DUOX1 and DUOX2, DUOXA1 and DUOXA2

  • Chapter
  • First Online:
NADPH Oxidases Revisited: From Function to Structure

Abstract

DUOX1 and DUOX2 constitute a subgroup of long (~1500 amino acids) seven transmembrane domain NADPH oxidases. In addition to the catalytic core common to NOX1–5, comprising NADPH- and FAD-binding sites, heme arrangement for electron transfer from NADPH across the membrane to O2, they possess a N-terminal extracellular peroxidase homologous domain followed by an intracellular loop with two Ca++ EF-hand binding sites. They produce H2O2 extracellularly when correctly processed with their DUOXA at the plasma membrane of the cell. DUOX1 and 2 were initially isolated from the thyroid. DUOX/DUOXA complexes produce H2O2 required as co-substrate for the thyroperoxidase involved in thyroid hormone synthesis. DUOX2 and to a lesser extent DUOXA2 genes are frequently mutated and non-functional variants are frequently associated with congenital hypothyroidism, but with variable penetrance and hypothyroid phenotypes ranging from transient to permanent hypothyroidism and partial to total iodide organification defect. DUOX1 and 2 are also expressed on epithelial surfaces of the airways, salivary gland ducts and DUOX2 along the gastrointestinal digestive tract. Associated with lactoperoxidase, they constitute an efficient host defense mechanism against bacterial and viral infections. In the gut, DUOX2 is robustly induced to neutralize microbial proliferation and to maintain immune homeostasis. Deleterious variants of DUOX2 associated with congenital hypothyroidism could therefore increase the susceptibility to develop inflammatory bowel disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 234.33
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 299.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 299.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rousset B, Dupuy C, Miot F, Dumont JE (2015) Thyroid hormone synthesis and secretion. In: Feingold K, Anawalt B, Boyce A (eds) Thyroid disease manager, updated 20. MDText.com, Inc., South Dartmouth, pp 1–66

    Google Scholar 

  2. Dumont JE (1971) The action of thyrotropin on thyroid metabolism. Vitam Horm 29:287–412. https://doi.org/10.1016/S0083-6729(08)60051-5

    Article  CAS  PubMed  Google Scholar 

  3. Massart C, Hoste C, Virion A et al (2011) Cell biology of H2O2 generation in the thyroid: investigation of the control of dual oxidases (DUOX) activity in intact ex vivo thyroid tissue and cell lines. Mol Cell Endocrinol 343:32–44. https://doi.org/10.1016/j.mce.2011.05.047

    Article  CAS  PubMed  Google Scholar 

  4. Björkman ER (1992) Hydrogen peroxide generation and its regulation in frtl-5 and porcine thyroid cells. Endocrinology 130:393–399. https://doi.org/10.1210/endo.130.1.1309340

    Article  PubMed  Google Scholar 

  5. Björkman U, Ekholm R (1984) Generation of H2O2 in isolated porcine thyroid follicles. Endocrinology 115:392–398. https://doi.org/10.1210/endo-115-1-392

    Article  PubMed  Google Scholar 

  6. Virion A, Michot JL, Dème D et al (1984) NADPH-dependent H2O2 generation and peroxidase activity in thyroid particular fraction. Mol Cell Endocrinol 36:95–105. https://doi.org/10.1016/0303-7207(84)90088-1

    Article  CAS  PubMed  Google Scholar 

  7. Dème D, Virion A, Hammou NA, Pommier J (1985) NADPH-dependent generation of H 2 O 2 in a thyroid particulate fraction requires Ca 2+. FEBS Lett 186:107–110. https://doi.org/10.1016/0014-5793(85)81349-1

    Article  PubMed  Google Scholar 

  8. Nakamura Y, Ogihara S, Ohtaki S (1987) Activation by ATP of calcium-dependent NADPH-oxidase generating hydrogen peroxide in thyroid plasma membranes. J Biochem 102:1121–1132. https://doi.org/10.1093/oxfordjournals.jbchem.a122150

