NADPH Oxidase-Dependent Processes in the Social Amoeba Dictyostelium discoideum

  • Chapter
  • First Online:
NADPH Oxidases Revisited: From Function to Structure
  • 481 Accesses

Abstract

Dictyostelium discoideum, also known as social amoeba, is at the boundary between unicellular and multicellular life. This protist is a professional phagocyte in its vegetative unicellular stage, feeding on bacterial preys, and it enters a multicellular phase in response to starvation. Dictyostelium and human phagocytic cells share several unique functions and this similarity is supported by a high degree of conservation between their proteomes. Three homologs of the large subunit of NADPH oxidase (NoxA, B, C), a homolog of the small subunit p22phox and a p67phox-like factor have been identified. In this chapter, roles involving Dictyostelium NADPH oxidase activities are described: development and cell differentiation, intraphagosomal bacterial killing and formation of DNA-based extracellular traps by sentinel cells, a subtype of amoebal cells that support ancestral innate immunity.

The exploration of NOX functions and regulation is still ongoing, and their study in alternative models is needed for a comprehensive and integrated view of the contribution of NADPH oxidases to key biological processes. In this context, the amoeba Dictyostelium is a particularly attractive model to enrich our current understanding of this family of enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free ship** worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eichinger L, Pachebat JA, Glöckner G et al (2005) The genome of the social amoeba Dictyostelium discoideum. Nature 435:43–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Adl SM, Simpson AG, Lane CE et al (2012) The revised classification of eukaryotes. J Eukaryot Microbio 59:429–493

    Article  Google Scholar 

  3. Parent CA, Devreotes PN (1996) Molecular genetics of signal transduction in Dictyostelium. Annu Rev Biochem 65:411–440

    Article  CAS  PubMed  Google Scholar 

  4. Aubry L, Firtel R (1999) Integration of signaling networks that regulate Dictyostelium differentiation. Annu Rev Cell Dev Biol 15:469–517

    Article  CAS  PubMed  Google Scholar 

  5. Faix J, Kreppel L, Shaulsky G et al (2004) A rapid and efficient method to generate multiple gene disruptions in Dictyostelium discoideum using a single selectable marker and the Cre-loxP system. Nucleic Acids Res 32:el43

    Article  Google Scholar 

  6. Linkner J, Nordholz B, Junemann A et al (2012) Highly effective removal of floxed Blasticidin S resistance cassettes from Dictyostelium discoideum mutants by extrachromosomal expression of Cre. Eur J Cell Biol 91(2):156–160. https://doi.org/10.1016/j.ejcb.2011.11.001

    Article  CAS  PubMed  Google Scholar 

  7. Muramoto T, Iriki H, Watanabe J et al (2019) Recent advances in CRISPR/Cas9-mediated genome editing in Dictyostelium. Cells 8(1):46. https://doi.org/10.3390/cells8010046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kuspa A, Loomis WF (1992) Tagging developmental genes in Dictyostelium by restriction enzyme-mediated integration of plasmid DNA. Proc Natl Acad Sci USA 89(18):8803–8807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gruenheit N, Baldwin A, Stewart B et al (2021) Mutant resources for functional genomics in Dictyostelium discoideum using REMI-seq technology. BMC Biol 19(1):172. https://doi.org/10.1186/s12915-021-01108-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Annesley SJ, Fisher PR (2009) Dictyostelium discoideum-a model for many reasons. Mol Cell Biochem 329:73–91

    Article  CAS  PubMed  Google Scholar 

  11. Bozzaro S, Eichinger L (2011) The professional phagocyte Dictyostelium discoideum as a model host for bacterial pathogens. Curr Drug Targets 12:942–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xu X, Pan M, ** T (2021) How phagocytes acquired the capability of hunting and removing pathogens from a human body: lessons learned from chemotaxis and phagocytosis of Dictyostelium discoideum. Front Cell Dev Biol 9:724940

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dunn JD, Bosmani C, Barisch C et al (2018) Eat prey, live: Dictyostelium discoideum as a model for cell-autonomous defenses. Front Immunol 8:1906. https://doi.org/10.3389/fimmu.2017.01906. eCollection 2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Storey CL, Williams RSB, Fisher PR et al (2022) Dictyostelium discoideum: a model system for neurological disorders. Cells 11:463. https://doi.org/10.3390/cells1103046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Williams RS, Boeckeler K, Graf R et al (2006) Towards a molecular understanding of human diseases using Dictyostelium discoideum. Trends Mol Med 12:415–424

    Article  CAS  PubMed  Google Scholar 

  16. Clarke M (2010) Recent insights into host-pathogen interactions from Dictyostelium. Cell Microbiol 12:283–291

    Article  CAS  PubMed  Google Scholar 

  17. Morel F, Doussiere J, Vignais PV (1991) The superoxide-generating oxidase of phagocytic cells. Physiological, molecular and pathological aspects. Eur J Biochem 201(3):523–546. https://doi.org/10.1111/j.1432-1033.1991.tb16312.x

    Article  CAS  PubMed  Google Scholar 

  18. Berard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  Google Scholar 

  19. Lardy B, Bof M, Aubry L et al (2003) NADPH oxidase homologs are required for normal cell differentiation and morphogenesis in Dictyostelium discoideum. Biochim Biophys Acta 1744:199–212

    Article  Google Scholar 

  20. Roos D, Kuhns DB, Maddalena A et al (2010) Hematologically important mutations: X-linked chronic granulomatous disease (third update). Blood Cells Mol Dis 45(3):246–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Michelitsch MDM, Weissman JS (2000) A census of glutamine/asparagine-rich regions: Implications for their conserved function and the prediction of novel prions. Proc Natl Acad Sci USA 97(22):11910–11915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sumimoto H (2008) Structure, regulation and evolution of Nox-family NADPH oxidase that produce reactive oxygen species. FEBS J 275:3249–3277

    Article  CAS  PubMed  Google Scholar 

  23. Fañanás EM, Todesca S, Sicorello A et al (2020) On the mechanism of calcium-dependent activation of NADPH oxidase 5 (NOX5). FEBS J 287(12):2486–2503. https://doi.org/10.1111/febs.15160

    Article  CAS  Google Scholar 

  24. Tirone F, Radu L, Craescu CT et al (2010) Identification of the binding site for the regulatory calcium-binding domain in the catalytic domain of NOX5. Biochemistry 49(4):761–771. https://doi.org/10.1021/bi901846y

    Article  CAS  PubMed  Google Scholar 

  25. Kawahara T, Ritsick D, Cheng G et al (2005) Point mutations in the proline-rich region of p22phox are dominant inhibitors of Nox1- and Nox2-dependent reactive oxygen generation. J Biol Chem 280(36):31859–31869. https://doi.org/10.1074/jbc.M501882200

    Article  CAS  PubMed  Google Scholar 

  26. Dahan I, Issaeva I, Gorzalczany Y et al (2002) Map** of functional domains in the p22 phox subunit of flavocytochrome b559 participating in the assembly of the NADPH oxidase complex by “peptide walking”. J Biol Chem 277:8420–8432

    Article  Google Scholar 

  27. Taylor RM, Burritt JB, Baniulis D et al (2004) Site-specific inhibitors of NADPH oxidase activity and structural probes of flavocytochrome b: characterization of six monoclonal antibodies to the p22phox subunit. J Immunol 173(12):7349–7357. https://doi.org/10.4049/jimmunol.173.12.7349

    Article  CAS  PubMed  Google Scholar 

  28. Parkos CA, Dinauer MC, Jesaitis AJ et al (1989) Absence of both the 91kD and 22kD subunits of human neutrophil cytochrome b in two genetic forms of chronic granulomatous disease. Blood 73(6):1416–1420. https://doi.org/10.1182/blood.V73.6.1416.1416

