodkowska-Mrowka E, Jankowska-Steifer E, Heropolitanska-Pliszka E, et al (2019) Nitric oxide and peroxynitrite trigger and enhance release of neutrophil extracellular traps. Cell Mol Life Sci (CMLS)

    Google Scholar 

  227. Galkina SI, Molotkovsky JG, Ullrich V, Sud'ina GF (2005) Scanning electron microscopy study of neutrophil membrane tubulovesicular extensions (cytonemes) and their role in anchoring, aggregation and phagocytosis: the effect of nitric oxide. Exp Cell Res 304(2):620–9

    Google Scholar 

  228. Urbano R, Karlinsey JE, Libby SJ, Doulias PT, Ischiropoulos H, Warheit-Niemi HI, et al (2018) Host nitric oxide disrupts microbial cell-to-cell communication to inhibit staphylococcal virulence. Cell Host Microbe 23(5):594–606 e7

    Google Scholar 

  229. Zagryazhskaya AN, Lindner SC, Grishina ZV, Galkina SI, Steinhilber D, Sud’ina GF (2010) Nitric oxide mediates distinct effects of various LPS chemotypes on phagocytosis and leukotriene synthesis in human neutrophils. Int J Biochem Cell Biol 42(6):921–931

    Article  CAS  PubMed  Google Scholar 

  230. Galkina SI, Fedorova NV, Serebryakova MV, Arifulin EA, Stadnichuk VI, Baratova LA et al (2017) Mold alkaloid cytochalasin D modifies the morphology and secretion of fMLP-, LPS-, or PMA-stimulated neutrophils upon adhesion to fibronectin. Mediators Inflamm 2017:4308684

    Article  PubMed  PubMed Central  Google Scholar 

  231. Pryor WA, Squadrito GL (1995) The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol 268(5 Pt 1):L699-722

    CAS  PubMed  Google Scholar 

  232. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87(1):315–424

    Article  CAS  PubMed  Google Scholar 

  233. Galkina SI, Sud’ina GF, Klein T (2006) Metabolic regulation of neutrophil spreading, membrane tubulovesicular extensions (cytonemes) formation and intracellular pH upon adhesion to fibronectin. Exp Cell Res 312(13):2568–2579

    Article  CAS  PubMed  Google Scholar 

  234. Li WX, Wang F, Zhu YQ, Zhang LM, Zhang ZH, Wang XM (2020) Inhibitors of nitric oxide synthase can reduce extracellular traps from neutrophils in asthmatic children in vitro. Pediatr Pulmonol 55(1):68–75

    Article  PubMed  Google Scholar 

  235. Ode Y, Aziz M, Wang P (2018) CIRP increases ICAM-1(+) phenotype of neutrophils exhibiting elevated iNOS and NETs in sepsis. J Leukoc Biol 103(4):693–707

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhu Dikshit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S., Sadaf, S., Dikshit, M. (2023). Role of Nitric Oxide Synthase and Nitric Oxide Signaling in the Neutrophil Ontogeny and Functions. In: Ray, A., Gulati, K. (eds) Nitric Oxide: From Research to Therapeutics. Advances in Biochemistry in Health and Disease, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-031-24778-1_8

Download citation

Publish with us

Policies and ethics

Navigation