    Article  CAS  PubMed  Google Scholar 

  9. Dupuy C, Kaniewski J, Dème D et al (1989) NADPH-dependent H2O2 generation catalyzed by thyroid plasma membranes. Studies with electron scavengers. Eur J Biochem 185:597–603. https://doi.org/10.1111/j.1432-1033.1989.tb15155.x

    Article  CAS  PubMed  Google Scholar 

  10. Carvalho DP, Dupuy C, Gorin Y et al (1996) The Ca2+− and reduced nicotinamide adenine dinucleotide phosphate-dependent hydrogen peroxide generating system is induced by thyrotropin in porcine thyroid cells. Endocrinology 137:1007–1012. https://doi.org/10.1210/endo.137.3.8603567

    Article  CAS  PubMed  Google Scholar 

  11. Corvilain B, Van Sande J, Dumont JE (1988) Inhibition by iodide of iodide binding to proteins: the “Wolff-Chaikoff” effect is caused by inhibition of H2O2 generation. Biochem Biophys Res Commun 154:1287–1292. https://doi.org/10.1016/0006-291X(88)90279-3

    Article  CAS  PubMed  Google Scholar 

  12. Corvilain B, Van Sande J, Laurent E, Dumont JE (1991) The H2O2-generating system modulates protein iodination and the activity of the pentose phosphate pathway in dog thyroid. Endocrinology 128:779–785. https://doi.org/10.1210/endo-128-2-779

    Article  CAS  PubMed  Google Scholar 

  13. Corvilain B, Laurent E, Lecomte M et al (1994) Role of the cyclic adenosine 3′,5′-monophosphate and the phosphatidylinositol-Ca2+ cascades in mediating the effects of thyrotropin and iodide on hormone synthesis and secretion in human thyroid slices. J Clin Endocrinol Metab 79:152–159

    CAS  PubMed  Google Scholar 

  14. Coclet J, Foureau F, Ketelbant P et al (1989) Cell population kinetics in dog and human adult thyroid. Clin Endocrinol 31:655–665. https://doi.org/10.1111/j.1365-2265.1989.tb01290.x

    Article  CAS  Google Scholar 

  15. Dupuy C, Ohayon R, Valent A et al (1999) Purification of a novel flavoprotein involved in the thyroid NADPH oxidase. J Biol Chem 274:37265–37269. https://doi.org/10.1074/jbc.274.52.37265

    Article  CAS  PubMed  Google Scholar 

  16. De Deken X, Wang D, Many M-C et al (2000) Cloning of two human thyroid cDNAs encoding new members of the NADPH oxidase family. J Biol Chem 275:23227–23233. https://doi.org/10.1074/jbc.M000916200

    Article  PubMed  Google Scholar 

  17. Meitzler JL, Ortiz de Montellano PR (2011) Structural stability and heme binding potential of the truncated human dual oxidase 2 (DUOX2) peroxidase domain. Arch Biochem Biophys 512:197–203. https://doi.org/10.1016/j.abb.2011.05.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Meitzler JL, Ortiz de Montellano PR (2009) Caenorhabditis elegans and human dual oxidase 1 (DUOX1) “peroxidase” domains. J Biol Chem 284:18634–18643. https://doi.org/10.1074/jbc.M109.013581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Meitzler JL, Hinde S, Banfi B et al (2013) Conserved cysteine residues provide a protein-protein interaction surface in dual oxidase (DUOX) proteins. J Biol Chem 288:7147–7157. https://doi.org/10.1074/jbc.M112.414797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morand S, Agnandji D, Noel-Hudson M-S et al (2004) Targeting of the dual oxidase 2 N-terminal region to the plasma membrane. J Biol Chem 279:30244–30251. https://doi.org/10.1074/jbc.M405406200

    Article  CAS  PubMed  Google Scholar 

  21. Carré A, Louzada RAN, Fortunato RS et al (2015) When an intramolecular Disulfide bridge governs the interaction of DUOX2 with its partner DUOXA2. Antioxid Redox Signal 23:724–733. https://doi.org/10.1089/ars.2015.6265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. De Deken X, Wang D, Dumont JE, Miot F (2002) Characterization of ThOX proteins as components of the thyroid H2O2-generating system. Exp Cell Res 273:187–196. https://doi.org/10.1006/excr.2001.5444

    Article  CAS  PubMed  Google Scholar 

  23. Fortunato RS, Lima de Souza EC, Hassani RA et al (2010) Functional consequences of dual oxidase-Thyroperoxidase interaction at the plasma membrane. J Clin Endocrinol Metabol 95:5403–5411. https://doi.org/10.1210/jc.2010-1085

    Article  CAS  Google Scholar 

  24. Song Y, Driessens N, Costa M et al (2007) Roles of hydrogen peroxide in thyroid physiology and disease. J Clin Endocrinol Metabol 92:3764–3773. https://doi.org/10.1210/jc.2007-0660

    Article  CAS  Google Scholar 

  25. Song Y, Ruf J, Lothaire P et al (2010) Association of Duoxes with thyroid peroxidase and its regulation in thyrocytes. J Clin Endocrinol Metabol 95:375–382. https://doi.org/10.1210/jc.2009-1727

    Article  CAS  Google Scholar 

  26. De Deken X, Corvilain B, Dumont JE, Miot F (2014) Roles of DUOX-mediated hydrogen peroxide in metabolism, host defense, and signaling. Antioxid Redox Signal 20:2776–2793. https://doi.org/10.1089/ars.2013.5602

    Article  CAS  PubMed  Google Scholar 

  27. Pachucki J, Wang D, Christophe D, Miot F (2004) Structural and functional characterization of the two human ThOX/Duox genes and their 5′-flanking regions. Mol Cell Endocrinol 214:53–62. https://doi.org/10.1016/j.mce.2003.11.026

    Article  CAS  PubMed  Google Scholar 

  28. De Felice M, Di Lauro R (2004) Thyroid development and its disorders: genetics and molecular mechanisms. Endocr Rev 25:722–746. https://doi.org/10.1210/er.2003-0028

    Article  CAS  PubMed  Google Scholar 

  29. Postiglione MP, Parlato R, Rodriguez-Mallon A et al (2002) Role of the thyroid-stimulating hormone receptor signaling in development and differentiation of the thyroid gland. Proc Natl Acad Sci U S A 99:15462–15467. https://doi.org/10.1073/PNAS.242328999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Milenkovic M, De Deken X, ** L et al (2007) Duox expression and related H2O2 measurement in mouse thyroid: onset in embryonic development and regulation by TSH in adult. J Endocrinol 192:615–626. https://doi.org/10.1677/JOE-06-0003

    Article  CAS  PubMed  Google Scholar 

  31. Ameziane-El-Hassani R, Morand S, Boucher J-L et al (2005) Dual Oxidase-2 has an intrinsic Ca2+−dependent H2O2-generating activity. J Biol Chem 280:30046–30054. https://doi.org/10.1074/jbc.M500516200

    Article  CAS  PubMed  Google Scholar 

  32. Bénard B, Brault J (1971) Production of peroxide in the thyroid. L’union medicale du Canada 100:701–705

    PubMed  Google Scholar 

  33. Wang D, De Deken X, Milenkovic M et al (2005) Identification of a novel partner of Duox. J Biol Chem 280:3096–3103. https://doi.org/10.1074/jbc.M407709200

    Article  CAS  PubMed  Google Scholar 

  34. Grasberger H, Refetoff S (2006) Identification of the maturation factor for dual oxidase: evolution of an eukaryotic operon equivalent. J Biol Chem 281:18269–18272. https://doi.org/10.1074/jbc.C600095200