    Article  CAS  PubMed  Google Scholar 

  29. Ambasta RK, Kumar P, Griendling KK et al (2004) Direct interaction of the novel nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase. J Biol Chem 279(44):45935–45941. https://doi.org/10.1074/jbc.M406486200

    Article  CAS  PubMed  Google Scholar 

  30. DeLeo FR, Yu L, Burritt JB et al (1995) Map** sites of interaction of p47-phox and flavocytochrome b with random-sequence peptide phage display libraries. Proc Natl Acad Sci USA 92(15):7110–7114. https://doi.org/10.1073/pnas.92.15.7110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhu Y, Marchal CC, Casbon AJ et al (2006) Deletion mutagenesis of p22phox subunit of flavocytochrome b558: identification of regions critical for gp91phox maturation and NADPH oxidase activity. J Biol Chem 281(41):30336–30346

    Article  CAS  PubMed  Google Scholar 

  32. Vignais PV (2002) The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell Mol Life Sci 59:1428–1459

    Article  CAS  PubMed  Google Scholar 

  33. Bokoch GM, Diebold BA (2002) Current molecular models for NADPH oxidase regulation by Rac GTPase. Blood 100(8):2692–2696. https://doi.org/10.1182/blood-2002-04-1149

    Article  CAS  PubMed  Google Scholar 

  34. Martyn KD, Frederick LM, von Loehneysen K et al (2006) Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cell Signal 18:69–82

    Article  CAS  PubMed  Google Scholar 

  35. Banfi B, Tirone F, Durussel I et al (2004) Mechanism of Ca(2+)-activation of the NADPH oxidase 5 (NOX5). J Biol Chem 279:18583–18591

    Article  CAS  PubMed  Google Scholar 

  36. Vlahou G, Rivero F (2006) Rho GTPase signaling in Dictyostelium discoideum: Insights from the genome. Eur J Cell Biol 85:947–959

    Article  CAS  PubMed  Google Scholar 

  37. Lapouge K, Smith SJ, Walker PA et al (2000) Structure of the TPR domain of p67phox in complex with Rac GTP. Mol Cell 6(4):899–907. https://doi.org/10.1016/s1097-2765(05)00091-2

    Article  CAS  PubMed  Google Scholar 

  38. Katoh-Kurasawa M, Hrovatin K, Hirose S et al (2021) Transcriptional milestones in Dictyostelium development. Genome Res. https://doi.org/10.1101/gr.275496.121

  39. Stajdohar M, Rosengarten RD, Kokosar J et al (2017) dictyExpress: a web-based platform for sequence data management and analytics in Dictyostelium and beyond. BMC Bioinformatics 18(1):291. https://doi.org/10.1186/s12859-017-1706-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nasser W, Santhanam B, Miranda ER et al (2013) Bacterial discrimination by Dictyostelid amoebae reveals the complexity of ancient interspecies interactions. Curr Biol 23(10):862–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kjellin J, Pränting M, Bach F et al (2019) Investigation of the host transcriptional response to intracellular bacterial infection using Dictyostelium discoideum as a host model. BMC Genomics 20:961. https://doi.org/10.1186/s12864-019-6269-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lima WC, Hammel P, Cosson P (2020) A recombinant antibody toolbox for Dictyostelium discoideum. BMC Res Notes 13(1):206. https://doi.org/10.1186/s13104-020-05048-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang X, Soldati T (2013) Detecting, visualizing and quantitating the generation of reactive oxygen species in an amoeba model system. J Vis Exp 81:e50717

    Google Scholar 

  44. Walk A, Callahan J, Srisawangyong P (2013) Lipopolysaccharide enhances bactericidal activity in Dictyostelium discoideum cells. Dev Comp Immunol 35:850–856

