Damage Detection in Structures by Wavelet Transforms: A Review

  • Conference paper
  • First Online:
Proceedings of the International Conference of Steel and Composite for Engineering Structures (ICSCES 2022)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 317))

Abstract

Wavelet transform is a mathematical technique with many applications in signal processing. Anomaly and faults in signals can be detected using wavelet transform due to their sensitivity to local discontinuity and singularity. One of the most important applications in signal processing through wavelet transform is damage detection in structures. In this paper, a comprehensive literature review is performed on notable works about damage detection in structures by wavelet method to introduce various applications of the wavelet transforms for detecting damages in different structures. Depending on the type of signal acquired from the structures, two types of wavelet analysis can be performed: one-dimensional wavelet transform and two-dimensional wavelet transform. This paper describes one-dimensional wavelet transform analyses to clarify how the wavelet analysis may be helpful for damage detection in structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mofidian, R., Barati, A., Jahanshahi, M., Shahavi, M.H.: Fabrication of novel Agarose–Nickel Bilayer composite for purification of protein nanoparticles in expanded bed adsorption column. Chem. Eng. Res. Des. 159, 291–299 (2020)

    Article  Google Scholar 

  2. Shahavi, M.H., Selakjani, P.P., Abatari, M.N., Antov, P., Savov, V.: Novel biodegradable poly (lactic acid)/wood leachate composites: investigation of antibacterial, mechanical, morphological, and thermal properties. Polymers 14(6), 1227 (2022)

    Article  Google Scholar 

  3. JafariTalookolaei, R.A., Abedi, M., Kargarnovin, M.H., Ahmadian, M.T.: Dynamic analysis of generally laminated composite beam with a delamination based on a higher-order shear deformable theory. J. Compos. Mater. 49(2), 141–162 (2015)

    Article  Google Scholar 

  4. Khalili, M., Razmjou, A., Shafiei, R., Shahavi, M.H., Li, M.C., Orooji, Y.: High durability of food due to the flow cytometry proved antibacterial and antifouling properties of TiO2 decorated nanocomposite films. Food Chem. Toxicol. 168, 113291 (2022)

    Article  Google Scholar 

  5. Jafari-Talookolaei, R.A., Abedi, M.: Analytical solution for the free vibration analysis of delaminated Timoshenko beams. Sci. World J. (2014)

    Google Scholar 

  6. Saadatmorad, M., Siavashi, M., JafariTalookolaei, R.-A., Pashaei, M.H., Khatir, S., Thanh, C.-L.: Genetic and particle swarm optimization algorithms for damage detection of beam-like structures using residual force method. In: Bui, T.Q., Cuong, Le Thanh, Khatir, Samir (eds.) Structural Health Monitoring and Engineering Structures. LNCE, vol. 148, pp. 143–157. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-0945-9_12

    Chapter  Google Scholar 

  7. Wahab, M.A., De Roeck, G.: Damage detection in bridges using modal curvatures: application to a real damage scenario. J. Sound Vib. 226(2), 217–235 (1999)

    Article  Google Scholar 

  8. Saadatmorad, M., JafariTalookolaei, R.A., Pashaei, M.H., Khatir, S.: Damage detection on rectangular laminated composite plates using wavelet based convolutional neural network technique. Compos. Struct. 278, 114656 (2021)

    Article  Google Scholar 

  9. Khatir, S., Tiachacht, S., Le Thanh, C., Ghandourah, E., Mirjalili, S., Wahab, M.A.: An improved artificial neural network using arithmetic optimization algorithm for damage assessment in FGM composite plates. Compos. Struct. 273, 114287 (2021)

    Article  Google Scholar 

  10. Saadatmorad, M., Talookolaei, R.A.J., Pashaei, M.H., Khatir, S., Wahab, M.A.: Pearson correlation and discrete wavelet transform for crack identification in steel beams. Mathematics 10(15), 2689 (2022)

    Article  Google Scholar 

  11. Tiachacht, S., Khatir, S., Le Thanh, C., Rao, R.V., Mirjalili, S., Wahab, M.A.: Inverse problem for dynamic structural health monitoring based on slime mould algorithm. Eng. Comput. 1–24 (2021)

    Google Scholar 

  12. Behtani, A., Bouazzouni, A., Khatir, S., Tiachacht, S., Zhou, Y.L., Abdel Wahab, M.: Damage localization and quantification of composite beam structures using residual force and optimization. J. Vibroeng. 19(7), 4977–4988 (2017)

    Article  Google Scholar 

  13. Khatir, S., Wahab, M.A., Benaissa, B., Köppen, M.: Crack identification using eXtended IsoGeometric analysis and particle swarm optimization. In: Abdel Wahab, M. (ed.) FFW 2018. LNME, pp. 210–222. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-0411-8_21

    Chapter  Google Scholar 

  14. Kang, F., Li, J.J., Xu, Q.: Damage detection based on improved particle swarm optimization using vibration data. Appl. Soft Comput. 12(8), 2329–2335 (2012)

    Article  Google Scholar 

  15. Wei, Z., Liu, J., Lu, Z.: Structural damage detection using improved particle swarm optimization. Inverse Probl. Sci. Eng. 26(6), 792–810 (2018)

    Article  MATH  Google Scholar 

  16. DinhCong, D., VoDuy, T., HoHuu, V., Nguyen-Thoi, T.: Damage assessment in plate-like structures using a two-stage method based on modal strain energy change and Jaya algorithm. Inverse Probl. Sci. Eng. 27(2), 166–189 (2019)

    Article  Google Scholar 

  17. Gomes, G.F., da Cunha, S.S., Ancelotti, A.C.: A sunflower optimization (SFO) algorithm applied to damage identification on laminated composite plates. Eng. Comput. 35(2), 619–626 (2018). https://doi.org/10.1007/s00366-018-0620-8

    Article  Google Scholar 

  18. Mishra, M., Barman, S.K., Maity, D., Maiti, D.K.: Ant lion optimisation algorithm for structural damage detection using vibration data. J. Civ. Struct. Heal. Monit. 9(1), 117–136 (2019)

    Article  Google Scholar 

  19. Maity, D., Tripathy, R.R.: Damage assessment of structures from changes in natural frequencies using genetic algorithm. Struct. Eng. Mech. 19(1), 21–42 (2005)

    Article  Google Scholar 

  20. Alexandrino, P.D.S.L., Gomes, G.F., Cunha Jr., S.S.: A robust optimization for damage detection using multiobjective genetic algorithm, neural network and fuzzy decision making. Inverse Probl. Sci. Eng. 1–26 (2019)

    Google Scholar 

  21. Barman, S.K., Maiti, D.K., Maity, D.: Damage detection of truss employing swarm-based optimization techniques: a comparison. In: Venkata Rao, R., Taler, J. (eds.) AEOTIT 2018. AISC, vol. 949, pp. 21–37. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-8196-6_3

    Chapter  Google Scholar 

  22. Gerist, S., Maheri, M.R.: Structural damage detection using imperialist competitive algorithm and damage function. Appl. Soft Comput. 77, 1–23 (2019)

    Article  Google Scholar 

  23. Kim, N.I., Kim, S., Lee, J.: Vibration-based damage detection of planar and space trusses using differential evolution algorithm. Appl. Acoust. 148, 308–321 (2019)

    Article  Google Scholar 

  24. Bakhary, N., Hao, H., Deeks, A.J.: Damage detection using artificial neural network with consideration of uncertainties. Eng. Struct. 29(11), 2806–2815 (2007)

    Article  Google Scholar 

  25. Mehrjoo, M., Khaji, N., Moharrami, H., Bahreininejad, A.: Damage detection of truss bridge joints using artificial neural networks. Expert Syst. Appl. 35(3), 1122–1131 (2008)

    Article  Google Scholar 

  26. Rosales, M.B., Filipich, C.P., Buezas, F.S.: Crack detection in beam-like structures. Eng. Struct. 31(10), 2257–2264 (2009)

    Article  Google Scholar 

  27. Saadatmorad, M., JafariTalookolaei, R.-A., Pashaei, M.-H., Khatir, S., Abdel Wahab, M.: Adaptive network-based fuzzy inference for damage detection in rectangular laminated composite plates using vibrational data. In: Abdel Wahab, M. (ed.) SDMA 2021. LNCE, vol. 204, pp. 179–196. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-7216-3_14

    Chapter  Google Scholar 

  28. Saadatmorad, M., JafariTalookolaei, R.-A., Pashaei, M.-H., Khatir, S., Abdel Wahab, M.: Application of multilayer perceptron neural network for damage detection in rectangular laminated composite plates based on vibrational analysis. In: Abdel Wahab, M. (ed.) SDMA 2021. LNCE, vol. 204, pp. 163–178. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-7216-3_13

    Chapter  Google Scholar 

  29. Staszewski, W.J.: Intelligent signal processing for damage detection in composite materials. Compos. Sci. Technol. 62(7–8), 941–950 (2002)

    Article  Google Scholar 

  30. Kim, H., Melhem, H.: Damage detection of structures by wavelet analysis. Eng. Struct. 26(3), 347–362 (2004)

    Article  Google Scholar 

  31. Hou, Z., Noori, M., Amand, R.S.: Wavelet-based approach for structural damage detection. J. Eng. Mech. 126(7), 677–683 (2000)

    Google Scholar 

  32. Yang, C., Oyadiji, S.O.: Delamination detection in composite laminate plates using 2D wavelet analysis of modal frequency surface. Comput. Struct. 179, 109–126 (2017)

    Article  Google Scholar 

  33. Cao, M., Qiao, P.: Damage detection of laminated composite beams with progressive wavelet transforms. In: Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2008, vol. 6934, p. 693402. International Society for Optics and Photonics, March 2008

    Google Scholar 

  34. Sohn, H., Park, G., Wait, J.R., Limback, N.P., Farrar, C.R.: Wavelet-based active sensing for delamination detection in composite structures. Smart Mater. Struct. 13(1), 153 (2003)

    Article  Google Scholar 

  35. Mitra, M., Gopalakrishnan, S.: Wavelet based spectral finite element modelling and detection of de-lamination in composite beams. Proc. Roy. Soc. A Math. Phys. Eng. Sci. 462(2070), 1721–1740 (2006)

    MATH  Google Scholar 

  36. Rucka, M., Wilde, K.: Application of continuous wavelet transform in vibration based damage detection method for beams and plates. J. Sound Vib. 297(3–5), 536–550 (2006)

    Article  Google Scholar 

  37. Janeliukstis, R., Rucevskis, S., Wesolowski, M., Chate, A.: Experimental structural damage localization in beam structure using spatial continuous wavelet transform and mode shape curvature methods. Measurement 102, 253–270 (2017)

    Article  Google Scholar 

  38. Montanari, L., Spagnoli, A., Basu, B., Broderick, B.: On the effect of spatial sampling in damage detection of cracked beams by continuous wavelet transform. J. Sound Vib. 345, 233–249 (2015)

    Article  Google Scholar 

  39. Rucka, M.: Damage detection in beams using wavelet transform on higher vibration modes. J. Theor. Appl. Mech. 49(2), 399–417 (2011)

    Google Scholar 

  40. Puchala, D., Stokfiszewski, K.: Highly effective GPU realization of discrete wavelet transform for big-data problems. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2021. LNCS, vol. 12742, pp. 213–227. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77961-0_19

    Chapter  Google Scholar 

  41. Yang, J.M., Hwang, C.N., Yang, B.L.: Crack identification in beams and plates by discrete wavelet transform method. Chuan Bo Li Xue/J. Ship Mech. 12(3), 464–472 (2008)

    Google Scholar 

  42. Guminiak, M., Knitter-PiÄ…tkowska, A.: Selected problems of damage detection in internally supported plates using one-dimensional Discrete Wavelet Transform. J. Theor. Appl. Mech. 56 (2018)

    Google Scholar 

Download references

Acknowledgement

The first three authors acknowledge the funding support of Babol Noshirvani University of Technology through Grant program No. BNUT/965919012/99.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaser Rostamian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Larijani, Y.F., Rostamian, Y., Khatir, S. (2023). Damage Detection in Structures by Wavelet Transforms: A Review. In: Capozucca, R., Khatir, S., Milani, G. (eds) Proceedings of the International Conference of Steel and Composite for Engineering Structures. ICSCES 2022. Lecture Notes in Civil Engineering, vol 317. Springer, Cham. https://doi.org/10.1007/978-3-031-24041-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24041-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24040-9

  • Online ISBN: 978-3-031-24041-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation