p47phox and NOXO1, the Organizer Subunits of the NADPH Oxidase 2 (Nox2) and NADPH Oxidase 1 (Nox1)

  • Chapter
  • First Online:
NADPH Oxidases Revisited: From Function to Structure

Abstract

The enzyme responsible for superoxide anion production in phagocytes is called the phagocyte NADPH oxidase. It is a multicomponent enzyme system resulting from the assembly upon activation of four cytosolic proteins (p47phox, p67phox, p40phox and Rac1 or Rac2) with two transmembrane proteins (p22phox and gp91phox, which form the cytochrome b558). The gp91phox is the catalytic subunit of the phagocyte NADPH oxidase and was the first NADPH oxidase to be discovered, renamed today as NOX2. Since then, a family of NOX enzymes, comprising NOX1 to NOX5 and the two DUOX, DUOX1 and DUOX2 has been characterized. NOX1 was the first homologue of gp91phox to be identified, and now refers to a multicomponent enzyme complex composed of three cytosolic proteins (NOXO1, a p47phox homologue, NOXA1, a p67phox homologue and Rac1) with two transmembrane proteins (NOX1 and p22phox). NOX1- and NOX2-derived ROS are essential for innate immunity and other physiological functions; however, excessive ROS production can induce tissue injury, contributing to inflammatory diseases. Thus, NOX1 and NOX2 activation must be tightly regulated in time and space in order to limit ROS production. p47phox and NOXO1 play a major role in the regulation and organization of the NOX2 and NOX1 complexes, respectively, through the interactions of specific protein domains and via phosphorylation. This chapter aims to provide new insights on the role of p47phox and NOXO1 in NOX2 and NOX1 regulation and activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 234.33
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 299.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 299.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mantovani A, Cassatella MA, Costantini C et al (2011) Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 11:519–531. https://doi.org/10.1038/nri3024

    Article  CAS  PubMed  Google Scholar 

  2. Nauseef WM, Borregaard N (2014) Neutrophils at work. Nat Immunol 15:602–611. https://doi.org/10.1038/ni.2921

    Article  CAS  PubMed  Google Scholar 

  3. Mócsai A (2013) Diverse novel functions of neutrophils in immunity, inflammation, and beyond. J Exp Med 210:1283–1299. https://doi.org/10.1084/jem.20122220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Roos D, van Bruggen R, Meischl C (2003) Oxidative killing of microbes by neutrophils. Microbes Infect 5:1307–1315. https://doi.org/10.1016/j.micinf.2003.09.009

    Article  CAS  PubMed  Google Scholar 

  5. Nauseef WM (2007) How human neutrophils kill and degrade microbes: an integrated view. Immunol Rev 219:88–102. https://doi.org/10.1111/j.1600-065X.2007.00550.x

    Article  CAS  PubMed  Google Scholar 

  6. El-Benna J, Hurtado-Nedelec M, Marzaioli V et al (2016) Priming of the neutrophil respiratory burst: role in host defense and inflammation. Immunol Rev 273(1):180–193. https://doi.org/10.1111/imr.12447

    Article  CAS  PubMed  Google Scholar 

  7. Baldridge CW, Gerard RW (1932) The extra respiration of phagocytosis. Am J Physiol Legacy Content 103(1):235–236

    Article  Google Scholar 

  8. Iyer GYN, Islam MF, Quastel JH (1961) Biochemical aspects of phagocytosis. Nature 192:535–541

    Article  CAS  Google Scholar 

  9. Babior BM, Kipnes RS, Curnutte JT (1973) Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 52(3):741–744. https://doi.org/10.1172/JCI107236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Babior BM, Curnutte JT, Kipnes BS (1995) Pyridine nucleotide-dependent superoxide production by a cell-free system from human granulocytes. J Clin Invest 56(4):1035–1042. https://doi.org/10.1172/JCI108150

    Article  Google Scholar 

  11. Vignais PV (2002) The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell Mol Life Sci 59:1428–1459. https://doi.org/10.1007/s00018-002-8520-9

    Article  CAS  PubMed  Google Scholar 

  12. Groem** Y, Rittinger K (2005) Activation and assembly of the NADPH oxidase: a structural perspective. Biochem J 386:401–416. https://doi.org/10.1042/BJ20041835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rotrosen D, Yeung CL, Leto TL et al (1992) Cytochrome b558: the flavin-binding component of the phagocyte NADPH oxidase. Science 256(5062):1459–1462. https://doi.org/10.1126/science.1318579

    Article  CAS  PubMed  Google Scholar 

  14. Koshkin V, Pick E (1993) Generation of superoxide by purified and relipidated cytochrome b559 in the absence of cytosolic activators. FEBS Lett 327(1):57–62. https://doi.org/10.1016/0014-5793(93)81039-3

    Article  CAS  PubMed  Google Scholar 

  15. Yu L, Zhen L, Dinauer MC (1997) Biosynthesis of the phagocyte NADPH oxidase cytochrome b558. Role of heme incorporation and heterodimer formation in maturation and stability of gp 91phox and p22phox subunits. J Biol Chem 272(43):27288–27294. https://doi.org/10.1074/jbc.272.43.27288

    Article  CAS  PubMed  Google Scholar 

  16. Leusen JH, Bolscher BG, Hilarius PM et al (1994) 156Pro-->Gln substitution in the light chain of cytochrome b558 of the human NADPH oxidase (p22-phox) leads to defective translocation of the cytosolic proteins p47-phox and p67-phox. J Exp Med 180(6):2329–2334. https://doi.org/10.1084/jem.180.6.2329

    Article  CAS  PubMed  Google Scholar 

  17. Park JW, Benna JE, Scott KE et al (1994) Isolation of a complex of respiratory burst oxidase components from resting neutrophil cytosol. Biochemistry 33(10):2907–2911. https://doi.org/10.1021/bi00176a021

    Article  CAS  PubMed  Google Scholar 

  18. Heyworth PG, Curnutte JT, Nauseef WM et al (1991) Neutrophil nicotinamide adenine dinucleotide phosphate oxidase assembly. Translocation of p47-phox and p67-phox requires interaction between p47-phox and cytochrome b558. J Clin Invest 87:352–356. https://doi.org/10.1172/JCI114993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dang PMC, Cross AR, Babior BM (2001) Assembly of the neutrophil respiratory burst oxidase: a direct interaction between p67phox and cytochrome b558. Proc Natl Acad Sci U S A 98:3001–3005. https://doi.org/10.1073/pnas.061029698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Han CH, Freeman JL, Lee T et al (1998) Regulation of the neutrophil respiratory burst oxidase. Identification of an activation domain in p67 (phox). J Biol Chem 273(27):16663–16668. https://doi.org/10.1074/jbc.273.27.16663

    Article  CAS  PubMed  Google Scholar 

  21. Abo A, Pick E, Hall A et al (1991) Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature 353(6345):668–670. https://doi.org/10.1038/353668a0

    Article  CAS  PubMed  Google Scholar 

  22. Knaus UG, Heyworth PG, Evans T et al (1991) Regulation of phagocyte oxygen radical production by the GTP-binding protein Rac 2. Science 254(5037):1512–1515. https://doi.org/10.1126/science.1660188

    Article  CAS  PubMed  Google Scholar 

  23. Tsunawaki S, Kagara S, Yoshikawa K et al (1996) Involvement of p40phox in activation of phagocyte NADPH oxidase through association of its carboxyl-terminal, but not its amino-terminal, with p67phox. J Exp Med 184(3):893–902. https://doi.org/10.1084/jem.184.3.893

    Article  CAS  PubMed  Google Scholar 

  24. Kuribayashi F, Nunoi H, Wakamatsu K et al (2002) The adaptor protein p40(phox) as a positive regulator of the superoxide-producing phagocyte oxidase. EMBO J 21(23):6312–6320. https://doi.org/10.1093/emboj/cdf642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Roos D, Kuhns DB, Maddalena A et al (2010) Hematologically important mutations: X-linked chronic granulomatous disease (third update). Blood Cells Mol Dis 45(3):246–265. https://doi.org/10.1016/j.bcmd.2010.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Marciano BE, Spalding C, Fitzgerald A et al (2015) Common severe infections in chronic granulomatous disease. Clin Infect Dis 60:1176–1183. https://doi.org/10.1093/cid/ciu1154

    Article  CAS  PubMed  Google Scholar 

  27. Rosen GM, Freeman BA (1984) Detection of superoxide generated by endothelial cells. Proc Natl Acad Sci U S A 81(23):7269–7273. https://doi.org/10.1073/pnas.81.23.7269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Meier B, Radeke HH, Selle S et al (1989) Human fibroblasts release reactive oxygen species in response to interleukin-1 or tumour necrosis factor-alpha. Biochem J 263(2):539–545. https://doi.org/10.1042/bj2630539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Griendling KK, Minieri CA, Ollerenshaw JD et al (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74(6):1141–1148. https://doi.org/10.1161/01.res.74.6.1141

    Article  CAS  PubMed  Google Scholar 

  30. Suh YA, Arnold RS, Lassegue B et al (1999) Cell transformation by the superoxide-generating oxidase Mox1. Nature 401(6748):79–82. https://doi.org/10.1038/43459

    Article  CAS  PubMed  Google Scholar 

  31. Cheng G, Cao Z, Xu X et al (2001) Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5. Gene 269(1–2):131–140. https://doi.org/10.1016/s0378-1119(01)00449-8

    Article  CAS  PubMed  Google Scholar 

  32. Geiszt M, Kopp JB, Várnai P et al (2000) Identification of renox, an NAD(P)H oxidase in kidney. Proc Natl Acad Sci U S A 97(14):8010–8014. https://doi.org/10.1073/pnas.130135897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shiose A, Kuroda J, Tsuruya K et al (2001) A novel superoxide-producing NAD(P)H oxidase in kidney. J Biol Chem 276(2):1417–1423. https://doi.org/10.1074/jbc.M007597200

    Article  CAS  PubMed  Google Scholar 

  34. Yang S, Madyastha P, Bingel S et al (2001) A new superoxide-generating oxidase in murine osteoclasts. J Biol Chem 276(8):5452–5458. https://doi.org/10.1074/jbc.M001004200

    Article  CAS  PubMed  Google Scholar 

  35. Bánfi B, Molnár G, Maturana A et al (2001) A Ca(2+)-activated NADPH oxidase in testis, spleen, and lymph nodes. J Biol Chem 276(40):37594–37601. https://doi.org/10.1074/jbc.M103034200

    Article  PubMed  Google Scholar 

  36. Dupuy C, Ohayon R, Valent A et al (1999) Purification of a novel flavoprotein involved in the thyroid NADPH oxidase. Cloning of the porcine and human cdnas. J Biol Chem 274(52):37265–37269. https://doi.org/10.1074/jbc.274.52.37265

    Article  CAS  PubMed  Google Scholar 

  37. De Deken X, Wang D, Many MC et al (2000) Cloning of two human thyroid cDNAs encoding new members of the NADPH oxidase family. J Biol Chem 275(30):23227–23233. https://doi.org/10.1074/jbc.M000916200

    Article  PubMed  Google Scholar 

  38. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313. https://doi.org/10.1152/physrev.00044.2005

    Article  CAS  PubMed  Google Scholar 

  39. Dang PM, Rolas L, El-Benna J (2020) The dual role of reactive oxygen species-generating nicotinamide adenine dinucleotide phosphate oxidases in gastrointestinal inflammation and therapeutic perspectives. Antioxid Redox Signal 33(5):354–373. https://doi.org/10.1089/ars.2020.8018

    Article  CAS  PubMed  Google Scholar 

  40. Bánfi B, Clark RA, Steger K et al (2003) Two novel proteins activate superoxide generation by the NADPH oxidase NOX1. J Biol Chem 278(6):3510–3513. https://doi.org/10.1074/jbc.C200613200

    Article  CAS  PubMed  Google Scholar 

  41. Geiszt M, Lekstrom K, Witta J et al (2003) Proteins homologous to p47phox and p67phox support superoxide production by NAD(P)H oxidase 1 in colon epithelial cells. J Biol Chem 278(22):20006–20012. https://doi.org/10.1074/jbc.M301289200

    Article  CAS  PubMed  Google Scholar 

  42. Takeya R, Ueno N, Kami K et al (2003) Novel human homologues of p47phox and p67phox participate in activation of superoxide-producing NADPH oxidases. J Biol Chem 278(27):25234–25246. https://doi.org/10.1074/jbc.M212856200

    Article  CAS  PubMed  Google Scholar 

  43. Bromberg Y, Pick E (1984) Unsaturated fatty acids stimulate NADPH-dependent superoxide production by cell-free system derived from macrophages. Cell Immunol 88(1):213–221. https://doi.org/10.1016/0008-8749(84)90066-2

    Article  CAS  PubMed  Google Scholar 

  44. Heyneman RA, Vercauteren RE (1984) Activation of a NADPH oxidase from horse polymorphonuclear leukocytes in a cell-free system. J Leukoc Biol 36(6):751–7569. https://doi.org/10.1002/jlb.36.6.751

    Article  CAS  PubMed  Google Scholar 

  45. Bromberg Y, Pick E (1985) Activation of NADPH-dependent superoxide production in a cell-free system by sodium dodecyl sulfate. J Biol Chem 260(25):13539–13545

    Article  CAS  PubMed  Google Scholar 

  46. Curnutte JT (1985) Activation of human neutrophil nicotinamide adenine dinucleotide phosphate, reduced (triphosphopyridine nucleotide, reduced) oxidase by arachidonic acid in a cell-free system. J Clin Invest 75(5):1740–1743. https://doi.org/10.1172/JCI111885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McPhail LC, Shirley PS, Clayton CC et al (1988) Activation of the respiratory burst enzyme from human neutrophils in a cell-free system. Evidence for a soluble cofactor. J Clin Invest May 75(5):1735–1739. https://doi.org/10.1172/JCI111884

    Article  Google Scholar 

  48. Volpp BD, Nauseef WM, Clark RA (1988) Two cytosolic neutrophil oxidase components absent in autosomal chronic granulomatous disease. Science 242:1295–1297. https://doi.org/10.1126/science.2848318

    Article  CAS  PubMed  Google Scholar 

  49. Pick E, Kroizman T, Abo A (1989) Activation of the superoxide-forming NADPH oxidase of macrophages requires two cytosolic components--one of them is also present in certain nonphagocytic cells. J Immunol 143(12):4180–4107

    Article  CAS  PubMed  Google Scholar 

  50. Segal AW, Heyworth PG, Cockcroft S et al (1985) Stimulated neutrophils from patients with autosomal recessive chronic granulomatous disease fail to phosphorylate a Mr-44 000 protein. Nature 316:547–549. https://doi.org/10.1038/316547a0

    Article  CAS  PubMed  Google Scholar 

  51. Lomax KJ, Leto TL, Nunoi H et al (1989) Recombinant 47-kilodalton cytosol factor restores NADPH oxidase in chronic granulomatous disease. Science 245:409–412. Erratum in: Science 1989, 246 (4933):987. https://doi.org/10.1126/science.2547247

    Article  CAS  PubMed  Google Scholar 

  52. Volpp BD, Nauseef WM, Donelson JE et al (1989) Cloning of the cDNA and functional expression of the 47-kilodalton cytosolic component of human neutrophil respiratory burst oxidase. Proc Natl Acad Sci U S A 86:7195–7199. Erratum in: Proc Natl Acad Sci U S A 86, 9563. https://doi.org/10.1073/pnas.86.18.7195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Leto TL, Garrett MC, Fujii H et al (1991) Characterization of neutrophil NADPH oxidase factors p47-phox and p67-phox from recombinant baculoviruses. J Biol Chem 266:19812–11988

    Article  CAS  PubMed  Google Scholar 

  54. Jouan A, Pilloud-Dagher MC, Fuchs A et al (1993) A generally applicable ELISA for the detection and quantitation of the cytosolic factors of NADPH-oxidase activation in neutrophils. Anal Biochem 214:252–259. https://doi.org/10.1006/abio.1993.1485

    Article  CAS  PubMed  Google Scholar 

  55. Okamura N, Curnutte JT, Roberts RL et al (1988) Relationship of protein phosphorylation to the activation of the respiratory burst in human neutrophils. Defects in the phosphorylation of a group of closely related 48-kDa proteins in two forms of chronic granulomatous disease. J Biol Chem 263(14):6777–67782

    Article  CAS  PubMed  Google Scholar 

  56. Rotrosen D, Leto TL (1990) Phosphorylation of neutrophil 47-kDa cytosolic oxidase factor. Translocation to membrane is associated with distinct phosphorylation events. J Biol Chem 265:19910–19925

    Article  CAS  PubMed  Google Scholar 

  57. El-Benna J, Dang PM, Gougerot-Pocidalo MA et al (2009) p47phox, the phagocyte NADPH oxidase/NOX2 organizer: structure, phosphorylation and implication in diseases. Exp Mol Med 41:217–225. https://doi.org/10.3858/emm.2009.41.4.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Badwey JA, Heyworth PG, Karnovsky ML (1989) Phosphorylation of both 47 and 49kDa proteins accompanies superoxide release by neutrophils. Biochem Biophys Res Commun 158(3):1029–1035. https://doi.org/10.1016/0006-291x(89)92825-8

    Article  CAS  PubMed  Google Scholar 

  59. Heyworth PG, Badwey JA (1990) Continuous phosphorylation of both the 47 and the 49 kDa proteins occurs during superoxide production by neutrophils. Biochim Biophys Acta 1052(2):299–305. https://doi.org/10.1016/0167-4889(90)90225-3

    Article  CAS  PubMed  Google Scholar 

  60. Majumdar S, Kane LH, Rossi MW (1993) Protein kinase C isotypes and signal-transduction in human neutrophils: selective substrate specificity of calcium-dependent beta-PKC and novel calcium-independent nPKC. Biochim Biophys Acta 1176(3):276–286. https://doi.org/10.1016/0167-4889(93)90056-u

    Article  CAS  PubMed  Google Scholar 

  61. Kramer IM, van der Bend RL, Verhoeven AJ et al (1988) The 47-kDa protein involved in the NADPH:O2 oxidoreductase activity of human neutrophils is phosphorylated by cyclic AMP-dependent protein kinase without induction of a respiratory burst. Biochim Biophys Acta 971:189–196. https://doi.org/10.1016/0167-4889(88)90191-7

    Article  CAS  PubMed  Google Scholar 

  62. Dang PM, Fontayne A, Hakim J et al (2001) Protein kinase C zeta phosphorylates a subset of selective sites of the NADPH oxidase component p47phox, and participates in formyl peptide-mediated neutrophil respiratory burst. J Immunol 166:1206–1213. https://doi.org/10.4049/jimmunol.166.2.1206

    Article  CAS  PubMed  Google Scholar 

  63. Fontayne A, Dang PM, Gougerot-Pocidalo MA et al (2002) Phosphorylation of p47phox sites by PKC alpha, beta II, delta, and zeta: effect on binding to p22phox and on NADPH oxidase activation. Biochemistry 41:7743–7750. https://doi.org/10.1021/bi011953s

    Article  CAS  PubMed  Google Scholar 

  64. El Benna J, Faust LP, Babior BM (1994) The phosphorylation of the respiratory burst oxidase component p47phox during neutrophil activation. Phosphorylation of sites recognized by protein kinase C and by proline-directed kinases. J Biol Chem 269:23431–23436

    Article  PubMed  Google Scholar 

  65. Belambri SA, Rolas L, Raad H et al (2018) NADPH oxidase activation in neutrophils: role of the phosphorylation of its subunits. Eur J Clin Investig 48(Suppl 2):e12951. https://doi.org/10.1111/eci.12951

    Article  CAS  Google Scholar 

  66. Wolfson M, McPhail LC, Nasrallah VN et al (1985) Phorbol myristate acetate mediates redistribution of protein kinase C in human neutrophils: potential role in the activation of the respiratory burst enzyme. J Immunol 135(3):2057–2062

    Article  CAS  PubMed  Google Scholar 

  67. Robinson JM, Heyworth PG, Badwey JA (1990) Utility of staurosporine in uncovering differences in the signal transduction pathways for superoxide production in neutrophils. Biochim Biophys Acta 1055(1):55–62. https://doi.org/10.1016/0167-4889(90)90090-z

    Article  CAS  PubMed  Google Scholar 

  68. Faust LP, El Benna J, Babior BM et al (1995) The phosphorylation targets of p47 phox a subunit of the respiratory burst oxidase. Functions of the individual target serines as evaluated by site-directed mutagenesis. J Clin Invest 96:1499–1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cheng N, He R, Tian J et al (2007) A critical role of protein kinase C delta activation loop phosphorylation in formyl-methionyl-leucyl-phenylalanine-induced phosphorylation of p47 (phox) and rapid activation of nicotinamide adenine dinucleotide phosphate oxidase. J Immunol 179(11):7720–7728. https://doi.org/10.4049/jimmunol.179.11.7720

    Article  CAS  PubMed  Google Scholar 

  70. Belambri SA, Hurtado-Nedelec M, Senator A et al (2012) Phosphorylation of p47phox is required for receptor-mediated NADPH oxidase/NOX2 activation in Epstein-Barr virus-transformed human B lymphocytes. Am J Blood Res 2(3):187–193

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Inanami O, Johnson JL, McAdara JK et al (1998) Activation of the leukocyte NADPH oxidase by phorbol ester requires the phosphorylation of p47PHOX on serine 303 or 304. J Biol Chem 273(16):9539–9543. https://doi.org/10.1074/jbc.273.16.9539

    Article  CAS  PubMed  Google Scholar 

  72. Johnson JL, Park JW, Benna JE et al (1998) Activation of p47(PHOX), a cytosolic subunit of the leukocyte NADPH oxidase. Phosphorylation of ser-359 or ser-370 precedes phosphorylation at other sites and is required for activity. J Biol Chem 273(52):35147–35152. https://doi.org/10.1074/jbc.273.52.35147

    Article  CAS  PubMed  Google Scholar 

  73. Cox JA, Jeng AY, Sharkey NA et al (1985) Activation of the human neutrophil nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase by protein kinase C. J Clin Invest 76(5):1932–1938. https://doi.org/10.1172/JCI112190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. McPhail LC, Qualliotine-Mann D, Waite KA (1995) Cell-free activation of neutrophil NADPH oxidase by a phosphatidic acid-regulated protein kinase. Proc Natl Acad Sci U S A 92(17):7931–7935. https://doi.org/10.1073/pnas.92.17.7931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. El Benna J, Park JW, Ruedi JM et al (1995) Cell-free activation of the respiratory burst oxidase by protein kinase C. Blood Cells Mol Dis 21(3):201–206. https://doi.org/10.1006/bcmd.1995.0023

    Article  PubMed  Google Scholar 

  76. Park JW, Hoyal CR, Benna JE et al (1997) Kinase-dependent activation of the leukocyte NADPH oxidase in a cell-free system. Phosphorylation of membranes and p47(PHOX) during oxidase activation. J Biol Chem 272(17):11035–11043. https://doi.org/10.1074/jbc.272.17.11035

    Article  CAS  PubMed  Google Scholar 

  77. Lopes LR, Hoyal CR, Knaus UG et al (1999) Activation of the leukocyte NADPH oxidase by protein kinase C in a partially recombinant cell-free system. J Biol Chem 274(22):15533–15537. https://doi.org/10.1074/jbc.274.22.15533

    Article  CAS  PubMed  Google Scholar 

  78. Hoyal CR, Gutierrez A, Young BM et al (2003) Modulation of p47PHOX activity by site-specific phosphorylation: Akt-dependent activation of the NADPH oxidase. Proc Natl Acad Sci U S A 100(9):5130–5135. https://doi.org/10.1073/pnas.1031526100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. El-Benna J, Dang PM, Gougerot-Pocidalo MA (2008) Priming of the neutrophil NADPH oxidase activation: role of p47phox phosphorylation and NOX2 mobilization to the plasma membrane. Semin Immunopathol 30:279–289. https://doi.org/10.1007/s00281-008-0118-3

    Article  CAS  PubMed  Google Scholar 

  80. Dang PM, Stensballe A, Boussetta T et al (2006) A specific p47phox serine phosphorylated by convergent MAPKs mediates neutrophil NADPH oxidase priming at inflammatory sites. J Clin Invest 116(7):2033–2043. https://doi.org/10.1172/JCI27544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Makni-Maalej K, Boussetta T, Hurtado-Nedelec M et al (2012) The TLR7/8 agonist CL097 primes N-formyl-methionyl-leucyl-phenylalanine-stimulated NADPH oxidase activation in human neutrophils: critical role of p47phox phosphorylation and the proline isomerase Pin 1. J Immunol 189:4657–4665. https://doi.org/10.4049/jimmunol.1201007

    Article  CAS  PubMed  Google Scholar 

  82. Liu M, Bedouhene S, Hurtado-Nedelec M et al (2019) The prolyl isomerase Pin1 controls lipopolysaccharide-induced priming of NADPH oxidase in human neutrophils. Front Immunol 10:2567. https://doi.org/10.3389/fimmu.2019.02567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. DeLeo FR, Renee J, McCormick S et al (1998) Neutrophils exposed to bacterial lipopolysaccharide upregulate NADPH oxidase assembly. J Clin Invest 101(2):455–463. https://doi.org/10.1172/JCI949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ward RA, Nakamura M, McLeish KR (2000) Priming of the neutrophil respiratory burst involves p 38 mitogen-activated protein kinase-dependent exocytosis of flavocytochrome b558-containing granules. J Biol Chem 275(47):36713–33679. https://doi.org/10.1074/jbc.M003017200

    Article  CAS  PubMed  Google Scholar 

  85. Boussetta T, Gougerot-Pocidalo MA, Hayem G et al (2010) The prolyl isomerase Pin1 acts as a novel molecular switch for TNF-alpha-induced priming of the NADPH oxidase in human neutrophils. Blood 116(26):5795–5802. https://doi.org/10.1182/blood-2010-03-273094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Liou YC, Zhou XZ, Lu KP (2011) Prolyl isomerase Pin1 as a molecular switch to determine the fate of phosphoproteins. Trends Biochem Sci 36(10):501–514. https://doi.org/10.1016/j.tibs.2011.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Belambri SA, Marzailoli V, Hurtado-Nedelec M, Pintard C, Liang S, Liu Y, Boussetta T, Gougerot-Pocidalo MA, Ye RD, Dang PM, El Benna J (2022) Impaired p47phox phosphorylation in neutrophils from p67phox-deficient chronic granulomatous disease patients. Blood 139(16):2512–2522. https://doi.org/10.1182/blood.2021011134

    Article  CAS  PubMed  Google Scholar 

  88. Musacchio A, Gibson T, Lehto VP et al (1992) SH3--an abundant protein domain in search of a function. FEBS Lett 307(1):55–61. https://doi.org/10.1016/0014-5793(92)80901-r

    Article  CAS  PubMed  Google Scholar 

  89. Ren R, Mayer BJ, Cicchetti P et al (1993) Identification of a ten-amino acid proline-rich SH3 binding site. Science 259(5098):1157–1161. https://doi.org/10.1126/science.8438166

    Article  CAS  PubMed  Google Scholar 

  90. Sumimoto H, Kage Y, Nunoi H et al (1994) Role of Src homology 3 domains in assembly and activation of the phagocyte NADPH oxidase. Proc Natl Acad Sci U S A 91:5345–5349. https://doi.org/10.1073/pnas.91.12.5345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Leto TL, Adams AG, de Mendez I (1994) Assembly of the phagocyte NADPH oxidase: binding of Src homology 3 domains to proline-rich targets. Proc Natl Acad Sci U S A 91:10650–10654. https://doi.org/10.1073/pnas.91.22.10650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Groem** Y, Lapouge K, Smerdon SJ et al (2003) Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Cell 113:343–355. https://doi.org/10.1016/s0092-8674(03)00314-3

    Article  CAS  PubMed  Google Scholar 

  93. Yuzawa S, Ogura K, Horiuchi M et al (2004) Solution structure of the tandem Src homology 3 domains of p47phox in an autoinhibited form. J Biol Chem 279:29752–29760. https://doi.org/10.1074/jbc.M401457200

    Article  CAS  PubMed  Google Scholar 

  94. Yuzawa S, Suzuki NN, Fujioka Y et al (2004) A molecular mechanism for autoinhibition of the tandem SH3 domains of p47phox, the regulatory subunit of the phagocyte NADPH oxidase. Genes Cells 9:443–456. Erratum in: Genes Cells 2004,9: 609. https://doi.org/10.1111/j.1356-9597.2004.00733.x

    Article  CAS  PubMed  Google Scholar 

  95. Durand D, Cannella D, Dubosclard V et al (2006) Small-angle X-ray scattering reveals an extended organization for the autoinhibitory resting state of the p47 (phox) modular protein. Biochemistry 45(23):7185–7193. https://doi.org/10.1021/bi060274k

    Article  CAS  PubMed  Google Scholar 

  96. Wientjes FB, Panayotou G, Reeves E (1996) Interactions between cytosolic components of the NADPH oxidase: p40phox interacts with both p67phox and p47phox. Biochemist J317(Pt 3):919–924. https://doi.org/10.1042/bj3170919

    Article  Google Scholar 

  97. Clark RA, Volpp BD, Leidal KG et al (1990) Two cytosolic components of the human neutrophil respiratory burst oxidase translocate to the plasma membrane during cell activation. J Clin Invest 85:714–721. https://doi.org/10.1172/JCI114496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. El Benna J, Ruedi JM, Babior BM (1994) Cytosolic guanine nucleotide-binding protein Rac 2 operates in vivo as a component of the neutrophil respiratory burst oxidase. Transfer of Rac2 and the cytosolic oxidase components p47phox and p67phox to the submembranous actin cytoskeleton during oxidase activation. J Biol Chem 269(9):6729–6734

    Article  PubMed  Google Scholar 

  99. de Mendez I, Adams AG, Sokolic RA et al (1996) Multiple SH3 domain interactions regulate NADPH oxidase assembly in whole cells. EMBO J 15(6):1211–1220

    Article  PubMed  PubMed Central  Google Scholar 

  100. DeLeo FR, Nauseef WM, Jesaitis AJ et al (1995) A domain of p47phox that interacts with human neutrophil flavocytochrome b558. J Biol Chem 270(44):26246–26251. https://doi.org/10.1074/jbc.270.44.26246

    Article  CAS  PubMed  Google Scholar 

  101. DeLeo FR, Yu L, Burritt JB et al (1995) Map** sites of interaction of p47-phox and flavocytochrome b with random-sequence peptide phage display libraries. Proc Natl Acad Sci U S A 92(15):7110–7114. https://doi.org/10.1073/pnas.92.15.7110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kanai F, Liu H, Field SJ (2001) The PX domains of p47phox and p40phox bind to lipid products of PI (3)K. Nat Cell Biol 3(7):675–678. https://doi.org/10.1038/35083070

    Article  CAS  PubMed  Google Scholar 

  103. Zhan Y, Virbasius JV, Song X (2002) The p40phox and p47phox PX domains of NADPH oxidase target cell membranes via direct and indirect recruitment by phosphoinositides. J Biol Chem 277:4512–4518. https://doi.org/10.1074/jbc.M109520200

    Article  CAS  PubMed  Google Scholar 

  104. Ago T, Kuribayashi F, Hiroaki H (2003) Phosphorylation of p47phox directs phox homology domain from SH3 domain toward phosphoinositides, leading to phagocyte NADPH oxidase activation. Proc Natl Acad Sci U S A 100:4474–4479. https://doi.org/10.1073/pnas.0735712100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Karathanassis D, Stahelin RV, Bravo J (2002) Binding of the PX domain of p47 (phox) to phosphatidylinositol 3,4-bisphosphate and phosphatidic acid is masked by an intramolecular interaction. EMBO J21:5057–5068. https://doi.org/10.1093/emboj/cdf519

    Article  Google Scholar 

  106. Marcoux J, Man P, Petit-Haertlein I et al (2010) p47phox molecular activation for assembly of the neutrophil NADPH oxidase complex. J Biol Chem 285(37):28980–28990. https://doi.org/10.1074/jbc.M110.139824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Swain SD, Helgerson SL, Davis AR (1997) Analysis of activation-induced conformational changes in p47phox using tryptophan fluorescence spectroscopy. J Biol Chem 272:29502–29509. https://doi.org/10.1074/jbc.272.47.29502

    Article  CAS  PubMed  Google Scholar 

  108. Park JW, Babior BM (1997) Activation of the leukocyte NADPH oxidase subunit p47phox by protein kinase C. A phos- phorylation-dependent change in the conformation of the C-terminal end of p47phox. Biochemistry 36:7474–7480. https://doi.org/10.1021/bi9700936

    Article  CAS  PubMed  Google Scholar 

  109. Park HS, Park JW (1998) Fluorescent labeling of the leukocyte NADPH oxidase subunit p47(phox): evidence for amphiphile-induced conformational changes. Arch Biochem Biophys 360(2):165–172. https://doi.org/10.1006/abbi.1998.0938

    Article  CAS  PubMed  Google Scholar 

  110. Marcoux J, Man P, Castellan M et al (2009) Conformational changes in p47(phox) upon activation highlighted by mass spectrometry coupled to hydrogen/deuterium exchange and limited proteolysis. FEBS Lett 583(4):835–840. https://doi.org/10.1016/j.febslet.2009.01.046

    Article  CAS  PubMed  Google Scholar 

  111. Shiose A, Sumimoto H (2000) Arachidonic acid and phosphorylation synergistically induce a conformational change of p47phox to activate the phagocyte NADPH oxidase. J Biol Chem 275:13793–13801. https://doi.org/10.1074/jbc.275.18.13793

    Article  CAS  PubMed  Google Scholar 

  112. Ago T, Nunoi H, Ito T et al (1999) Mechanism for phosphorylation-induced activation of the phagocyte NADPH oxidase protein p47(phox). Triple replacement of serines 303, 304, and 328 with aspartates disrupts the SH3 domain-mediated intramolecular interaction in p47(phox), thereby activating the oxidase. J Biol Chem 274(47):33644–33653. https://doi.org/10.1074/jbc.274.47.33644

    Article  CAS  PubMed  Google Scholar 

  113. Cheng G, Lambeth JD (2004) NOXO1, regulation of lipid binding, localization, and activation of Nox 1 by the Phox homology (PX) domain. J Biol Chem 279(6):4737–4742. https://doi.org/10.1074/jbc.M305968200

    Article  CAS  PubMed  Google Scholar 

  114. Cheng G, Ritsick D, Lambeth JD (2004) Nox3 regulation by NOXO1, p47phox, and p67phox. J Biol Chem 279(33):34250–34255. https://doi.org/10.1074/jbc.M400660200

    Article  CAS  PubMed  Google Scholar 

  115. Bánfi B, Malgrange B, Knisz J (2004) NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem 279(44):46065–46072. https://doi.org/10.1074/jbc.M403046200

    Article  CAS  PubMed  Google Scholar 

  116. Cheng G, Lambeth JD (2005) Alternative mRNA splice forms of NOXO1: differential tissue expression and regulation of NOX1 and NOX3. Gene 356:118–126. https://doi.org/10.1016/j.gene.2005.03.008

    Article  CAS  PubMed  Google Scholar 

  117. Sato TK, Overduin M, Emr SD (2001) Location, location, location: membrane targeting directed by PX domains. Science 294(5548):1881–1885. https://doi.org/10.1126/science.1065763

    Article  CAS  PubMed  Google Scholar 

  118. Davis NY, McPhail LC, Horita DA (2012) The NOXO1β PX domain preferentially targets PtdIns (4,5)P2 and PtdIns (3,4,5)P3. J Mol Biol 417(5):440–453. https://doi.org/10.1016/j.jmb.2012.01.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Takeya R, Taura M, Yamasaki T (2006) Expression and function of Noxo1gamma, an alternative splicing form of the NADPH oxidase organizer 1. FEBS J 273(16):3663–3677. https://doi.org/10.1111/j.1742-4658.2006.05371.x

    Article  CAS  PubMed  Google Scholar 

  120. Ueyama T, Lekstrom K, Tsujibe S (2007) Subcellular localization and function of alternatively spliced Noxo1 isoforms. Free Radic Biol Med 42(2):180–190. https://doi.org/10.1016/j.freeradbiomed.2006.08.024

    Article  CAS  PubMed  Google Scholar 

  121. Yamamoto A, Kami K, Takeya R (2007) Interaction between the SH3 domains and C-terminal proline-rich region in NADPH oxidase organizer 1 (Noxo1). Biochem Biophys Res Commun 352(2):560–565. https://doi.org/10.1016/j.bbrc.2006.11.060

    Article  CAS  PubMed  Google Scholar 

  122. Dutta S, Rittinger K (2010) Regulation of NOXO1 activity through reversible interactions with p22 and NOXA1. PLoS One 5(5):e10478. https://doi.org/10.1371/journal.pone.0010478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Debbabi M, Kroviarski Y, Bournier O et al (2013) NOXO1 phosphorylation on serine 154 is critical for optimal NADPH oxidase 1 assembly and activation. FASEB J 27(4):1733–1748. https://doi.org/10.1096/fj.12-216432

    Article  CAS  PubMed  Google Scholar 

  124. Yamamoto A, Takeya R, Matsumoto M et al (2013) Phosphorylation of Noxo1 at threonine 341 regulates its interaction with Noxa1 and the superoxide-producing activity of Nox1. FEBS J280(20):5145–5159. https://doi.org/10.1111/febs.12489

    Article  CAS  Google Scholar 

  125. Kiss PJ, Knisz J, Zhang Y et al (2006) Inactivation of NADPH oxidase organizer 1 results in severe imbalance. Curr Biol l16(2):208–213. https://doi.org/10.1016/j.cub.2005.12.025

    Article  CAS  Google Scholar 

  126. Brandes RP, Harenkamp S, Schürmann C et al (2016) The cytosolic NADPH oxidase subunit NoxO1 promotes an endothelial stalk cell phenotype. Arterioscler Thromb Vasc Biol 36(8):1558–1565. https://doi.org/10.1161/ATVBAHA.116.307132

    Article  CAS  PubMed  Google Scholar 

  127. Oshima H, Ishikawa T, Yoshida GJ et al (2014) TNF-α/TNFR1 signaling promotes gastric tumorigenesis through induction of Noxo1 and Gna14 in tumor cells. Oncogene 33(29):3820–3829. https://doi.org/10.1038/onc.2013.356

    Article  CAS  PubMed  Google Scholar 

  128. Juhasz A, Ge Y, Markel S et al (2009) Expression of NADPH oxidase homologues and accessory genes in human cancer cell lines, tumours and adjacent normal tissues. Free Radic Res 43(6):523–532. https://doi.org/10.1080/10715760902918683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kuwano Y, Kawahara T, Yamamoto H et al (2006) Interferon-gamma activates transcription of NADPH oxidase 1 gene and upregulates production of superoxide anion by human large intestinal epithelial cells. Am J Physiol Cell Physiol 290:C433–C443. https://doi.org/10.1152/ajpcell.00135.2005

    Article  CAS  PubMed  Google Scholar 

  130. Kuwano Y, Tominaga K, Kawahara T et al (2008) Tumor necrosis factor alpha activates transcription of the NADPH oxidase organizer 1 (NOXO1) gene and upregulates superoxide production in colon epithelial cells. Free Radic Biol Med 45:1642–1652. https://doi.org/10.1016/j.freeradbiomed.2008.08.033

    Article  CAS  PubMed  Google Scholar 

  131. Makhezer N, Ben Khemis M, Liu D et al (2019) NOX1-derived ROS drive the expression of Lipocalin-2 in colonic epithelial cells in inflammatory conditions. Mucosal Immunol 12:117–131. https://doi.org/10.1038/s41385-018-0086-4

    Article  CAS  PubMed  Google Scholar 

  132. Elatrech I, Marzaioli V, Boukemara H et al (2015) Escherichia coli LF82 differentially regulates ROS production and mucin expression in intestinal epithelial T84 cells: implication of NOX1. Inflamm Bowel Dis 21:1018–1026. https://doi.org/10.1097/MIB.0000000000000365

    Article  PubMed  Google Scholar 

  133. Kamizato M, Nishida K, Masuda K et al (2009) Interleukin 10 inhibits interferon gamma- and tumor necrosis factor alpha-stimulated activation of NADPH oxidase 1 in human colonic epithelial cells and the mouse colon. J Gastroenterol 44:1172–1184. https://doi.org/10.1007/s00535-009-0119-6

    Article  CAS  PubMed  Google Scholar 

  134. Mouzaoui S, Djerdjouri B, Makhezer N et al (2014) Tumor necrosis factor-α-induced colitis increases NADPH oxidase 1 expression, oxidative stress, and neutrophil recruitment in the colon: preventive effect of apocynin. Mediat Inflamm 2014:312484. https://doi.org/10.1155/2014/312484

    Article  CAS  Google Scholar 

  135. Nandi D, Tahiliani P, Kumar A et al (2006) The ubiquitin-proteasome system. J Biosci 31:137–155. https://doi.org/10.1007/BF02705243

    Article  CAS  PubMed  Google Scholar 

  136. Joo JH, Oh H, Kim M et al (2016) NADPH oxidase 1 activity and ROS generation are regulated by Grb2/Cbl-mediated proteasomal degradation of NoxO1 in colon cancer cells. Cancer Res 76(4):855–865. https://doi.org/10.1158/0008-5472.CAN-15-1512

    Article  CAS  PubMed  Google Scholar 

  137. Haq S, Sarodaya N, Karapurkar JK et al (2022) CYLD destabilizes NoxO1 protein by promoting ubiquitination and regulates prostate cancer progression. Cancer Lett 525:146–157. https://doi.org/10.1016/j.canlet.2021.10.032

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Institut National de la Santé et de la Recherche Médicale (INSERM) and Centre National de la Recherche Scientifique (CNRS), Université Paris Diderot, le Labex Inflamex, et l’Association Vaincre la Mucoviscidose (VLM). The authors wish to thank Martine Torres, Ph.D. for her editorial assistance.

Conflict of Interest Statement

Authors declare that they don’t have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamel El-Benna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dang, P.MC., El-Benna, J. (2023). p47phox and NOXO1, the Organizer Subunits of the NADPH Oxidase 2 (Nox2) and NADPH Oxidase 1 (Nox1). In: Pick, E. (eds) NADPH Oxidases Revisited: From Function to Structure. Springer, Cham. https://doi.org/10.1007/978-3-031-23752-2_15

Download citation

Publish with us

Policies and ethics

Navigation