Nitric Oxide-cGMP-PKG Signaling in the Cardioprotective Effects of Phosphodiesterase 5 Inhibitors

  • Chapter
  • First Online:
Nitric Oxide: From Research to Therapeutics

Abstract

Phosphodiesterase 5 (PDE5) is an enzyme that catalyzes the degradation of cGMP to its inactive form, 5′-GMP. The inhibition of PDE5 leads to the increase in bioavailability of cGMP which exerts its downstream signaling effects through the activation of protein kinase G (PKG). The dysregulation of cGMP-PKG signaling cascade plays a critical role in the pathology of several cardiovascular disorders. PDE5 inhibitors including sildenafil and tadalafil are widely prescribed drugs for the treatment of erectile dysfunction and pulmonary hypertension in patients. In the pre-clinical setting, treatment with PDE5 inhibitors protect against several cardiovascular pathologies including ischemia/reperfusion (I/R) injury, heart failure, pressure overload-induced hypertrophy, and cardiomyopathy associated with type 2 diabetes and metabolic syndrome. Mechanistic studies reveal that nitric oxide (NO)-cGMP-PKG signaling driven multiple signaling pathways are involved in protection against most of these pathologies. Moreover, the PDE5 inhibitors generate other gasotransmitters including hydrogen sulfide, carbon monoxide in addition to NO that may play a critical role in cardioprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hearse DJ (1988) Ischemia at the crossroads? Cardiovasc Drugs Ther 2(1):9–15

    Article  CAS  PubMed  Google Scholar 

  2. Bergmann O, Zdunek S, Felker A, Salehpour M, Alkass K, Bernard S et al (2015) Dynamics of cell generation and turnover in the human heart. Cell 161(7):1566–1575

    Article  CAS  PubMed  Google Scholar 

  3. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74(5):1124–1136

    Article  CAS  PubMed  Google Scholar 

  4. Kuzuya T, Hoshida S, Yamashita N, Fuji H, Oe H, Hori M et al (1993) Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia. Circ Res 72(6):1293–1299

    Article  CAS  PubMed  Google Scholar 

  5. Okubo S, ** L, Bernardo NL, Yoshida K, Kukreja RC (1999) Myocardial preconditioning: basic concepts and potential mechanisms. Mol Cell Biochem 196(1–2):3–12

    Article  CAS  PubMed  Google Scholar 

  6. Yellon DM, Baxter GF, Garcia-Dorado D, Heusch G, Sumeray MS (1998) Ischaemic preconditioning: present position and future directions. Cardiovasc Res 37(1):21–33

    Article  CAS  PubMed  Google Scholar 

  7. Liu GS, Thornton J, Van Winkle DM, Stanley AW, Olsson RA, Downey JM (1991) Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation 84(1):350–356

    Article  CAS  PubMed  Google Scholar 

  8. Banerjee A, Locke-Winter C, Rogers KB, Mitchell MB, Brew EC, Cairns CB et al (1993) Preconditioning against myocardial dysfunction after ischemia and reperfusion by an alpha 1-adrenergic mechanism. Circ Res 73(4):656–670

    Article  CAS  PubMed  Google Scholar 

  9. Schultz JE, Hsu AK, Gross GJ (1998) Ischemic preconditioning in the intact rat heart is mediated by delta1- but not mu- or kappa-opioid receptors. Circulation 97(13):1282–1289

    Article  CAS  PubMed  Google Scholar 

  10. Tritto I, D’Andrea D, Eramo N, Scognamiglio A, De Simone C, Violante A et al (1997) Oxygen radicals can induce preconditioning in rabbit hearts. Circ Res 80(5):743–748

    Article  CAS  PubMed  Google Scholar 

  11. Kositprapa C, Ockaili RA, Kukreja RC (2001) Bradykinin B2 receptor is involved in the late phase of preconditioning in rabbit heart. J Mol Cell Cardiol 33(7):1355–1362

    Article  CAS  PubMed  Google Scholar 

  12. Wall TM, Sheehy R, Hartman JC (1994) Role of bradykinin in myocardial preconditioning. J Pharmacol Exp Ther 270(2):681–689

    CAS  PubMed  Google Scholar 

  13. Baxter GF, Yellon DM (1997) Time course of delayed myocardial protection after transient adenosine A1-receptor activation in the rabbit. J Cardiovasc Pharmacol 29(5):631–638

    Article  CAS  PubMed  Google Scholar 

  14. Bernardo NL, Okubo S, Maaieh MM, Wood MA, Kukreja RC (1999) Delayed preconditioning with adenosine is mediated by opening of ATP-sensitive K(+) channels in rabbit heart. Am J Physiol 277(1):H128–H135

    CAS  PubMed  Google Scholar 

  15. Zhao T, ** L, Chelliah J, Levasseur JE, Kukreja RC (2000) Inducible nitric oxide synthase mediates delayed myocardial protection induced by activation of adenosine A(1) receptors: evidence from gene-knockout mice. Circulation 102(8):902–907

    Article  CAS  PubMed  Google Scholar 

  16. Zhao TC, Kukreja RC (2003) Protein kinase C-delta mediates adenosine A3 receptor-induced delayed cardioprotection in mouse. Am J Physiol Heart Circ Physiol 285(1):H434–H441

    Article  CAS  PubMed  Google Scholar 

  17. Rakhit RD, Edwards RJ, Mockridge JW, Baydoun AR, Wyatt AW, Mann GE et al (2000) Nitric oxide-induced cardioprotection in cultured rat ventricular myocytes. Am J Physiol Heart Circ Physiol 278(4):H1211–H1217

    Article  CAS  PubMed  Google Scholar 

  18. Richard V, Blanc T, Kaeffer N, Tron C, Thuillez C (1995) Myocardial and coronary endothelial protective effects of acetylcholine after myocardial ischaemia and reperfusion in rats: role of nitric oxide. Br J Pharmacol 115(8):1532–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Takano H, Tang XL, Qiu Y, Guo Y, French BA, Bolli R (1998) Nitric oxide donors induce late preconditioning against myocardial stunning and infarction in conscious rabbits via an antioxidant-sensitive mechanism. Circ Res 83(1):73–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brew EC, Mitchell MB, Rehring TF, Gamboni-Robertson F, McIntyre RC Jr, Harken AH et al (1995) Role of bradykinin in cardiac functional protection after global ischemia-reperfusion in rat heart. Am J Physiol 269(4 Pt 2):H1370–H1378

    CAS  PubMed  Google Scholar 

  21. Parratt JR, Vegh A, Papp JG (1995) Bradykinin as an endogenous myocardial protective substance with particular reference to ischemic preconditioning—a brief review of the evidence. Can J Physiol Pharmacol 73(7):837–842

    Article  CAS  PubMed  Google Scholar 

  22. Zhao TC, Taher MM, Valerie KC, Kukreja RC (2001) p38 Triggers late preconditioning elicited by anisomycin in heart: involvement of NF-kappaB and iNOS. Circ Res 89(10):915–922

    Article  CAS  PubMed  Google Scholar 

  23. ** L, Taher M, Yin C, Salloum F, Kukreja RC (2004) Cobalt chloride induces delayed cardiac preconditioning in mice through selective activation of HIF-1alpha and AP-1 and iNOS signaling. Am J Physiol Heart Circ Physiol 287(6):H2369–H2375

    Article  CAS  PubMed  Google Scholar 

  24. Natarajan R, Salloum FN, Fisher BJ, Ownby ED, Kukreja RC, Fowler AA 3rd (2007) Activation of hypoxia-inducible factor-1 via prolyl-4 hydoxylase-2 gene silencing attenuates acute inflammatory responses in postischemic myocardium. Am J Physiol Heart Circ Physiol 293(3):H1571–H1580

    Article  CAS  PubMed  Google Scholar 

  25. Ockaili R, Natarajan R, Salloum F, Fisher BJ, Jones D, Fowler AA 3rd et al (2005) HIF-1 activation attenuates postischemic myocardial injury: role for heme oxygenase-1 in modulating microvascular chemokine generation. Am J Physiol Heart Circ Physiol 289(2):H542–H548

    Article  CAS  PubMed  Google Scholar 

  26. Ockaili R, Emani VR, Okubo S, Brown M, Krottapalli K, Kukreja RC (1999) Opening of mitochondrial KATP channel induces early and delayed cardioprotective effect: role of nitric oxide. Am J Physiol 277(6):H2425–H2434

    CAS  PubMed  Google Scholar 

  27. Wang Y, Kudo M, Xu M, Ayub A, Ashraf M (2001) Mitochondrial K (ATP) channel as an end effector of cardioprotection during late preconditioning: triggering role of nitric oxide. J Mol Cell Cardiol 33(11):2037–2046

    Article  CAS  PubMed  Google Scholar 

  28. Wang X, Yin C, ** L, Kukreja RC (2004) Opening of Ca2+-activated K+ channels triggers early and delayed preconditioning against I/R injury independent of NOS in mice. Am J Physiol Heart Circ Physiol 287(5):H2070–H2077

    Article  CAS  PubMed  Google Scholar 

  29. Xu W, Liu Y, Wang S, McDonald T, Van Eyk JE, Sidor A et al (2002) Cytoprotective role of Ca2+- activated K+ channels in the cardiac inner mitochondrial membrane. Science 298(5595):1029–1033

    Article  CAS  PubMed  Google Scholar 

  30. Feldman PL, Griffith OW, Hong H, Stuehr DJ (1993) Irreversible inactivation of macrophage and brain nitric oxide synthase by L-NG-methylarginine requires NADPH-dependent hydroxylation. J Med Chem 36(4):491–496

    Article  CAS  PubMed  Google Scholar 

  31. Gally JA, Montague PR, Reeke GN Jr, Edelman GM (1990) The NO hypothesis: possible effects of a short-lived, rapidly diffusible signal in the development and function of the nervous system. Proc Natl Acad Sci U S A 87(9):3547–3551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43(2):109–142

    CAS  PubMed  Google Scholar 

  33. Darley-Usmar V, Wiseman H, Halliwell B (1995) Nitric oxide and oxygen radicals: a question of balance. FEBS Lett 369(2–3):131–135

    Article  CAS  PubMed  Google Scholar 

  34. Gross SS, Wolin MS (1995) Nitric oxide: pathophysiological mechanisms. Annu Rev Physiol 57:737–769

    Article  CAS  PubMed  Google Scholar 

  35. Kelly RA, Balligand JL, Smith TW (1996) Nitric oxide and cardiac function. Circ Res 79(3):363–380

    Article  CAS  PubMed  Google Scholar 

  36. Bolli R, Manchikalapudi S, Tang XL, Takano H, Qiu Y, Guo Y, et al (1997) The protective effect of late preconditioning against myocardial stunning in conscious rabbits is mediated by nitric oxide synthase. Evidence that nitric oxide acts both as a trigger and as a mediator of the late phase of ischemic preconditioning. Circ Res 81(6):1094–1107

    Google Scholar 

  37. Guo Y, Jones WK, Xuan YT, Tang XL, Bao W, Wu WJ et al (1999) The late phase of ischemic preconditioning is abrogated by targeted disruption of the inducible NO synthase gene. Proc Natl Acad Sci U S A 96(20):11507–11512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guo Y, Li Q, Xuan YT, Wu WJ, Tan W, Slezak J et al (2021) Exercise-induced late preconditioning in mice is triggered by eNOS-dependent generation of nitric oxide and activation of PKCepsilon and is mediated by increased iNOS activity. Int J Cardiol 340:68–78

    Article  PubMed  PubMed Central  Google Scholar 

  39. Xuan YT, Guo Y, Zhu Y, Wang OL, Rokosh G, Messing RO et al (2005) Role of the protein kinase C-epsilon-Raf-1-MEK-1/2-p44/42 MAPK signaling cascade in the activation of signal transducers and activators of transcription 1 and 3 and induction of cyclooxygenase-2 after ischemic preconditioning. Circulation 112(13):1971–1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bolli R, Dawn B, Xuan YT (2003) Role of the JAK-STAT pathway in protection against myocardial ischemia/reperfusion injury. Trends Cardiovasc Med 13(2):72–79

    Article  CAS  PubMed  Google Scholar 

  41. Sonnenburg WK, Beavo JA (1994) Cyclic GMP and regulation of cyclic nucleotide hydrolysis. Adv Pharmacol 26:87–114

    Article  CAS  PubMed  Google Scholar 

  42. Wang G, Hamid T, Keith RJ, Zhou G, Partridge CR, **ang X et al (2010) Cardioprotective and antiapoptotic effects of heme oxygenase-1 in the failing heart. Circulation 121(17):1912–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang J, ** P, Vondriska TM, Tang XL, Wang GW, Cardwell EM et al (2003) Cardioprotection involves activation of NF-kappa B via PKC-dependent tyrosine and serine phosphorylation of I kappa B-alpha. Am J Physiol Heart Circ Physiol 285(4):H1753–H1758