    Article  Google Scholar 

  45. Zhang X, Zhuchenko O, Kuspa A et al (2016) Social amoebae trap and kill bacteria by casting DNA nets. Nat Commun 7(10):10938. https://doi.org/10.1038/ncomms10938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nisimoto Y, Jackson HM, Ogawa H et al (2010) Constitutive NADPH-dependent electron transferase activity of the Nox4 dehydrogenase domain. Biochemistry 49(11):2433–2442. https://doi.org/10.1021/bi9022285

    Article  CAS  PubMed  Google Scholar 

  47. Loomis WF (2014) Cell signaling during development of Dictyostelium. Dev Biol 391:1–16. https://doi.org/10.1016/j.ydbio.2014.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huber RJ, O’Day DH (2017) Extracellular matrix dynamics and functions in the social amoeba Dictyostelium: A critical review. Biochem Biophys Acta 1861(1):2971–2980. https://doi.org/10.1016/j.bbagen.2016.09.026

    Article  CAS  Google Scholar 

  49. Bloomfield G, Pears C (2003) Superoxide signalling required for multicellular development of Dictyostelium. J Cell Sci 116:3387–3397

    Article  CAS  PubMed  Google Scholar 

  50. DeLeo FR, Burritt JB, Yu L et al (2000) Processing and maturation of flavocytochrome b558 include incorporation of heme as a prerequisite for heterodimer assembly. J Biol Chem 275(18):13986–13993. https://doi.org/10.1074/jbc.275.18.13986

    Article  CAS  PubMed  Google Scholar 

  51. Aubry L, Mattei S, Blot B et al (2002) Biochemical characterization of two analogues of the apoptosis-linked gene 2 protein in Dictyostelium discoideum and interaction with a physiological partner in mammals, murine Alix. J Biol Chem 277(24):21947–21954

    Article  CAS  PubMed  Google Scholar 

  52. Ohkouchi S, Nishio K, Maeda M et al (2001) Identification and characterization of two penta-EF-hand Ca(2+)-binding proteins in Dictyostelium discoideum. J Biochem 130(2):207–215

    Article  CAS  PubMed  Google Scholar 

  53. Vito P, Lacanà E, D’Adamio L (1996) Interfering with apoptosis: Ca(2+)-binding protein ALG-2 and Alzheimer’s disease gene ALG-3. Science 271(5248):521–525. https://doi.org/10.1126/science.271.5248.521

    Article  CAS  PubMed  Google Scholar 

  54. Maki M, Takahara T, Shibata H (2016) Multifaceted roles of ALG-2 in Ca2+-regulated membrane trafficking. Int J Mol Sci 17(9):1401. https://doi.org/10.3390/ijms17091401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cubitt AB, Firtel RA, Fischer G et al (1995) Patterns of free calcium in intracellular stages of Dictyostelium expressing jellyfish aquaporin. Development 121:2291–2301. https://doi.org/10.1242/dev.121.8.2291

    Article  CAS  PubMed  Google Scholar 

  56. Kubohara Y, Arai A, Gokan N, Hosaka K (2007) Pharmacological evidence that stalk cell differentiation involves increases in the intracellular Ca(2+) and H(+) concentrations in Dictyostelium discoideum. Dev Growth Differ 49:253–264. https://doi.org/10.1111/j.1440-169X.2007.00920.x

    Article  CAS  PubMed  Google Scholar 

  57. Verkerke-van Wijk I, Brandt R, Bosman L et al (1998) Two distinct signaling pathways mediate DIF induction of prestalk gene expression in Dictyostelium. Exp Cell Res 245(1):179–185. https://doi.org/10.1006/excr.1998.4248

    Article  CAS  PubMed  Google Scholar 

  58. Berthier S, Paclet MH, Lerouge S et al (2003) Changing the conformation state of cytochrome b558 initiates NADPH oxidase activation: MRP8/MRP14 regulation. J Biol Chem 278(28):25499–25508. https://doi.org/10.1074/jbc.M209755200

    Article  CAS  PubMed  Google Scholar 

  59. Smith D, Lloyd L, Wei E et al (2022) Calmodulin binding to the dehydrogenase domain of NADPH oxidase 5 alters its oligomeric state. Biochem Biophys Rep 29:101198. https://doi.org/10.1016/j.bbrep.2021.101198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zimmerman MC, Takapoo M, Jagadeesha DK et al (2011) Activation of NADPH oxidase 1 increases intracellular calcium and migration of smooth muscle cells. Hypertension 58:446–453

    Article  CAS  PubMed  Google Scholar 

  61. Benghezal M, Fauvarque MO, Tournebize R et al (2006) Specific host genes required for killing of Klebsiella bacteria by phagocytes. Cell Micobiol 8(1):139–148

    Article  CAS  Google Scholar 

  62. Jauslin T, Lamrabet O, Crespo-Yanez X et al (2021) How phagocytic cells kill different bacteria: a quantitative analysis using Dictyostelium discoideum. MBio 12:e03169–e03120. https://doi.org/10.1128/mBio03169-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ferling I, Dunn JD, Ferling A et al (2020) Conidial melanin of the human-pathogenic fungus Aspergillus fumigatus disrupts cell autonomous defenses in amoebae. MBio 11(3):e00862–e00820. https://doi.org/10.1128/mBio00862-20

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hilbi H, Weber SS, Ragaz C et al (2007) Environmental predators as models for bacterial pathogenesis. Environ Microbiol 9(3):563–575. https://doi.org/10.1111/j.1462-2920.2007.01238.x

    Article  CAS  PubMed  Google Scholar 

  65. Cosson P, Soldati T (2008) Eat, kill or die: when amoeba meets bacteria. Curr Opin Microbiol 11(3):271–276. https://doi.org/10.1016/j.mib.2008.05.005

    Article  CAS  PubMed  Google Scholar 

  66. Katoh M, Chen G, Roberge E et al (2007) Developmental commitment in Dictyostelium discoideum. Eukaryot Cell 6:2038–2045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Roberge-White E, Katho-Kurasawa M (2011) Plasticity in the development and dedifferentiation of Dictyostelium discoideum. Dev Growth Differ 53:587–596

    Article  CAS  PubMed  Google Scholar 

  68. Chen G, Zhuchenko O, Kuspa A (2007) Immune-like phagocyte activity in the social amoeba. Science 317:678–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Brinkmann V, Reichard U, Goosmann C et al (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535. https://doi.org/10.1126/science.1092385

    Article  CAS  PubMed  Google Scholar 

  70. Li T, Zhang Z, Li X et al (2020) Neutrophil extracellular traps: signaling properties and disease relevance. Mediators Inflamm. https://doi.org/10.1155/2020/9254087

  71. Bianchi M, Hakkim A, Brinkmann V (2009) Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood 114(13):2619–2622. https://doi.org/10.1182/blood-2009-05-221606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fuchs TA, Abed U, Goosmann C et al (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176(2):231–241. https://doi.org/10.1083/jcb.200606027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Stojkov D, Amini P, Oberson K et al (2017) ROS and glutathionylation balance cytoskeletal dynamics in neutrophil extracellular trap formation. J Cell Biol 216(12):4073–4090. https://doi.org/10.1083/jcb.201611168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sakai J, Li J, Subramanian KK et al (2012) Reactive oxygen species-induced actin glutathionylation controls actin dynamics in neutrophils. Immunity 37(6):1037–1049. https://doi.org/10.1016/j.immuni.2012.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Neeli I, Dwivedi N, Khan S et al (2009) Regulation of extracellular chromatin release from neutrophils. J Innate Immun 1:194–201. https://doi.org/10.1159/000206974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Lardy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aubry, L., Lardy, B. (2023). NADPH Oxidase-Dependent Processes in the Social Amoeba Dictyostelium discoideum. In: Pick, E. (eds) NADPH Oxidases Revisited: From Function to Structure. Springer, Cham. https://doi.org/10.1007/978-3-031-23752-2_23

Download citation

Publish with us

Policies and ethics

Navigation