Heat Energy Recovery and Low CO2 Emission for Natural Gas Combined Cycle Power Plants Using Plasma Treatment

  • Chapter
  • First Online:
Heat Energy Recovery for Industrial Processes and Wastes

Part of the book series: Green Energy and Technology ((GREEN))

  • 335 Accesses

Abstract

In a liquefied natural gas, gas turbine combined cycle (GTCC) power generation plant that has a high total power generation efficiency, zero carbon dioxide (CO2) emission can be achieved if the energy efficiency of the nonthermal plasma (NTP) CO2 reduction process is at least 49%. In this article, we discuss zero CO2 emission power plants, including introduction to GTCC power plants, carbon monoxide (CO) gas turbine systems, and NTP conversion technologies for converting CO2 into synthesized gas fuels (with the main component being CO) by the recirculation of exhaust gas. To reduce CO2 emissions in a self-consistent manner at room temperature and atmospheric pressure, the method of conversion of CO2 into CO by NTP using reduction technologies is explained. The CO2 reduction performance of the two processes is evaluated experimentally using different gas mixtures. First, CO2 is adsorbed from a gas flow mixture comprising argon (Ar) or helium (He), nitrogen, and CO2 (approximately 10% concentration) onto an adsorbent; afterward, CO2 is desorbed and reduced by Ar or He NTP flow to a higher concentration of 10–22% under similar experimental conditions. An energy efficiency of 20% is achieved in the laboratory with plasma catalysts. The findings indicate that a CO2 reduction of 41% is possible for GTCC plants following the scaling up of the NTP system to an industrial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Komori T, Shiozaki S, Yamagami N, Kitauchi Y, Akizuki W (2007) CO2 emission reduction method through various gas turbine fuel applications. Mitsubishi Heavy Ind Ltd, Tech Rev 44(1):1–5

    Google Scholar 

  2. Okubo M (2021) Recent development of technology in scale-up of plasma reactors for environmental and energy applications. Plasma Chem Plasma Process 42:3–31. https://doi.org/10.1007/s11090-021-10201-7

    Article  Google Scholar 

  3. Okubo M, Kuwahara T (2019) New technologies for emission control in marine diesel engines. ISBN: 9780128123072, Elsevier, p 296

    Google Scholar 

  4. Yamasaki H, Kuroki T, Okubo M (2020) Another author, adsorbed CO2 dissociation using argon and helium nonthermal plasma flows. IEEE Trans Ind Appl 56:6983–6989

    Article  Google Scholar 

  5. Okubo M, Takahashi K, Kamiya S, Kuroki T (2018) High-efficiency carbon dioxide reduction using nonthermal plasma desorption. IEEE Trans Ind Appl 54:6422–6429

    Article  Google Scholar 

  6. Spencer LF, Gallimore AD (2011) Efficiency of CO2 dissociation in a radio-frequency discharge. Plasma Chem Plasma Process 31:79–89

    Article  Google Scholar 

  7. Morimoto K, Matsumura Y, Iijima T, Wakazono S, Kataoka M, Yuri M (2021) Validation results of 1650 ºC class JAC gas turbine at T-point 2 demonstration plant. Mitsubishi Heavy Ind Tech Rev 58(1):1–12

    Google Scholar 

  8. Hanna R, Abdulla A, Xu Y, Victor DG (2021) Emergency deployment of direct air capture as a response to the climate crisis. Nat Commun 12:368. https://doi.org/10.1038/s41467-020-20437-0

    Article  Google Scholar 

  9. Okubo M, Kuroki T, Yamada H, Yoshida K, Kuwahara T (2017) CO2 Concentration using adsorption and nonthermal plasma desorption. IEEE Trans Ind Appl 53:2432–2439

    Article  Google Scholar 

  10. Oki Y, Hamada H, Kobayashi M, Nakao Y, Hara S (2016) Development of high-efficiency oxy-fuel IGCC system. Mech Eng J 3(5):16-00351 (total 6 pages)

    Google Scholar 

  11. Mitsubishi Power Ltd. (2022) Press Release. https://power.mhi.com/news/20210419.html. Accessed 29 May 2022

  12. Hashimoto T, Sakamoto K, Ishii H, Fuji T, Koyama Y (2010) Commercialization of clean technology with CO2 recovery. Mitsubishi Heavy Ind Tech Rev 47(1):9–14

    Google Scholar 

  13. Giuffrida A, Romano MC, Lozza F (2011) Thermodynamic analysis of air-blown gasification for IGCC applications. Appl Energy 88:3949–3958

    Article  Google Scholar 

  14. Sato M, Hasegawa T (2001) Denchuken Rev 44:74–81, Chapter 5 (in Japanese)

    Google Scholar 

  15. Hasegawa T (2006) Development of gas turbine combustor for utilizing various gasified fuels with high-efficiency and minimal pollutant emissions. J Combust Soc Jpn 48(146):46–61 (in Japanese)

    Google Scholar 

  16. Walsh PM (1979) A review of ammonia and hydrogen cyanide concentrations in low and medium-btu coal gases, Contract No. EF-77-S-01-2762. Princeton University, Princeton, NJ, USA

    Google Scholar 

  17. Amamoto M, Takahara M, Fujii T, Kumagai T (2019) Current status of integrated coal gasification combined cycle projects. Mitsubishi Heavy Ind Tech Rev 56(3):1–6

    Google Scholar 

  18. Moioli S, Giuffrida A, Romano MC, Pellegrini LA, Lozza G (2016) Assessment of MDEA absorption process for sequential H2S removal and CO2 capture in air-blown IGCC plants. Appl Energy 183:1452–1470

    Article  Google Scholar 

  19. Shidao (2015) Outline of the OSAKI Coolgen Project. In: Proceedings of international conference on power engineering 15 (ICOPE-15), Yokohama, ID: ICOPE-15–1034 (total 7 pages)

    Google Scholar 

  20. Wakimoto H, Yamasaki H, Kuroki T, Okubo M (2022) Effect of argon and helium concentrations on adsorbed CO2 dissociation using nonthermal plasma flow. Int J Plasma Environ Sci Technol 16(1):e01006

    Google Scholar 

  21. Wakimoto H, Yamasaki H, Kuroki T, Okubo M High-efficiency carbon dioxide reduction using catalytic nonthermal plasma desorption. Mech Eng J (submitted)

    Google Scholar 

  22. Takaki K, Fujiwara T, Tochikubo F (2003) Production of atmospheric-pressure glow discharge. J Plasma Fusion Res 79(10):1002–1008 (in Japanese)

    Google Scholar 

  23. Gherardi N, Gouda G, Gat E, Ricard A, Massines F (2000) Transition from glow silent discharge to micro-discharges in nitrogen. Plasma Sour Sci Technol 9(3):340–346

    Article  Google Scholar 

  24. Kogoma M (2003) Generation of atmospheric-pressure glow discharge and its applications. J Plasma Fusion Res 79(10):1000–1001 (in Japanese)

    Google Scholar 

  25. Tochikubo F, Chiba T, Watanabe T (1999) Structure of low-frequency helium glow discharge at atmospheric pressure between parallel plate dielectric electrodes. Jpn J Appl Phys 38(9):5244–5250

    Article  Google Scholar 

  26. Ramakers M, Michielsen I, Aerts R, Meynen V, Bogaerts A (2015) Effect of argon or helium on the CO2 conversion in a dielectric barrier discharge. Plasma Process Polym 12(8):755–763

    Article  Google Scholar 

  27. Xu S, Chansai S, Shao Y, Xu S, Wang Y, Haigh S, Mu Y, Jiao Y, Stere CE, Chem H, Fan X, Hardacre C (2020) Mechanistic study of non-thermal plasma assisted CO2 hydrogenation over Ru supported on MgAl layered double hydroxide. Appl Catal B: Environ 268(118752):1–12

    Google Scholar 

  28. Willems G, Hecimovic A, Sgonina K, Carbone E, Benedikt J (2020) Mass spectrometry of neutrals and positive ions in He/CO2 non-equilibrium atmospheric plasma jet. Plasma Phys Control Fusion 62(034005):1–12

    Google Scholar 

  29. Ge H, Kuwahara Y, Kusu K, Yamashita H (2021) Plasmon-induced catalytic CO2 hydrogenation by a nano-sheet Pt/HxMoO3-y hybrid with abundant surface oxygen vacancies. J Mater Chem A 9:13898–13907

    Article  Google Scholar 

  30. Kumagai H, Nishikawa T, Koizumi H, Yatsu T, Sahara G, Yamazaki Y, Tamaki Y, Ishitani O (2019) Electrocatalytic reduction of low concentration CO2. Chem Sci 10:1597–1616

    Article  Google Scholar 

  31. Pang R, Teramura K, Morishita M, Asakura H, Hosokawa S, Tanaka T (2020) Enhanced CO evolution for photocatalytic conversion of CO2 by H2O over Ca modified Ga2O3. Commun Chem 3(137):1–8

    Google Scholar 

  32. Yamada K, Ogo S, Yamano R, Higo T, Sekine Y (2020) Low-temperature conversion of carbon dioxide to methane in electric field. Chem Lett 49(3):303–306

    Article  Google Scholar 

  33. Makimura JI, Higo T, Kurosawa Y, Murakami K, Ogo S, Tsuneki H, Hashimoto Y, Sato Y, Ishitani O (2021) Fast oxygen ion migration in Cu-ln-oxide bulk and its utilization for effective CO2 conversion at lower temperature. Chem Sci 12:2108–2113

    Article  Google Scholar 

  34. Song Y, Hensley DK, Bonnesen PV, Liang L, Wu Z, Meyer HM, Chi M, Sumpter BG, Rondinone AJ (2016) High-Selectivity electrochemical conversion of CO2 to ethanol using a copper nanoparticle/N-doped graphene electrode. Chem Select 1:6055–6061

    Google Scholar 

  35. Watari R (2014) The trend of catalyst technologies related to carbon dioxide transformation. Environ Sci Res Lab Rep 13006:1–19 (in Japanese)

    Google Scholar 

  36. Wu Y, Iwase K, Harada T, Nakanishi S, Kamiya K (2021) Sn atoms on Cu nanoparticles for suppressing competitive H2 evolution in CO2 electrolysis. ACS Appl Nano Mater 4:4994–5003

    Article  Google Scholar 

  37. Jwa E, Lee SB, Lee HW, Mok YS (2013) Plasma-assisted catalytic methanation of CO and CO2 over Ni-zeolite catalysts. Fuel Process Technol 108:89–93

    Article  Google Scholar 

  38. Brune L, Ozkan A, Genty E, Visart de Bocarme T, Reniers F (2018) Dry reforming of methane via plasma-catalysis: influence of the catalyst nature supported on alumina in a packed-bed DBD configuration. J Phys D Appl Phys 51(23):234002

    Google Scholar 

  39. Kamiya S (2018) Reduction of carbon dioxide by argon and nitrogen nonthermal plasmas. Master’s thesis in fiscal year 2017, Department of Mechanical Engineering, Osaka Prefecture University, pp 1–49 (in Japanese)

    Google Scholar 

  40. Li J, Zhang X, Shen J, Ran T, Chen P, Yin Y (2017) Dissociation of CO2 by thermal plasma with contracting nozzle Quenching. J CO2 Util 21:72–76

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Okubo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yamasaki, H., Wakimoto, H., Okubo, M. (2023). Heat Energy Recovery and Low CO2 Emission for Natural Gas Combined Cycle Power Plants Using Plasma Treatment. In: Borge-Diez, D., Rosales-Asensio, E. (eds) Heat Energy Recovery for Industrial Processes and Wastes. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-24374-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24374-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24373-8

  • Online ISBN: 978-3-031-24374-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation