Bioactive Ceramics for Pediatric Dentistry

  • Chapter
  • First Online:
Contemporary Endodontics for Children and Adolescents

Abstract

Calcium cements, which set with water, have become the standard of care in vital pulp therapy for primary teeth. These dental materials are often denoted as bioactive bioceramics. These materials are suitable for pediatric indications from pulp cap** to apexification and are composed of calcium silicate and calcium aluminate cement compounds. Because the materials have multiple ceramic phases (compounds), non-scientific names have been used for the products including mineral trioxide aggregate (MTA), bioactive bioceramics, and biosilicate. Herein, we use the term bioactive ceramics for these special calcium-based cements that form hydroxyapatite on their surface in vivo, denoted as bioactivity. Many products are available containing the hydrophilic (water-setting) calcium silicate/aluminate cements. This chapter describes the cement compounds, their setting reactions, and the current dental products of this kind, including comments on products’ formats, packaging, setting, handling, and other product characteristics. The resin-free, bioactive calcium silicate/aluminate cements have high biocompatibility, limited antimicrobial characteristics, and broad, superior clinical and histological benefits. Over the past 25 years, these bioactive cement products have improved enormously in clinical convenience, and the prices have diminished to supplant alternatives in pediatric dentistry. The bioactive ceramic cement products continue to evolve to meet clinical needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhao X. Introduction to bioactive materials in medicine. In: Bioactive materials in medicine. Sawston: Woodhead; 2011. p. 1–13.

    Google Scholar 

  2. Niu LN, Zhang W, Pashley DH, Breschi L, Mao J, Chen JH, et al. Biomimetic remineralization of dentin. Dent Mater. 2014;30(1):77–96.

    Article  PubMed  Google Scholar 

  3. Bozeman TB, Lemon RR, Eleazer PD. Elemental analysis of crystal precipitate from gray and white MTA. J Endod. 2006;32(5):425–8.

    Article  PubMed  Google Scholar 

  4. Ricucci D, Grande NM, Plotino G, Tay FR. Histologic response of human pulp and periapical tissues to tricalcium silicate-based materials: a series of successfully treated cases. J Endod. 2020;46(2):307–17.

    Article  PubMed  Google Scholar 

  5. Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219–29.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Choudhury H, Pandey M, Lim YQ, Low CY, Lee CT, Marilyn TCL, et al. Silver nanoparticles: advanced and promising technology in diabetic wound therapy. Mater Sci Eng C Mater Biol Appl. 2020;112(110925):1–16.

    Google Scholar 

  7. Hench LL. Chronology of bioactive glass development and clinical applications. New J Glass Ceramics. 2013;03(02):67–73.

    Article  Google Scholar 

  8. Jones JR. Reprint of: review of bioactive glass: from Hench to hybrids. Acta Biomater. 2015;23(Suppl):S53–82.

    Article  PubMed  Google Scholar 

  9. Diba M, Tapia F, Boccaccini AR, Strobel LA. Magnesium-containing bioactive glasses for biomedical applications. Int J Appl Glas Sci. 2012;3(3):221–53.

    Article  Google Scholar 

  10. Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, et al. Bioactive glass in tissue engineering. Acta Biomater. 2011;7(6):2355–73.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Washio A, Morotomi T, Yoshii S, Kitamura C. Bioactive glass-based endodontic sealer as a promising root canal filling material without semisolid core materials. Materials (Basel). 2019;12(23):1–17.

    Article  Google Scholar 

  12. Fu Q, Rahaman MN, Fu H, Liu X. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. J Biomed Mater Res A. 2010;95(1):164–71.

    Article  PubMed  Google Scholar 

  13. Polini A, Bai H, Tomsia AP. Dental applications of nanostructured bioactive glass and its composites. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5(4):399–410.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gluskin AH, Lai G, Peters CI, Peters OA. The double-edged sword of calcium hydroxide in endodontics: precautions and preventive strategies for extrusion injuries into neurovascular anatomy. J Am Dent Assoc. 2020;151(5):317–26.

    Article  PubMed  Google Scholar 

  15. Arandi NZ. Calcium hydroxide liners: a literature review. Clin Cosmet Investig Dent. 2017;9:67–72.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fuks AB. Current concepts in vital primary pulp therapy. Eur J Paediatr Dent. 2002;3(3):115–20.

    PubMed  Google Scholar 

  17. Hilton TJ, Ferracane JL, Mancl L. Northwest practice-based research collaborative in evidence-based D. comparison of CaOH with MTA for direct pulp cap**: a PBRN randomized clinical trial. J Dent Res. 2013;92(7 Suppl):16S–22S.

    Article  PubMed  Google Scholar 

  18. Xu HH, Wang P, Wang L, Bao C, Chen Q, Weir MD, et al. Calcium phosphate cements for bone engineering and their biological properties. Bone Res. 2017;5:17056.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mestres G, Aguilera FS, Manzanares N, Sauro S, Osorio R, Toledano M, et al. Magnesium phosphate cements for endodontic applications with improved long-term sealing ability. Int Endod J. 2014;47(2):127–39.

    Article  PubMed  Google Scholar 

  20. Accorinte Mde L, Holland R, Reis A, Bortoluzzi MC, Murata SS, Dezan E Jr, et al. Evaluation of mineral trioxide aggregate and calcium hydroxide cement as pulp-cap** agents in human teeth. J Endod. 2008;34(1):1–6.

    Article  PubMed  Google Scholar 

  21. Leye Benoist F, Gaye Ndiaye F, Kane AW, Benoist HM, Farge P. Evaluation of mineral trioxide aggregate (MTA) versus calcium hydroxide cement (Dycal((R))) in the formation of a dentine bridge: a randomised controlled trial. Int Dent J. 2012;62(1):33–9.

    Article  PubMed  Google Scholar 

  22. Witte DR. The filling of a root canal with Portland cement. J Cent Assoc Ger Dent. 1878;18:153–4.

    Google Scholar 

  23. Torabinejad M, Hong CU, Lee SJ, Monsef M, Pitt Ford TR. Investigation of mineral trioxide aggregate for root-end filling in dogs. J Endod. 1995;21(12):603–8.

    Article  PubMed  Google Scholar 

  24. Ford TR, Torabinejad M, McKendry DJ, Hong CU, Kariyawasam SP. Use of mineral trioxide aggregate for repair of furcal perforations. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1995;79(6):756–63.

    Article  PubMed  Google Scholar 

  25. Torabinejad M, Watson TF, Pitt Ford TR. Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J Endod. 1993;19(12):591–5.

    Article  PubMed  Google Scholar 

  26. Lee SJ, Monsef M, Torabinejad M. Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations. J Endod. 1993;19(11):541–4.

    Article  PubMed  Google Scholar 

  27. Abukabbos H, Tomar S, Guelmann M. Cost estimates for bioactive cement pulpotomies and crowns in primary molars. Pediatr Dent. 2018;40(1):51–5.

    PubMed  Google Scholar 

  28. Grech L, Mallia B, Camilleri J. Investigation of the physical properties of tricalcium silicate cement-based root-end filling materials. Dent Mater. 2013;29(2):e20–8.

    Article  PubMed  Google Scholar 

  29. Huang Y, Li X, Mandal P, Wu Y, Liu L, Gui H, et al. The in vitro antimicrobial activities of four endodontic sealers. BMC Oral Health. 2019;19(1):118.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Faria-Junior NB, Tanomaru-Filho M, Berbert FL, Guerreiro-Tanomaru JM. Antibiofilm activity, pH and solubility of endodontic sealers. Int Endod J. 2013;46(8):755–62.

    Article  PubMed  Google Scholar 

  31. van Dijken JW, Sunnegårdh-Grönberg K. A two-year clinical evaluation of a new calcium aluminate cement in class II cavities. Acta Odontol Scand. 2003;61(4):235–40.

    Article  PubMed  Google Scholar 

  32. Jefferies SR, Pameijer CH, Appleby DC, Boston D, Galbraith C, Loof J, et al. Prospective observation of a new bioactive luting cement: 2-year follow-up. J Prosthodont. 2012;21(1):33–41.

    Article  PubMed  Google Scholar 

  33. Hermansson L. Nanostructural chemically bonded Ca-aluminate based bioceramics. In: Pignatello R, editor. Biomaterials—physics and chemistry. London: IntechOpen; 2011. p. 47–74.

    Google Scholar 

  34. Niu LN, Pei DD, Morris M, Jiao K, Huang XQ, Primus CM, et al. Mineralogenic characteristics of osteogenic lineage-committed human dental pulp stem cells following their exposure to a discoloration-free calcium aluminosilicate cement. Dent Mater. 2016;32(10):1235–47.

    Article  PubMed  Google Scholar 

  35. Castro-Raucci LMS, Teixeira LN, Oliveira IR, Raucci-Neto W, Jacobovitz M, Rosa AL, et al. Osteogenic cell response to calcium aluminate-based cement. Int Endod J. 2017;50(8):771–9.

    Article  PubMed  Google Scholar 

  36. Reffitt DM, Ogston N, Jugdaohsingh R, Cheung HF, Evans BA, Thompson RP, et al. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone. 2003;32(2):127–35.

    Article  PubMed  Google Scholar 

  37. Torabinejad M, Hong CU, McDonald F, Pitt Ford TR. Physical and chemical properties of a new root-end filling material. J Endod. 1995;21(7):349–53.

    Article  PubMed  Google Scholar 

  38. Liu WN, Chang J, Zhu YQ, Zhang M. Effect of tricalcium aluminate on the properties of tricalcium silicate-tricalcium aluminate mixtures: setting time, mechanical strength and biocompatibility. Int Endod J. 2011;44(1):41–50.

    Article  PubMed  Google Scholar 

  39. Collepardi M, Monosi S, Moriconi G, Corradi M. Tetracalcium aluminoferrite hydration in the presence of lime and gypsum. Cem Concr Res. 1979;9(4):431–7.

    Article  Google Scholar 

  40. Gandolfi MG, Taddei P, Tinti A, Prati C. Apatite-forming ability (bioactivity) of ProRoot MTA. Int Endod J. 2010;43(10):917–29.

    Article  PubMed  Google Scholar 

  41. Lothenbach B, Pelletier-Chaignat L, Winnefeld F. Stability in the system CaO–Al2O3–H2O. Cem Concr Res. 2012;42(12):1621–34.

    Article  Google Scholar 

  42. Bentz DP. A review of early-age properties of cement-based materials. Cem Concr Res. 2008;38(2):196–204.

    Article  Google Scholar 

  43. Choi Y, Park SJ, Lee SH, Hwang YC, Yu MK, Min KS. Biological effects and washout resistance of a newly developed fast-setting pozzolan cement. J Endod. 2013;39(4):467–72.

    Article  PubMed  Google Scholar 

  44. Bakhtiar H, Nekoofar MH, Aminishakib P, Abedi F, Naghi Moosavi F, Esnaashari E, et al. Human pulp responses to partial pulpotomy treatment with TheraCal as compared with biodentine and ProRoot MTA: a clinical trial. J Endod. 2017;43(11):1786–91.

    Article  PubMed  Google Scholar 

  45. Kayad M, Koura A, El-Nozahy A. A comparative histological study of the effect of TheraCal LC and biodentine on direct pulp cap** in rabbits: an experimental study. Clin Oral Investig. 2022:1.

    Google Scholar 

  46. Menon NP, Varma BR, Janardhanan S, Kumaran P, Xavier AM, Govinda BS. Clinical and radiographic comparison of indirect pulp treatment using light-cured calcium silicate and mineral trioxide aggregate in primary molars: a randomized clinical trial. Contemp Clin Dent. 2016;7(4):475–80.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rodriguez-Lozano FJ, Lopez-Garcia S, Garcia-Bernal D, Sanz JL, Lozano A, Pecci-Lloret MP, et al. Cytocompatibility and bioactive properties of the new dual-curing resin-modified calcium silicate-based material for vital pulp therapy. Clin Oral Investig. 2021;25(8):5009–24.

    Article  PubMed  Google Scholar 

  48. Gandolfi MG, Van Landuyt K, Taddei P, Modena E, Van Meerbeek B, Prati C. Environmental scanning electron microscopy connected with energy dispersive x-ray analysis and Raman techniques to study ProRoot mineral trioxide aggregate and calcium silicate cements in wet conditions and in real time. J Endod. 2010;36(5):851–7.

    Article  PubMed  Google Scholar 

  49. Gandolfi MG, Siboni F, Prati C. Chemical-physical properties of TheraCal, a novel light-curable MTA-like material for pulp cap**. Int Endod J. 2012;45(6):571–9.

    Article  PubMed  Google Scholar 

  50. Hutcheson C, Seale NS, McWhorter A, Kerins C, Wright J. Multi-surface composite vs stainless steel crown restorations after mineral trioxide aggregate pulpotomy: a randomized controlled trial. Pediatr Dent. 2012;34(7):460–7.

    PubMed  Google Scholar 

  51. Camilleri J, Borg J, Damidot D, Salvadori E, Pilecki P, Zaslansky P, et al. Colour and chemical stability of bismuth oxide in dental materials with solutions used in routine clinical practice. PLoS One. 2020;15(11):e0240634.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Butt N, Talwar S, Chaudhry S, Nawal RR, Yadav S, Bali A. Comparison of physical and mechanical properties of mineral trioxide aggregate and biodentine. Indian J Dent Res. 2014;25(6):692–7.

    Article  PubMed  Google Scholar 

  53. Reyhani MF, Ghasemi N, Zand V, Mosavizadeh S. Effects of different powder to liquid ratios on the push out bond strength of CEM cement on simulated perforations in the furcal area. J Clin Exp Dent. 2017;9(6):e785–e8.

    PubMed  PubMed Central  Google Scholar 

  54. Formosa LM, Mallia B, Camilleri J. A quantitative method for determining the antiwashout characteristics of cement-based dental materials including mineral trioxide aggregate. Int Endod J. 2013;46(2):179–86.

    Article  PubMed  Google Scholar 

  55. Sun Q, Gustin JW, Tian FC, Sidow SJ, Bergeron BE, Ma JZ, et al. Effects of pre-mixed hydraulic calcium silicate putties on osteogenic differentiation of human dental pulp stem cells in vitro. J Dent. 2021;108:103653.

    Article  PubMed  Google Scholar 

  56. Quintana RM, Jardine AP, Grechi TR, Grazziotin-Soares R, Ardenghi DM, Scarparo RK, et al. Bone tissue reaction, setting time, solubility, and pH of root repair materials. Clin Oral Investig. 2019;23(3):1359–66.

    Article  PubMed  Google Scholar 

  57. De Souza ET, Nunes Tameirao MD, Roter JM, De Assis JT, De Almeida NA, De-Deus GA. Tridimensional quantitative porosity characterization of three set calcium silicate-based repair cements for endodontic use. Microsc Res Tech. 2013;76(10):1093–8.

    Article  PubMed  Google Scholar 

  58. Gandolfi MG, Siboni F, Primus CM, Prati C. Ion release, porosity, solubility, and bioactivity of MTA plus tricalcium silicate. J Endod. 2014;40(10):1632–7.

    Article  PubMed  Google Scholar 

  59. Kim RJ, Kim MO, Lee KS, Lee DY, Shin JH. An in vitro evaluation of the antibacterial properties of three mineral trioxide aggregate (MTA) against five oral bacteria. Arch Oral Biol. 2015;60(10):1497–502.

    Article  PubMed  Google Scholar 

  60. Al-Nazhan S, Al-Judai A. Evaluation of antifungal activity of mineral trioxide aggregate. J Endod. 2003;29(12):826–7.

    Article  PubMed  Google Scholar 

  61. Bortoluzzi EA, Cassel de Araujo T, Carolina Correa Neis A, Cassia Dos Santos M, da Fonseca Roberti Garcia L, Dulcineia Mendes Souza B, et al. Effect of different water-to-powder ratios on the dimensional stability and compressive strength of mineral aggregate-based cements. Eur Oral Res. 2019;53(2):94–8.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Teoh YY, Athanassiadis B, Walsh LJ. Sealing ability of alkaline endodontic cements versus resin cements. Materials (Basel). 2017;10(11):1–7.

    Article  Google Scholar 

  63. Zordan-Bronzel CL, Tanomaru-Filho M, Chávez-Andrade GM, Torres FFE, Abi-Rached GPC, Guerreiro-Tanomaru JM. Calcium silicate-based experimental sealers: physicochemical properties evaluation. Mater Res. 2021;24(1):1–6.

    Article  Google Scholar 

  64. Moinzadeh AT, Jongsma LA, Wesselink PR. Considerations about the use of the "push-out" test in endodontic research. Int Endod J. 2015;48(5):498–500.

    Article  PubMed  Google Scholar 

  65. Hursh KA, Kirkpatrick TC, Cardon JW, Brewster JA, Black SW, Himel VT, et al. Shear bond comparison between 4 bioceramic materials and dual-cure composite resin. J Endod. 2019;45(11):1378–83.

    Article  PubMed  Google Scholar 

  66. Islam I, Chng HK, Yap AU. Comparison of the physical and mechanical properties of MTA and portland cement. J Endod. 2006;32(3):193–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Primus, C. (2023). Bioactive Ceramics for Pediatric Dentistry. In: Fuks, A.B., Moskovitz, M., Tickotsky, N. (eds) Contemporary Endodontics for Children and Adolescents. Springer, Cham. https://doi.org/10.1007/978-3-031-23980-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23980-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23979-3

  • Online ISBN: 978-3-031-23980-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation