Closing Bell Boxing Black Box Simulations in the Resource Theory of Contextuality

  • Chapter
  • First Online:
Samson Abramsky on Logic and Structure in Computer Science and Beyond

Part of the book series: Outstanding Contributions to Logic ((OCTR,volume 25))

  • 213 Accesses

Abstract

This chapter contains an exposition of the sheaf-theoretic framework for contextuality emphasising resource-theoretic aspects, as well as some original results on this topic. In particular, we consider functions that transform empirical models on a scenario S to empirical models on another scenario T, and characterise those that are induced by classical procedures between S and T corresponding to ‘free’ operations in the (non-adaptive) resource theory of contextuality. We proceed by expressing such functions as empirical models themselves, on a new scenario built from S and T. Our characterisation then boils down to the non-contextuality of these models. We also show that this construction on scenarios provides a closed structure in the category of measurement scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    At the risk of provoking a relapse into an erstwhile indulgence of Samson’s, who has been known to self-identify as a recovering philosopher, we remark that this chapter adopts an approach that is somewhat in the empiricist tradition of philosophy. As someone whose research interests and contributions are ever-evolving and indeed ever-relevant, one former student of his has also pointed out that Samson has clearly distinguished himself from another famous Samson, the dinosaur.

  2. 2.

    From now on, we shall primarily adopt the terminology measurements and outcomes.

  3. 3.

    This is similarly illustrated by the ‘impossible biscuit’ in the poster for the 2018 Lorentz Centre workshop Logical Aspects of Quantum Information, which was co-organised by Samson: https://www.lorentzcenter.nl/logical-aspects-of-quantum-information.html.

  4. 4.

    This also brings to mind the words of Álvaro de Campos, as if quantum systems were contriving to realise the motto from his futurist phase, ‘to be sincere contradicting oneself’. In the original: ‘Ser sincero contradizendo-se’. From the poem Passagem das horas (22–05–1916), in Campos (1944).

  5. 5.

    Within these frameworks, the phenomenon of non-locality as discussed by Bell may be seen as a special case of contextuality that arises in distributed or multi-party scenarios. Note that locality in Bell’s sense differs from our use of the term earlier in relation to local compatibility.

  6. 6.

    Subsequent developments are to be found in many papers including in particular the local-consistency-versus-global-inconsistency picture in Abramsky et al. (2015).

  7. 7.

    One cannot help but be reminded of the reversal of Player and Opponent rôles in games of function type in game semantics. Player in such a game plays simultaneously, and inter-dependently, two simpler games, corresponding to the output and the input types, and adopts a different rôle in each of them Abramsky et al. (1999).

  8. 8.

    Note that in Abramsky et al. (2019a, b), where we first made an observation to this effect, the source of these simulations was the trivial scenario with one measurement and a single outcome. The difference arises due to the kind of simulations we allow in each case. It is related to the fact that ‘the’ singleton set is the terminal object in the category of sets and functions (i.e. there is exactly one function from any given set to a singleton set) whereas in the category of sets and relations the terminal object is the empty set.

  9. 9.

    From Meditation XVII, in Donne (1624).

  10. 10.

    At the risk of overstretching the use of poetic metaphor, one is reminded of Blake’s, ‘[to] hold infinity in the palm of your hand, and eternity in an hour.’ From the poem ‘Auguries of Innocence’ (c. 1803), in The Ballads (or Pickering) Manuscript, published in Gilchrist and Gilchrist (1863).

  11. 11.

    In fact, the notion of morphism considered here differs slightly from those of Karvonen (2019) and Abramsky et al. (2019a). It is the appropriate notion to capture non-adaptive simulations. The minor discrepancies are discussed and explained at the end of Sect. 13.3.2.

  12. 12.

    Otherwise it would be difficult to justify calling it a measurement in the first place.

  13. 13.

    Note that for Boolean distributions the restriction to finite support is unnecessary. But here we only deal with finite sets of events, anyway.

  14. 14.

    While the word “predicate” does not quite fit with the experimental imagery evoked by much of our terminology, there is a reason for introducing an alternative word for two-valued experiments. Later, it will be useful to consider whether a given model always returns the outcome 1 in such an experiment, and to restrict attention to those models on a scenario which do so. Hence calling it a predicate serves the purpose of indicating a change of viewpoint, where we will be restricting attention to models that always satisfy a given property.

  15. 15.

    See Abramsky et al. (2017b, Sect. 4) for a more general account of state-independent contextuality phrased in similar language.

  16. 16.

    Most of this should follow from the fact that changing the basis of enrichment is a 2-functor and in our case preserves the duality involutions, so one should automatically get a functor \([-,-]\) and the required natural transformations, leaving only dinaturality and some of the axioms to be checked by hand. However, we are not aware of general results guaranteeing that change-of-basis preserves closed structure, so we sketch the hands-on proof.

  17. 17.

    Littlewood wrote of his collaboration with Mary Cartwright: Two rats fell into a can of milk. After swimming for a time one of them realised his hopeless fate and drowned. The other persisted, and at last the milk was turned to butter and he could get out.

References

  • Aasnæss, S. (2020). Cohomology and the algebraic structure of contextuality in measurement based quantum computation. In: B. Coecke & M. Leifer (Eds.), 16th International Conference on Quantum Physics and Logic (QPL 2019), Electronic Proceedings in Theoretical Computer Science (Vol. 318, pp. 242–253). Open Publishing Association. https://doi.org/10.4204/eptcs.318.15.

  • Abramsky, S. (2013). Relational hidden variables and non-locality. Studia Logica, 101(2), 411–452.

    Article  Google Scholar 

  • Abramsky, S. (2014). Contextual semantics: From quantum mechanics to logic, databases, constraints, and complexity. Bulletin of the European Association for Theoretical Computer Science, 113, 137–163.

    Google Scholar 

  • Abramsky, S. (2018). Contextuality: At the borders of paradox. In: E. Landry (Ed.), Categories for the working philosopher (pp. 262–287). Oxford University Press. https://doi.org/10.1093/oso/9780198748991.003.0011.

  • Abramsky, S. (2020). Classical logic, classical probability, and quantum mechanics. In Quantum, Probability, Logic: The Work and Influence of Itamar Pitowsky, Jerusalem Studies in Philosophy and History of Science (pp. 1–17). Springer International Publishing. https://doi.org/10.1007/978-3-030-34316-3_1.

  • Abramsky, S. (2022). Notes on presheaf representations of strategies and cohomological refinements of \(k\)-consistency and \(k\)-equivalence. ar**v:2206.12156 [cs.LO].

  • Abramsky, S., & Barbosa, R. S. (2021). The logic of contextuality. In: C. Baier, & J. Goubault-Larrecq (Eds.), 29th EACSL Annual Conference on Computer Science Logic (CSL 2021), Leibniz International Proceedings in Informatics (LIPIcs) (Vol. 183, pp. 5:1–5:18). Schloss Dagstuhl–Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CSL.2021.5.

  • Abramsky, S., Barbosa, R.S., Carù, G., de Silva, N., Kishida, K., & Mansfield, S. (2018). Minimum quantum resources for strong non-locality. In: M. M. Wilde (Ed.), 12th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2017), Leibniz International Proceedings in Informatics (LIPIcs) (Vol. 73, pp. 9:1–9:20). Schloss Dagstuhl–Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.TQC.2017.9.

  • Abramsky, S., Barbosa, R. S., Carù, G., & Perdrix, S. (2017). A complete characterization of all-versus-nothing arguments for stabilizer states. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375(2106), 20160385.

    Article  Google Scholar 

  • Abramsky, S., Barbosa, R.S., de Silva, N., & Zapata, O. (2017b). The quantum monad on relational structures. In: K. G. Larsen, H. L. Bodlaender & J. F. Raskin (Eds.), 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017), Leibniz International Proceedings in Informatics (LIPIcs) (Vol. 83, pp. 35:1–35:19). Schloss Dagstuhl–Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.MFCS.2017.35.

  • Abramsky, S., Barbosa, R. S., & Mansfield, S. (2017). Contextual fraction as a measure of contextuality. Physical Review Letters, 119(5), 050504.

    Article  Google Scholar 

  • Abramsky, S., Barbosa, R.S., Karvonen, M., & Mansfield, S. (2019a). A comonadic view of simulation and quantum resources. In: 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LiCS 2019) (pp. 1–12). IEEE. https://doi.org/10.1109/LICS.2019.8785677.

  • Abramsky, S., Barbosa, R.S., Karvonen, M., & Mansfield, S. (2019b). Simulations of quantum resources and the degrees of contextuality. In: Early Ideas Talk at 8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019).

    Google Scholar 

  • Abramsky, S., & Carù, G. (2019). Non-locality, contextuality and valuation algebras: A general theory of disagreement. Philosophical Transactions of the Royal Society A, 377(2157), 20190036.

    Article  Google Scholar 

  • Abramsky, S., Barbosa, R. S., Kishida, K., Lal, R., & Mansfield, S. (2015). Contextuality, cohomology and paradox. In: S. Kreutzer (Ed.), 24th EACSL Annual Conference on Computer Science Logic (CSL 2015), Leibniz International Proceedings in Informatics (LIPIcs) (Vol. 41, pp. 211–228). Schloss Dagstuhl–Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CSL.2015.211.

  • Abramsky, S., Barbosa, R. S., Kishida, K., Lal, R., & Mansfield, S. (2016). Possibilities determine the combinatorial structure of probability polytopes. Journal of Mathematical Psychology, 74, 58–65.

    Article  Google Scholar 

  • Abramsky, S., Constantin, C. M., & Ying, S. (2016). Hardy is (almost) everywhere: Nonlocality without inequalities for almost all entangled multipartite states. Information and Computation, 250, 3–14.

    Article  Google Scholar 

  • Abramsky, S., & Brandenburger, A. (2011). The sheaf-theoretic structure of non-locality and contextuality. New Journal of Physics, 13(11), 113036.

    Article  Google Scholar 

  • Abramsky, S., & Brandenburger, A. (2014a). An operational interpretation of negative probabilities and no-signalling models. In: Horizons of the mind. A tribute to Prakash Panangaden (pp. 59–75). Springer.

    Google Scholar 

  • Abramsky, S., Brandenburger, A., & Savochkin, A. (2014b). No-signalling is equivalent to free choice of measurements. In: B. Coecke & M. Hoban (Eds.), 10th International Workshop on Quantum Physics and Logic (QPL 2013), Electronic Proceedings in Theoretical Computer Science (Vol. 171, pp. 1–9). Open Publishing Association. https://doi.org/10.4204/EPTCS.171.1.

  • Abramsky, S., & Constantin, C. (2014c). A classification of multipartite states by degree of non-locality. In: B. Coecke & M. Hoban (Eds.), 10th International Workshop on Quantum Physics and Logic (QPL 2013), Electronic Proceedings in Theoretical Computer Science (Vol. 171, pp. 10–25). Open Publishing Association. https://doi.org/10.4204/EPTCS.171.2.

  • Abramsky, S., Gay, S., & Nagarajan, R. (1996a). Specification structures and propositions-as-types for concurrency. In: Logics for Concurrency (pp. 5–40). Springer.

    Google Scholar 

  • Abramsky, S., Gay, S.J., & Nagarajan, R. (1996b). Interaction categories and the foundations of typed concurrent programming. In NATO ASI DPD (pp. 35–113).

    Google Scholar 

  • Abramsky, S., Gottlob, G., & Kolaitis, P. G. (2013). Robust constraint satisfaction and local hidden variables in quantum mechanics. In 23rd International Joint Conference on Artificial Intelligence (IJCAI 2013) (pp. 440–446).

    Google Scholar 

  • Abramsky, S., & Hardy, L. (2012). Logical Bell inequalities. Physical Review A, 85(6), 062114. https://doi.org/10.1103/PhysRevA.85.062114

    Article  Google Scholar 

  • Abramsky, S., Mansfield, S., & Barbosa, R. S. (2012b). The cohomology of non-locality and contextuality. In: B. Jacobs, P. Selinger & B. Spitters (Eds.), 8th International Workshop on Quantum Physics and Logic (QPL 2011), Electronic Proceedings in Theoretical Computer Science (Vol. 95, pp. 1–14). https://doi.org/10.4204/EPTCS.95.1.

  • Abramsky, S., & McCusker, G. (1999). Game semantics. In: Computational logic (pp. 1–55). Springer.

    Google Scholar 

  • Acín, A., Fritz, T., Leverrier, A., & Sainz, A. B. (2015). A combinatorial approach to nonlocality and contextuality. Communications in Mathematical Physics, 334(2), 533–628. https://doi.org/10.1007/s00220-014-2260-1

    Article  Google Scholar 

  • Allcock, J., Brunner, N., Linden, N., Popescu, S., Skrzypczyk, P., & Vértesi, T. (2009). Closed sets of nonlocal correlations. Physical Review A, 80, 062107. https://doi.org/10.1103/PhysRevA.80.062107

    Article  Google Scholar 

  • Amaral, B. (2019). Resource theory of contextuality. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 377(2157), 20190010. https://doi.org/10.1098/rsta.2019.0010

    Article  Google Scholar 

  • Amaral, B., Cabello, A., Cunha, M. T., & Aolita, L. (2018). Noncontextual wirings. Physical Review Letters, 120(13), 130403. https://doi.org/10.1103/PhysRevLett.120.130403

    Article  Google Scholar 

  • Aspect, A., Dalibard, J., & Roger, G. (1982). Experimental test of Bell’s inequalities using time-varying analyzers. Physical Review Letters, 49(25), 1804. https://doi.org/10.1103/PhysRevLett.49.1804

    Article  Google Scholar 

  • Barbosa, R. S. (2014). On monogamy of non-locality and macroscopic averages: Examples and preliminary results. In: B. Coecke, I. Hasuo & P. Panangaden (Eds.), 11th International Workshop on Quantum Physics and Logic (QPL 2014), Electronic Proceedings in Theoretical Computer Science (Vol. 172, pp. 36–55). Open Publishing Association. https://doi.org/10.4204/eptcs.172.4.

  • Barbosa, R. S., Douce, T., Emeriau, P. E., Kashefi, E., & Mansfield, S. (2022). Continuous-variable nonlocality and contextuality. Communications in Mathematical Physics, 391(3), 1047–1089. https://doi.org/10.1007/s00220-021-04285-7

    Article  Google Scholar 

  • Barrett, J., Linden, N., Massar, S., Pironio, S., Popescu, S., & Roberts, D. (2005). Nonlocal correlations as an information-theoretic resource. Physical Review A, 71, 022101. https://doi.org/10.1103/PhysRevA.71.022101

    Article  Google Scholar 

  • Barrett, J., & Pironio, S. (2005). Popescu-Rohrlich correlations as a unit of nonlocality. Physical Review Letters, 95(14), 140401.

    Article  Google Scholar 

  • Bartels, T. (2010). Relative point of view. https://ncatlab.org/nlab/show/relative+point+of+view. Revision 1.

  • Bell, J. (1964). On the Einstein Podolsky Rosen paradox. Physics Physique Fizika, 1(3), 195–200. https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195

    Article  Google Scholar 

  • Bell, J. S. (1966). On the problem of hidden variables in quantum mechanics. Reviews of Modern Physics, 38(3), 447–452. https://doi.org/10.1103/RevModPhys.38.447

    Article  Google Scholar 

  • Bermejo-Vega, J., Delfosse, N., Browne, D. E., Okay, C., & Raussendorf, R. (2017). Contextuality as a resource for models of quantum computation with qubits. Physical Review Letters, 119(12), 120505.

    Article  Google Scholar 

  • Boole, G. (1862). On the theory of probabilities. Philosophical Transactions of the Royal Society of London, 152, 225–252.

    Article  Google Scholar 

  • Booth, R. I., Chabaud, U., & Emeriau, P. E. (2021). Contextuality and Wigner negativity are equivalent for continuous-variable quantum measurements. ar**v:2111.13218 [quant-ph].

  • Cabello, A., Severini, S., & Winter, A. (2014). Graph-theoretic approach to quantum correlations. Physical Review Letters, 112, 040401. https://doi.org/10.1103/PhysRevLett.112.040401

    Article  Google Scholar 

  • Campos, Á. D. (1944). Poesias de Álvaro de Campos. Obras completas de Fernando Pessoa (Vol. II). Ática, Lisboa.

    Google Scholar 

  • Carù, G. (2017). On the cohomology of contextuality. In: R. Duncan & C. Heunen (Eds.) 13th International Conference on Quantum Physics and Logic (QPL 2016), Electronic Proceedings in Theoretical Computer Science (Vol. 236, pp. 21–39). Open Publishing Association. https://doi.org/10.4204/eptcs.236.2.

  • Carù, G. (2018). Towards a complete cohomology invariant for non-locality and contextuality. ar**v:1807.04203 [quant-ph].

  • Chitambar, E., & Gour, G. (2019). Quantum resource theories. Reviews of Modern Physics, 91(2), 025001.

    Article  Google Scholar 

  • Clauser, J. F., Horne, M. A., Shimony, A., & Holt, R. A. (1969). Proposed experiment to test local hidden-variable theories. Physical Review Letters, 23(15), 880.

    Article  Google Scholar 

  • Coecke, B., Fritz, T., & Spekkens, R. W. (2016). A mathematical theory of resources. Information and Computation, 250, 59–86.

    Article  Google Scholar 

  • Czelakowski, J. (1979). Partial Boolean algebras in a broader sense. Studia Logica, 38(1), 1–16. https://doi.org/10.1007/bf00493669

    Article  Google Scholar 

  • de Silva, N. (2018). Logical paradoxes in quantum computation. In: 33th Annual ACM/IEEE Symposium on Logic in Computer Science (LiCS 2018) (pp. 335–342). IEEE. https://doi.org/10.1145/3209108.32091231.

  • Donne, J. (1624) Devotions upon emergent occasions, and severall steps in my sicknes.

    Google Scholar 

  • Dupuis, F., Gisin, N., Hasidim, A., Méthot, A. A., & Pilpel, H. (2007). No nonlocal box is universal. Journal of Mathematical Physics, 48(8), 082107. https://doi.org/10.1063/1.2767538

    Article  Google Scholar 

  • Dyson, F. (2009). Birds and frogs. Notices of the AMS, 56(2), 212–223.

    Google Scholar 

  • Dzhafarov, E. N., & Kujala, J. V. (2014). Contextuality is about identity of random variables. Physica Scripta, 2014(T163), 014009.

    Article  Google Scholar 

  • Eilenberg, S., & Kelly, G. M. (1966). Closed categories. In Proceedings of the Conference on Categorical Algebra (pp. 421–562). Springer.

    Google Scholar 

  • Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47(10), 777.

    Article  Google Scholar 

  • Emeriau, P. E., Howard, M., & Mansfield, S. (2020). Quantum advantage in information retrieval. ar**v:2007.15643 [quant-ph].

  • Forster, M., & Wolf, S. (2011). Bipartite units of nonlocality. Physical Review A, 84, 042112. https://doi.org/10.1103/PhysRevA.84.042112

    Article  Google Scholar 

  • Fritz, T. (2017). Resource convertibility and ordered commutative monoids. Mathematical Structures in Computer Science, 27(6), 850–938.

    Article  Google Scholar 

  • Ghirardi, G., Rimini, A., & Weber, T. (1980). A general argument against superluminal transmission through the quantum mechanical measurement process. Lettere al Nuovo Cimento Series, 2(1971–1985), 27(10), 293–298. https://doi.org/10.1007/BF02817189.

  • Gilchrist, A., & Gilchrist, A. B. (1863). In Life of William Blake, “Pictor ignotus”, with selections from his poems and other writings (Vol. II). London: Macmillan and Co.

    Google Scholar 

  • Giustina, M., Versteegh, M. A., Wengerowsky, S., Handsteiner, J., Hochrainer, A., Phelan, K., Steinlechner, F., Kofler, J., Larsson, J. Å., Abellán, C., et al. (2015). Significant-loophole-free test of Bell’s theorem with entangled photons. Physical Review Letters, 115(25), 250401.

    Article  Google Scholar 

  • Gogioso, S., & Pinzani, N. (2021). The sheaf-theoretic structure of definite causality. ar**v:2103.13771 [quant-ph].

  • Gogioso, S., & Zeng, W. (2019). Generalised Mermin-type non-locality arguments. Logical Methods in Computer Science, 15(2), 3:1—3:51. https://doi.org/10.23638/LMCS-15(2:3)2019.

  • Grudka, A., Horodecki, K., Horodecki, M., Horodecki, P., Horodecki, R., Joshi, P., Kłobus, W., & Wójcik, A. (2014). Quantifying contextuality. Physical Review Letters, 112(12), 120401.

    Article  Google Scholar 

  • Hardy, L., & Spekkens, R. (2010). Why physics needs quantum foundations. Physics in Canada, 66(2), 73–76.

    Google Scholar 

  • Hensen, B., Bernien, H., Dréau, A.E., Reiserer, A., Kalb, N., Blok, M.S., Ruitenberg, J., Vermeulen, R.F., Schouten, R.N., Abellán, C., et al. (2015). Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature, 526(7575), 682–686.

    Google Scholar 

  • Horodecki, M., Oppenheim, J.: (Quantumness in the context of) resource theories. International Journal of Modern Physics B, 27(01n03), 1345019.

    Google Scholar 

  • Howard, M., Wallman, J., Veitch, V., & Emerson, J. (2014). Contextuality supplies the ‘magic’ for quantum computation. Nature, 510(7505), 351.

    Article  Google Scholar 

  • Johnstone, P.T.: Sketches of an elephant: A topos theory compendium (Vol. 2). Oxford University Press.

    Google Scholar 

  • Jones, N. S., & Masanes, L. (2005). Interconversion of nonlocal correlations. Physical Review A, 72, 052312. https://doi.org/10.1103/PhysRevA.72.052312

    Article  Google Scholar 

  • Karanjai, A., Wallman, J. J., & Bartlett, S. D. (2018). Contextuality bounds the efficiency of classical simulation of quantum processes. ar**v:1802.07744 [quant-ph].

  • Karvonen, M. (2018). Categories of empirical models. In P. Selinger & G. Chiribella (Eds.), 15th international conference on quantum physics and logic (QPL 2018), electronic proceedings in theoretical computer science (Vol. 287, pp. 239–252). https://doi.org/10.4204/EPTCS.287.14.

  • Karvonen, M. (2021). Neither contextuality nor nonlocality admits catalysts. Physical Review Letters, 127(16), 160402. https://doi.org/10.1103/PhysRevLett.127.160402

    Article  Google Scholar 

  • Kirchmair, G., Zähringer, F., Gerritsma, R., Kleinmann, M., Gühne, O., Cabello, A., Blatt, R., & Roos, C. F. (2009). State-independent experimental test of quantum contextuality. Nature, 460(7254), 494–497.

    Article  Google Scholar 

  • Kishida, K. (2014). Stochastic relational presheaves and dynamic logic for contextuality. In: B. Coecke, I. Hasuo & P. Panangaden (Eds.), 11th International Workshop on Quantum Physics and Logic (QPL 2014), Electronic Proceedings in Theoretical Computer Science (Vol. 172, pp. 115–132). Open Publishing Association. https://doi.org/10.4204/eptcs.172.9.

  • Kishida, K. (2016). Logic of local inference for contextuality in quantum physics and beyond. In: I. Chatzigiannakis, M. Mitzenmacher, Y. Rabani & D. Sangiorgi (Eds.), 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016), Leibniz International Proceedings in Informatics (LIPIcs) (Vol. 55, pp. 113:1–113:14). Schloss Dagstuhl–Leibniz-Zentrum für Informatik . https://doi.org/10.4230/LIPIcs.ICALP.2016.113.

  • Kochen, S., & Specker, E. P. (1967). The problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics, 17(1), 59–87.

    Google Scholar 

  • Laplaza, M. L. (1977). Embedding of closed categories into monoidal closed categories. Transactions of the American Mathematical Society, 233, 85. https://doi.org/10.1090/s0002-9947-1977-0480686-8

    Article  Google Scholar 

  • Leggett, A. J., & Garg, A. (1985). Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks? Physical Review Letters, 54(9), 857.

    Article  Google Scholar 

  • Liang, Y. C., Spekkens, R. W., & Wiseman, H. M. (2011). Specker’s parable of the overprotective seer: A road to contextuality, nonlocality and complementarity. Physics Reports, 506(1–2), 1–39.

    Article  Google Scholar 

  • Littlewood, J. E. (1986). In B. Bollobás (Ed.), Littlewood’s miscellany. Cambridge University Press.

    Google Scholar 

  • Mansfield, S. (2017). Consequences and applications of the completeness of Hardy’s nonlocality. Physical Review A, 95(2), 022122. https://doi.org/10.1103/physreva.95.022122

    Article  Google Scholar 

  • Mansfield, S. (2017b). A unified approach to contextuality and violations of macrorealism. In Talk at 1st Workshop on Quantum Contextuality in Quantum Mechanics and Beyond (QCQMB 2017), Prague, Czech Republic.

    Google Scholar 

  • Mansfield, S., & Barbosa, R. S. (2014). Extendability in the sheaf-theoretic approach: Construction of Bell models from Kochen–Specker models. ar**v:1402.4827 [quant-ph].

  • Mansfield, S., & Fritz, T. (2012). Hardy’s non-locality paradox and possibilistic conditions for non-locality. Foundations of Physics, 42(5), 709–719. https://doi.org/10.1007/s10701-012-9640-1

    Article  Google Scholar 

  • Mansfield, S., & Kashefi, E. (2018). Quantum advantage from sequential-transformation contextuality. Physical Review Letters, 121(23), 230401.

    Article  Google Scholar 

  • Manzyuk, O. (2012). Closed categories versus closed multicategories. Theory and Applications of Categories, 26(5), 132–175.

    Google Scholar 

  • Mermin, N. D. (1985). Is the moon there when nobody looks? Reality and the quantum theory. Physics Today, 38(4), 38–47.

    Article  Google Scholar 

  • Pais, A. (1979). Einstein and the quantum theory. Reviews of Modern Physics, 51(4), 863.

    Article  Google Scholar 

  • Pitowsky, I. (1994). George Boole’s “conditions of possible experience’’ and the quantum puzzle. The British Journal for the Philosophy of Science, 45(1), 95–125.

    Article  Google Scholar 

  • Popescu, S., & Rohrlich, D. (1994). Quantum nonlocality as an axiom. Foundations of Physics, 24(3), 379–385.

    Article  Google Scholar 

  • Raussendorf, R. (2013). Contextuality in measurement-based quantum computation. Physical Review A, 88(2), 022322.

    Article  Google Scholar 

  • Rota, G. C. (1997). Ten lessons I wish I had been taught. In Indiscrete thoughts (pp. 195–203). Springer.

    Google Scholar 

  • Schrödinger, E. (1935). Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften, 23(49), 823–828.

    Article  Google Scholar 

  • Shalm, L. K., Meyer-Scott, E., Christensen, B. G., Bierhorst, P., Wayne, M. A., Stevens, M. J., Gerrits, T., Glancy, S., Hamel, D. R., Allman, M. S., et al. (2015). Strong loophole-free test of local realism. Physical Review Letters, 115(25), 250402.

    Article  Google Scholar 

  • Street, R. (1974). Elementary cosmoi I. In Category seminar. Lecture notes in mathematics (Vol. 420, pp. 134–180). Berlin, Heidelberg: Springer. https://doi.org/10.1007/bfb0063103.

  • Wang, D., Sadrzadeh, M., Abramsky, S., & Cervantes, V. H. (2021). On the quantum-like contextuality of ambiguous phrases. ar**v:2107.14589 [cs.CL].

Download references

Acknowledgements

This work was in part carried out while RSB was based at the School of Informatics, University of Edinburgh and while SM was based at the Paris Centre for Quantum Computing, Institut de Recherche en Informatique Fondamentale, University of Paris with financial support from the Bpifrance project RISQ. RSB acknowledges financial support from EPSRC—Engineering and Physical Sciences Research Council, EP/R044759/1, Combining Viewpoints in Quantum Theory (Ext.), and from FCT—Fundação para a Ciência e a Tecnologia, CEECINST/00062/2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Soares Barbosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barbosa, R.S., Karvonen, M., Mansfield, S. (2023). Closing Bell Boxing Black Box Simulations in the Resource Theory of Contextuality. In: Palmigiano, A., Sadrzadeh, M. (eds) Samson Abramsky on Logic and Structure in Computer Science and Beyond. Outstanding Contributions to Logic, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-031-24117-8_13

Download citation

Publish with us

Policies and ethics

Navigation