    Article  CAS  PubMed  Google Scholar 

  44. Kukreja RC, Salloum FN, Das A (2012) Cyclic guanosine monophosphate signaling and phosphodiesterase-5 inhibitors in cardioprotection. J Am Coll Cardiol 59(22):1921–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58(3):488–520

    Article  CAS  PubMed  Google Scholar 

  46. Francis SH, Blount MA, Corbin JD (2011) Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiol Rev 91(2):651–690

    Article  CAS  PubMed  Google Scholar 

  47. Soderling SH, Beavo JA (2000) Regulation of cAMP and cGMP signaling: new phosphodiesterases and new functions. Curr Opin Cell Biol 12(2):174–179

    Article  CAS  PubMed  Google Scholar 

  48. Rotella DP (2002) Phosphodiesterase 5 inhibitors: current status and potential applications. Nat Rev Drug Discov 1(9):674–682

    Article  CAS  PubMed  Google Scholar 

  49. Ockaili R, Salloum F, Hawkins J, Kukreja RC (2002) Sildenafil (Viagra) induces powerful cardioprotective effect via opening of mitochondrial K (ATP) channels in rabbits. Am J Physiol Heart Circ Physiol 283(3):H1263–H1269

    Article  CAS  PubMed  Google Scholar 

  50. Porst H, Rosen R, Padma-Nathan H, Goldstein I, Giuliano F, Ulbrich E et al (2001) The efficacy and tolerability of vardenafil, a new, oral, selective phosphodiesterase type 5 inhibitor, in patients with erectile dysfunction: the first at-home clinical trial. Int J Impot Res 13(4):192–199

    Article  CAS  PubMed  Google Scholar 

  51. Salloum FN, Ockaili RA, Wittkamp M, Marwaha VR, Kukreja RC (2006) Vardenafil: a novel type 5 phosphodiesterase inhibitor reduces myocardial infarct size following ischemia/reperfusion injury via opening of mitochondrial K (ATP) channels in rabbits. J Mol Cell Cardiol 40(3):405–411

    Article  CAS  PubMed  Google Scholar 

  52. Taylor J, Baldo OB, Storey A, Cartledge J, Eardley I (2009) Differences in side-effect duration and related bother levels between phosphodiesterase type 5 inhibitors. BJU Int 103(10):1392–1395

    Article  CAS  PubMed  Google Scholar 

  53. Salloum FN, Chau VQ, Hoke NN, Abbate A, Varma A, Ockaili RA et al (2009) Phosphodiesterase-5 inhibitor, tadalafil, protects against myocardial ischemia/reperfusion through protein-kinase g-dependent generation of hydrogen sulfide. Circulation 120(11 Suppl):S31–S36

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Das A, Salloum FN, ** L, Rao YJ, Kukreja RC (2009) ERK phosphorylation mediates sildenafil-induced myocardial protection against ischemia-reperfusion injury in mice. Am J Physiol Heart Circ Physiol 296(5):H1236–H1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Salloum F, Yin C, ** L, Kukreja RC (2003) Sildenafil induces delayed preconditioning through inducible nitric oxide synthase-dependent pathway in mouse heart. Circ Res 92(6):595–597

    Article  CAS  PubMed  Google Scholar 

  56. Salloum FN, Das A, Thomas CS, Yin C, Kukreja RC (2007) Adenosine A(1) receptor mediates delayed cardioprotective effect of sildenafil in mouse. J Mol Cell Cardiol 43(5):545–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Das A, ** L, Kukreja RC (2005) Phosphodiesterase-5 inhibitor sildenafil preconditions adult cardiac myocytes against necrosis and apoptosis. Essential role of nitric oxide signaling. J Biol Chem 280(13):12944–12955

    Google Scholar 

  58. Das A, ** L, Kukreja RC (2008) Protein kinase G-dependent cardioprotective mechanism of phosphodiesterase-5 inhibition involves phosphorylation of ERK and GSK3beta. J Biol Chem 283(43):29572–29585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cohen MV, Downey JM (2007) Cardioprotection: spotlight on PKG. Br J Pharmacol 152(6):833–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Oldenburg O, Qin Q, Krieg T, Yang XM, Philipp S, Critz SD et al (2004) Bradykinin induces mitochondrial ROS generation via NO, cGMP, PKG, and mitoKATP channel opening and leads to cardioprotection. Am J Physiol Heart Circ Physiol 286(1):H468–H476

    Article  CAS  PubMed  Google Scholar 

  61. Sutton MG, Sharpe N (2000) Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101(25):2981–2988

    Article  CAS  PubMed  Google Scholar 

  62. Salloum FN, Abbate A, Das A, Houser JE, Mudrick CA, Qureshi IZ et al (2008) Sildenafil (Viagra) attenuates ischemic cardiomyopathy and improves left ventricular function in mice. Am J Physiol Heart Circ Physiol 294(3):H1398–H1406

    Article  CAS  PubMed  Google Scholar 

  63. Chau VQ, Salloum FN, Hoke NN, Abbate A, Kukreja RC (2011) Mitigation of the progression of heart failure with sildenafil involves inhibition of RhoA/Rho-kinase pathway. Am J Physiol Heart Circ Physiol 300(6):H2272–H2279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Takimoto E, Champion HC, Li M, Belardi D, Ren S, Rodriguez ER et al (2005) Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med 11(2):214–222

    Article  CAS  PubMed  Google Scholar 

  65. Zhang M, Kass DA (2011) Phosphodiesterases and cardiac cGMP: evolving roles and controversies. Trends Pharmacol Sci 32(6):360–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kim KH, Kim YJ, Ohn JH, Yang J, Lee SE, Lee SW et al (2012) Long-term effects of sildenafil in a rat model of chronic mitral regurgitation: benefits of ventricular remodeling and exercise capacity. Circulation 125(11):1390–1401

    Article  CAS  PubMed  Google Scholar 

  67. Farrugia G, Szurszewski JH (2014) Carbon monoxide, hydrogen sulfide, and nitric oxide as signaling molecules in the gastrointestinal tract. Gastroenterology 147(2):303–313

    Article  CAS  PubMed  Google Scholar 

  68. Elrod JW, Calvert JW, Morrison J, Doeller JE, Kraus DW, Tao L et al (2007) Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci U S A 104(39):15560–15565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ustunova S, Takir S, Yilmazer N, Bulut H, Altindirek D, Ng OH et al (2020) Hydrogen sulphide and nitric oxide cooperate in cardioprotection against ischemia/reperfusion injury in isolated rat heart. In Vivo 34(5):2507–2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wallace JL, Dicay M, McKnight W, Martin GR (2007) Hydrogen sulfide enhances ulcer healing in rats. FASEB J 21(14):4070–4076

    Article  CAS  PubMed  Google Scholar 

  71. Bhatia M, Wong FL, Fu D, Lau HY, Moochhala SM, Moore PK (2005) Role of hydrogen sulfide in acute pancreatitis and associated lung injury. FASEB J 19(6):623–625

    Article  CAS  PubMed  Google Scholar 

  72. Ondrias K, Stasko A, Cacanyiova S, Sulova Z, Krizanova O, Kristek F et al (2008) H(2)S and HS(−) donor NaHS releases nitric oxide from nitrosothiols, metal nitrosyl complex, brain homogenate and murine L1210 leukaemia cells. Pflugers Arch 457(2):271–279

    Article  CAS  PubMed  Google Scholar 

  73. Coletta C, Papapetropoulos A, Erdelyi K, Olah G, Modis K, Panopoulos P et al (2012) Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc Natl Acad Sci U S A 109(23):9161–9166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu XM, Peyton KJ, Wang X, Durante W (2012) Sildenafil stimulates the expression of gaseous monoxide-generating enzymes in vascular smooth muscle cells via distinct signaling pathways. Biochem Pharmacol 84(8):1045–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. White KA, Marletta MA (1992) Nitric oxide synthase is a cytochrome P-450 type hemoprotein. Biochemistry 31(29):6627–6631

    Article  CAS  PubMed  Google Scholar 

  76. Dallas ML, Yang Z, Boyle JP, Boycott HE, Scragg JL, Milligan CJ et al (2012) Carbon monoxide induces cardiac arrhythmia via induction of the late Na+ current. Am J Respir Crit Care Med 186(7):648–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ishikawa M, Kajimura M, Adachi T, Maruyama K, Makino N, Goda N et al (2005) Carbon monoxide from heme oxygenase-2 is a tonic regulator against NO-dependent vasodilatation in the adult rat cerebral microcirculation. Circ Res 97(12):e104–e114

    Article  CAS  PubMed  Google Scholar 

  78. Banerjee S, Tang XL, Qiu Y, Takano H, Manchikalapudi S, Dawn B et al (1999) Nitroglycerin induces late preconditioning against myocardial stunning via a PKC-dependent pathway. Am J Physiol 277(6):H2488–H2494

    CAS  PubMed  Google Scholar 

  79. Mochly-Rosen D (1995) Localization of protein kinases by anchoring proteins: a theme in signal transduction. Science 268(5208):247–251

    Article  CAS  PubMed  Google Scholar 

  80. Kawata H, Yoshida K, Kawamoto A, Kurioka H, Takase E, Sasaki Y et al (2001) Ischemic preconditioning upregulates vascular endothelial growth factor mRNA expression and neovascularization via nuclear translocation of protein kinase C epsilon in the rat ischemic myocardium. Circ Res 88(7):696–704

    Article  CAS  PubMed  Google Scholar 

  81. Liu GS, Cohen MV, Mochly-Rosen D, Downey JM (1999) Protein kinase C-epsilon is responsible for the protection of preconditioning in rabbit cardiomyocytes. J Mol Cell Cardiol 31(10):1937–1948

    Article  CAS  PubMed  Google Scholar 

  82. ** P, Zhang J, Qiu Y, Tang XL, Manchikalapudi S, Cao X et al (1997) Ischemic preconditioning induces selective translocation of protein kinase C isoforms epsilon and eta in the heart of conscious rabbits without subcellular redistribution of total protein kinase C activity. Circ Res 81(3):404–414

    Article  CAS  PubMed  Google Scholar 

  83. Qiu Y, ** P, Tang XL, Manchikalapudi S, Rizvi A, Zhang J et al (1998) Direct evidence that protein kinase C plays an essential role in the development of late preconditioning against myocardial stunning in conscious rabbits and that epsilon is the isoform involved. J Clin Invest 101(10):2182–2198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tsouka V, Markou T, Lazou A (2002) Differential effect of ischemic and pharmacological preconditioning on PKC isoform translocation in adult rat cardiac myocytes. Cell Physiol Biochem 12(5–6):315–324

    Article  CAS  PubMed  Google Scholar 

  85. Liu H, McPherson BC, Zhu X, Da Costa ML, Jeevanandam V, Yao Z (2001) Role of nitric oxide and protein kinase C in ACh-induced cardioprotection. Am J Physiol Heart Circ Physiol 281(1):H191–H197

    Article  CAS  PubMed  Google Scholar 

  86. Zhang HY, McPherson BC, Liu H, Baman T, McPherson SS, Rock P et al (2002) Role of nitric-oxide synthase, free radicals, and protein kinase C delta in opioid-induced cardioprotection. J Pharmacol Exp Ther 301(3):1012–1019

    Article  CAS  PubMed  Google Scholar 

  87. Harada N, Miura T, Dairaku Y, Kametani R, Shibuya M, Wang R et al (2004) NO donor-activated PKC-delta plays a pivotal role in ischemic myocardial protection through accelerated opening of mitochondrial K-ATP channels. J Cardiovasc Pharmacol 44(1):35–41

    Article  CAS  PubMed  Google Scholar 

  88. Yoshida H, Kusama Y, Kodani E, Yasutake M, Takano H, Atarashi H et al (2005) Pharmacological preconditioning with bradykinin affords myocardial protection through NO-dependent mechanisms. Int Heart J 46(5):877–887

    Article  CAS  PubMed  Google Scholar 

  89. Faghihi M, Alizadeh AM, Khori V, Latifpour M, Khodayari S (2012) The role of nitric oxide, reactive oxygen species, and protein kinase C in oxytocin-induced cardioprotection in ischemic rat heart. Peptides 37(2):314–319

    Article  CAS  PubMed  Google Scholar 

  90. Tsibulnikov SY, Maslov LN, Naryzhnaya NV, Ma H, Lishmanov YB, Oeltgen PR et al (2018) Role of protein kinase C, PI3 kinase, tyrosine kinases, NO-synthase, KATP channels and MPT pore in the signaling pathway of the cardioprotective effect of chronic continuous hypoxia. Gen Physiol Biophys 37(5):537–547

    Article  CAS  PubMed  Google Scholar 

  91. Vondriska TM, Zhang J, Song C, Tang XL, Cao X, Baines CP et al (2001) Protein kinase C epsilon-Src modules direct signal transduction in nitric oxide-induced cardioprotection: complex formation as a means for cardioprotective signaling. Circ Res 88(12):1306–1313

    Article  CAS  PubMed  Google Scholar 

  92. Balafanova Z, Bolli R, Zhang J, Zheng Y, Pass JM, Bhatnagar A et al (2002) Nitric oxide (NO) induces nitration of protein kinase Cepsilon (PKCepsilon), facilitating PKCepsilon translocation via enhanced PKCepsilon-RACK2 interactions: a novel mechanism of no-triggered activation of PKCepsilon. J Biol Chem 277(17):15021–15027

    Article  CAS  PubMed  Google Scholar 

  93. Das A, Ockaili R, Salloum F, Kukreja RC (2004) Protein kinase C plays an essential role in sildenafil-induced cardioprotection in rabbits. Am J Physiol Heart Circ Physiol 286(4):H1455–H1460

    Article  CAS  PubMed  Google Scholar 

  94. Ciechanover A (2015) The unravelling of the ubiquitin system. Nat Rev Mol Cell Biol 16(5):322–324

    Article  CAS  PubMed  Google Scholar 

  95. Ballinger CA, Connell P, Wu Y, Hu Z, Thompson LJ, Yin LY et al (1999) Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol 19(6):4535–4545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sha Y, Rao L, Settembre C, Ballabio A, Eissa NT (2017) STUB1 regulates TFEB-induced autophagy-lysosome pathway. EMBO J 36(17):2544–2552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Schisler JC, Rubel CE, Zhang C, Lockyer P, Cyr DM, Patterson C (2013) CHIP protects against cardiac pressure overload through regulation of AMPK. J Clin Invest 123(8):3588–3599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang C, Xu Z, He XR, Michael LH, Patterson C (2005) CHIP, a cochaperone/ubiquitin ligase that regulates protein quality control, is required for maximal cardioprotection after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 288(6):H2836–H2842

    Article  CAS  PubMed  Google Scholar 

  99. Xu CW, Zhang TP, Wang HX, Yang H, Li HH (2013) CHIP enhances angiogenesis and restores cardiac function after infarction in transgenic mice. Cell Physiol Biochem 31(2–3):199–208

    Article  CAS  PubMed  Google Scholar 

  100. Ranek MJ, Oeing C, Sanchez-Hodge R, Kokkonen-Simon KM, Dillard D, Aslam MI et al (2020) CHIP phosphorylation by protein kinase G enhances protein quality control and attenuates cardiac ischemic injury. Nat Commun 11(1):5237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Laakso M (2011) Heart in diabetes: a microvascular disease. Diabetes Care 34(Suppl 2):S145–S149

    Article  PubMed  PubMed Central  Google Scholar 

  102. Ayala JE, Bracy DP, Julien BM, Rottman JN, Fueger PT, Wasserman DH (2007) Chronic treatment with sildenafil improves energy balance and insulin action in high fat-fed conscious mice. Diabetes 56(4):1025–1033

    Article  CAS  PubMed  Google Scholar 

  103. Deanfield JE, Halcox JP, Rabelink TJ (2007) Endothelial function and dysfunction: testing and clinical relevance. Circulation 115(10):1285–1295

    Article  PubMed  Google Scholar 

  104. Cui R, Iso H, Pi J, Kumagai Y, Yamagishi K, Tanigawa T et al (2007) Metabolic syndrome and urinary cGMP excretion in general population. Atherosclerosis 190(2):423–428

    Article  CAS  PubMed  Google Scholar 

  105. Ahn GJ, Yu JY, Choi SM, Kang KK, Ahn BO, Kwon JW et al (2005) Chronic administration of phosphodiesterase 5 inhibitor improves erectile and endothelial function in a rat model of diabetes. Int J Androl 28(5):260–266

    Article  CAS  PubMed  Google Scholar 

  106. Miki T, Itoh T, Sunaga D, Miura T (2012) Effects of diabetes on myocardial infarct size and cardioprotection by preconditioning and postconditioning. Cardiovasc Diabetol 11:67

    Article  PubMed  PubMed Central  Google Scholar 

  107. Van der Mieren G, Nevelsteen I, Vanderper A, Oosterlinck W, Flameng W, Herijgers P (2012) Angiotensin-converting enzyme inhibition and food restriction in diabetic mice do not correct the increased sensitivity for ischemia-reperfusion injury. Cardiovasc Diabetol 11:89

    Article  PubMed  PubMed Central  Google Scholar 

  108. Downey JM, Cohen MV (2009) Why do we still not have cardioprotective drugs? Circ J 73(7):1171–1177

    Article  PubMed  Google Scholar 

  109. Przyklenk K, Maynard M, Greiner DL, Whittaker P (2011) Cardioprotection with postconditioning: loss of efficacy in murine models of type-2 and type-1 diabetes. Antioxid Redox Signal 14(5):781–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Koka S, Das A, Salloum FN, Kukreja RC (2013) Phosphodiesterase-5 inhibitor tadalafil attenuates oxidative stress and protects against myocardial ischemia/reperfusion injury in type 2 diabetic mice. Free Radic Biol Med 60:80–88

    Article  CAS  PubMed  Google Scholar 

  111. Varma A, Das A, Hoke NN, Durrant DE, Salloum FN, Kukreja RC (2012) Anti-inflammatory and cardioprotective effects of tadalafil in diabetic mice. PLoS ONE 7(9):e45243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Koka S, Aluri HS, ** L, Lesnefsky EJ, Kukreja RC (2014) Chronic inhibition of phosphodiesterase 5 with tadalafil attenuates mitochondrial dysfunction in type 2 diabetic hearts: potential role of NO/SIRT1/PGC-1alpha signaling. Am J Physiol Heart Circ Physiol 306(11):H1558–H1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cornier MA, Dabelea D, Hernandez TL, Lindstrom RC, Steig AJ, Stob NR et al (2008) The metabolic syndrome. Endocr Rev 29(7):777–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Huang PL (2009) A comprehensive definition for metabolic syndrome. Dis Model Mech 2(5–6):231–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hallajzadeh J, Safiri S, Mansournia MA, Khoramdad M, Izadi N, Almasi-Hashiani A et al (2017) Metabolic syndrome and its components among rheumatoid arthritis patients: a comprehensive updated systematic review and meta-analysis. PLoS ONE 12(3):e0170361

    Article  PubMed  PubMed Central  Google Scholar 

  116. Lakka HM, Laaksonen DE, Lakka TA, Niskanen LK, Kumpusalo E, Tuomilehto J et al (2002) The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 288(21):2709–2716

    Article  PubMed  Google Scholar 

  117. Stocks T, Bjorge T, Ulmer H, Manjer J, Haggstrom C, Nagel G et al (2015) Metabolic risk score and cancer risk: pooled analysis of seven cohorts. Int J Epidemiol 44(4):1353–1363

    Article  PubMed  PubMed Central  Google Scholar 

  118. Carlstrom M, Larsen FJ, Nystrom T, Hezel M, Borniquel S, Weitzberg E et al (2010) Dietary inorganic nitrate reverses features of metabolic syndrome in endothelial nitric oxide synthase-deficient mice. Proc Natl Acad Sci U S A 107(41):17716–17720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Koka S, ** L, Kukreja RC (2020) Chronic inhibition of phosphodiesterase 5 with tadalafil affords cardioprotection in a mouse model of metabolic syndrome: role of nitric oxide. Mol Cell Biochem 468(1–2):47–58

    Article  CAS  PubMed  Google Scholar 

  120. Das A, Durrant D, Mitchell C, Mayton E, Hoke NN, Salloum FN et al (2010) Sildenafil increases chemotherapeutic efficacy of doxorubicin in prostate cancer and ameliorates cardiac dysfunction. Proc Natl Acad Sci U S A 107(42):18202–18207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Fisher PW, Salloum F, Das A, Hyder H, Kukreja RC (2005) Phosphodiesterase-5 inhibition with sildenafil attenuates cardiomyocyte apoptosis and left ventricular dysfunction in a chronic model of doxorubicin cardiotoxicity. Circulation 111(13):1601–1610

    Article  CAS  PubMed  Google Scholar 

  122. Koka S, Das A, Zhu SG, Durrant D, ** L, Kukreja RC (2010) Long-acting phosphodiesterase-5 inhibitor tadalafil attenuates doxorubicin-induced cardiomyopathy without interfering with chemotherapeutic effect. J Pharmacol Exp Ther 334(3):1023–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the National Institutes of Health RO1HL134366 (RCK & AD), R37 HL-51045, RO1HL118808, R01CA221813, R01DK120866 (RCK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh C. Kukreja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kukreja, R.C., Das, A., Koka, S., Samidurai, A., **, L. (2023). Nitric Oxide-cGMP-PKG Signaling in the Cardioprotective Effects of Phosphodiesterase 5 Inhibitors. In: Ray, A., Gulati, K. (eds) Nitric Oxide: From Research to Therapeutics. Advances in Biochemistry in Health and Disease, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-031-24778-1_6

Download citation

Publish with us

Policies and ethics

Navigation