    Article  CAS  PubMed  Google Scholar 

  35. Grasberger H, De Deken X, Miot F et al (2007) Missense mutations of dual oxidase 2 (DUOX2) implicated in congenital hypothyroidism have impaired trafficking in cells reconstituted with DUOX2 maturation factor. Mol Endocrinol 21:1408–1421. https://doi.org/10.1210/me.2007-0018

    Article  CAS  PubMed  Google Scholar 

  36. Morand S, Ueyama T, Tsujibe S et al (2009) Duox maturation factors form cell surface complexes with Duox affecting the specificity of reactive oxygen species generation. FASEB J 23:1205–1218. https://doi.org/10.1096/fj.08-120006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hoste C, Dumont JE, Miot F, De Deken X (2012) The type of DUOX-dependent ROS production is dictated by defined sequences in DUOXA. Exp Cell Res 318:2353–2364. https://doi.org/10.1016/j.yexcr.2012.07.007

    Article  CAS  PubMed  Google Scholar 

  38. Rigutto S, Hoste C, Grasberger H et al (2009) Activation of dual oxidases Duox 1 and Duox2. J Biol Chem 284:6725–6734. https://doi.org/10.1074/jbc.M806893200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Grasberger H, De Deken X, Mayo OB et al (2012) Mice deficient in dual oxidase maturation factors are severely hypothyroid. Mol Endocrinol 26:481–492. https://doi.org/10.1210/me.2011-1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu J-X, Liu R, Song K, Chen L (2021) Structures of human dual oxidase 1 complex in low-calcium and high-calcium states. Nat Commun 12:155–165. https://doi.org/10.1038/s41467-020-20466-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sun J (2020) Structures of mouse DUOX1–DUOXA1 provide mechanistic insights into enzyme activation and regulation. Nat Struct Mol Biol 27:1086–1093. https://doi.org/10.1038/s41594-020-0501-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Johnson KR, Marden CC, Ward-Bailey P et al (2007) Congenital hypothyroidism, dwarfism, and hearing impairment caused by a missense mutation in the mouse dual oxidase 2 gene, Duox2. Mol Endocrinol 21:1593–1602. https://doi.org/10.1210/me.2007-0085

    Article  CAS  PubMed  Google Scholar 

  43. Donkó Á, Ruisanchez É, Orient A et al (2010) Urothelial cells produce hydrogen peroxide through the activation of Duox 1. Free Radic Biol Med 49:2040–2048. https://doi.org/10.1016/j.freeradbiomed.2010.09.027

    Article  CAS  PubMed  Google Scholar 

  44. Deladoëy J, von Oettingen J, van Vliet G (2005) Hypothyroidism in infants and children. In: Braverman L, Coope D, Kopp PA (eds) Werner & Ingbar’s the thyroid a fundamental and clinical text, 11th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  45. Moreno JC, Bikker H, Kempers MJE et al (2002) Inactivating mutations in the gene for thyroid oxidase 2 (THOX2) and congenital hypothyroidism. N Engl J Med 347:95–102. https://doi.org/10.1056/NEJMoa012752

    Article  CAS  PubMed  Google Scholar 

  46. Muzza M, Rabbiosi S, Vigone MC et al (2014) The clinical and molecular characterization of patients with dyshormonogenic congenital hypothyroidism reveals specific diagnostic clues for DUOX2 defects. J Clin Endocrinol Metabol 99:E544–E553. https://doi.org/10.1210/jc.2013-3618

    Article  CAS  Google Scholar 

  47. Hoste C, Rigutto S, van Vliet G et al (2010) Compound heterozygosity for a novel hemizygous missense mutation and a partial deletion affecting the catalytic core of the H2O2-generating enzyme DUOX2 associated with transient congenital hypothyroidism. Hum Mutat 31:E1304–E1319. https://doi.org/10.1002/humu.21227

    Article  CAS  PubMed  Google Scholar 

  48. Muzza M, Fugazzola L (2017) Disorders of H2O2 generation. Best Pract Res Clin Endocrinol Metab 31:225–240. https://doi.org/10.11844/cjcb.2013.10.0124

    Article  CAS  PubMed  Google Scholar 

  49. Peters C, Nicholas AK, Schoenmakers E et al (2019) DUOX2/DUOXA2 mutations frequently cause congenital hypothyroidism that evades detection on Newborn screening in the United Kingdom. Thyroid 29:790–801. https://doi.org/10.1089/thy.2018.0587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zheng Z, Yang L, Sun C et al (2020) Genotype and phenotype correlation in a cohort of Chinese congenital hypothyroidism patients with DUOX2 mutations. Ann Transl Med 8:1649–1649. https://doi.org/10.21037/atm-20-7165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. De Deken X, Miot F (2019) DUOX defects and their roles in congenital hypothyroidism. In: Knaus UG, Leto TL (eds) Methods in molecular biology, 2019th ed Humana, New York, pp. 667–693

    Google Scholar 

  52. Maruo Y, Takahashi H, Soeda I et al (2008) Transient congenital hypothyroidism caused by biallelic mutations of the dual oxidase 2 gene in Japanese patients detected by a neonatal screening program. J Clin Endocrinol Metabol 93:4261–4267. https://doi.org/10.1210/jc.2008-0856

    Article  CAS  Google Scholar 

  53. Fu C, Zhang S, Su J et al (2015) Mutation screening of DUOX2 in Chinese patients with congenital hypothyroidism. J Endocrinol Investig 38:1219–1224. https://doi.org/10.1007/s40618-015-0382-8

    Article  CAS  Google Scholar 

  54. Fu C, Luo S, Zhang S et al (2016) Next-generation sequencing analysis of DUOX2 in 192 Chinese subclinical congenital hypothyroidism (SCH) and CH patients. Clin Chim Acta 458:30–34. https://doi.org/10.1016/j.cca.2016.04.019

    Article  CAS  PubMed  Google Scholar 

  55. Tan M, Huang Y, Jiang X et al (2016) The prevalence, clinical, and molecular characteristics of congenital hypothyroidism caused by DUOX2 mutations: a population-based cohort study in Guangzhou. Horm Metab Res 48:581–588. https://doi.org/10.1055/s-0042-112224

    Article  CAS  PubMed  Google Scholar 

  56. Jiang H, Wu J, Ke S et al (2016) High prevalence of DUOX2 gene mutations among children with congenital hypothyroidism in central China. Eur J Med Genet 59:526–531. https://doi.org/10.1016/j.ejmg.2016.07.004

    Article  PubMed  Google Scholar 

  57. Narumi S, Muroya K, Asakura Y et al (2011) Molecular basis of thyroid Dyshormonogenesis: genetic screening in population-based Japanese patients. J Clin Endocrinol Metabol 96:E1838–E1842. https://doi.org/10.1210/jc.2011-1573

    Article  CAS  Google Scholar 

  58. Sorapipatcharoen K, Tim-Aroon T, Mahachoklertwattana P et al (2020) DUOX2 variants are a frequent cause of congenital primary hypothyroidism in Thai patients. Endocr Connect 9:1121–1134. https://doi.org/10.1530/EC-20-0411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rabbiosi S, Vigone MC, Cortinovis F et al (2013) Congenital hypothyroidism with Eutopic thyroid gland: analysis of clinical and biochemical features at diagnosis and after re-evaluation. J Clin Endocrinol Metabol 98:1395–1402. https://doi.org/10.1210/jc.2012-3174

    Article  CAS  Google Scholar 

  60. De Marco G, Agretti P, Montanelli L et al (2011) Identification and functional analysis of novel dual oxidase 2 (DUOX2) mutations in children with congenital or subclinical hypothyroidism. J Clin Endocrinol Metabol 96:E1335–E1339. https://doi.org/10.1210/jc.2010-2467

    Article  CAS  Google Scholar 

  61. Park KJ, Park HK, Kim YJ et al (2016) DUOX2 mutations are frequently associated with congenital hypothyroidism in the Korean population. Ann Lab Med 36:145–153. https://doi.org/10.3343/alm.2016.36.2.145

    Article  CAS  PubMed  Google Scholar 

  62. Dufort G, Larrivée-Vanier S, Eugène D et al (2019) Wide Spectrum of DUOX2 deficiency: from life-threatening compressive Goiter in infancy to lifelong Euthyroidism. Thyroid 29:1018–1022. https://doi.org/10.1089/thy.2018.0461

    Article  CAS  PubMed  Google Scholar 

  63. Zamproni I, Grasberger H, Cortinovis F et al (2008) Biallelic inactivation of the dual oxidase maturation factor 2 (DUOXA2) gene as a novel cause of congenital hypothyroidism. J Clin Endocrinol Metabol 93:605–610. https://doi.org/10.1210/jc.2007-2020

    Article  CAS  Google Scholar 

  64. Sugisawa C, Higuchi S, Takagi M et al (2017) Homozygous DUOXA2 mutation (p.Tyr138*) in a girl with congenital hypothyroidism and her apparently unaffected brother: case report and review of the literature. Endocr J 64:1–6. https://doi.org/10.1507/endocrj.EJ16-0564

    Article  Google Scholar 

  65. Zheng X, Ma S, Guo M et al (2017) Compound heterozygous mutations in the DUOX2/DUOXA2 genes cause congenital hypothyroidism. Yonsei Med J 58:888–890. https://doi.org/10.3349/ymj.2017.58.4.888

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hulur I, Hermanns P, Nestoris C et al (2011) A single copy of the recently identified dual oxidase maturation factor (DUOXA) 1 gene produces only mild transient hypothyroidism in a patient with a novel biallelic DUOXA2 mutation and monoallelic DUOXA1 deletion. J Clin Endocrinol Metabol 96:E841–E845. https://doi.org/10.1210/jc.2010-2321

    Article  CAS  Google Scholar 

  67. Yi R, Zhu W, Yang L et al (2013) A novel dual oxidase maturation factor 2 gene mutation for congenital hypothyroidism. Int J Mol Med 31:467–470. https://doi.org/10.3892/ijmm.2012.1223

    Article  CAS  PubMed  Google Scholar 

  68. Liu S, Liu L, Niu X et al (2015) A novel missense mutation (I26M) in DUOXA2 causing congenital Goiter hypothyroidism impairs NADPH oxidase activity but not protein expression. J Clin Endocrinol Metabol 100:1225–1229. https://doi.org/10.1210/jc.2014-3964

    Article  CAS  Google Scholar 

  69. Zheng X, Ma S, Qiu Y et al (2016) A novel c.554+5C>T mutation in the DUOXA2 gene combined with p.R885Q mutation in the DUOX2 gene causing congenital hypothyroidism. J Clin Res Pediatr Endocrinol 8:224–227. https://doi.org/10.1515/JPEM.2011.408

    Article  PubMed  PubMed Central  Google Scholar 

  70. Yang L-X, Ma S-G, Qiu Y-L, Zheng X (2016) Heterozygous mutations of the DUOXA2 and DUOX2 genes in dizygotic twins with congenital hypothyroidism. Clin Lab 62:849–854. https://doi.org/10.7754/Clin.Lab.2015.150840

    Article  CAS  PubMed  Google Scholar 

  71. Maruo Y, Nagasaki K, Matsui K et al (2016) Natural course of congenital hypothyroidism by dual oxidase 2 mutations from the neonatal period through puberty. Eur J Endocrinol 174:453–463. https://doi.org/10.1530/EJE-15-0959

    Article  CAS  PubMed  Google Scholar 

  72. Aycan Z, Cangul H, Muzza M et al (2017) Digenic DUOX1 and DUOX2 mutations in cases with congenital hypothyroidism. J Clin Endocrinol Metabol 102:3085–3090. https://doi.org/10.1210/jc.2017-00529

    Article  Google Scholar 

  73. Vigone MC, Fugazzola L, Zamproni I et al (2005) Persistent mild hypothyroidism associated with novel sequence variants of the DUOX2 gene in two siblings. Hum Mutat 26:395–403. https://doi.org/10.1002/humu.9372

    Article  PubMed  Google Scholar 

  74. Kasahara T, Narumi S, Okasora K et al (2013) Delayed onset congenital hypothyroidism in a patient with DUOX2 mutations and maternal iodine excess. Am J Med Genet A 161A:214–217. https://doi.org/10.1002/ajmg.a.35693

    Article  CAS  PubMed  Google Scholar 

  75. Zimmermann MB, Jooste PL, Pandav CS (2008) Iodine-deficiency disorders. Lancet (London, England) 372:1251–1262. https://doi.org/10.1016/S0140-6736(08)61005-3

    Article  CAS  PubMed  Google Scholar 

  76. Weyemi U, Lagente-Chevallier O, Boufraqech M et al (2012) ROS-generating NADPH oxidase NOX4 is a critical mediator in oncogenic H-Ras-induced DNA damage and subsequent senescence. Oncogene 31:1117–1129. https://doi.org/10.1038/onc.2011.327

    Article  CAS  PubMed  Google Scholar 

  77. Krohn K, Maier J, Paschke R (2007) Mechanisms of disease: hydrogen peroxide, DNA damage and mutagenesis in the development of thyroid tumors. Nat Clin Pract Endocrinol Metab 3:713–720. https://doi.org/10.1038/ncpendmet0621

    Article  CAS  PubMed  Google Scholar 

  78. Maier J, van Steeg H, van Oostrom C et al (2006) Deoxyribonucleic acid damage and spontaneous mutagenesis in the thyroid gland of rats and mice. Endocrinology 147:3391–3397. https://doi.org/10.1210/en.2005-1669

    Article  CAS  PubMed  Google Scholar 

  79. Knobel M, Medeiros-Neto G (2003) An outline of inherited disorders of the thyroid hormone generating system. Thyroid 13:771–801. https://doi.org/10.1089/105072503768499671

    Article  CAS  PubMed  Google Scholar 

  80. Ledent C, Denef JF, Cottecchia S et al (1997) Costimulation of adenylyl cyclase and phospholipase C by a mutant alpha 1B-adrenergic receptor transgene promotes malignant transformation of thyroid follicular cells. Endocrinology 138:369–378. https://doi.org/10.1210/ENDO.138.1.4861

    Article  CAS  PubMed  Google Scholar 

  81. Driessens N, Versteyhe S, Ghaddhab C et al (2009) Hydrogen peroxide induces DNA single- and double-strand breaks in thyroid cells and is therefore a potential mutagen for this organ. Endocr Relat Cancer 16:845–856. https://doi.org/10.1677/ERC-09-0020

    Article  CAS  PubMed  Google Scholar 

  82. Ghaddhab C, Kyrilli A, Driessens N et al (2019) Factors contributing to the resistance of the thyrocyte to hydrogen peroxide. Mol Cell Endocrinol 481:62–70. https://doi.org/10.1016/j.mce.2018.11.010

    Article  CAS  PubMed  Google Scholar 

  83. Versteyhe S, Driessens N, Ghaddhab C et al (2013) Comparative analysis of the thyrocytes and T cells: responses to H2O2 and radiation reveals an H2O2-induced antioxidant transcriptional program in thyrocytes. J Clin Endocrinol Metabol 98:E1645–E1654. https://doi.org/10.1210/jc.2013-1266

    Article  CAS  Google Scholar 

  84. Kyrilli A, Gacquer D, Detours V et al (2020) Dissecting the role of thyrotropin in the DNA damage response in human thyrocytes after 131I, B radiation and H2O2. J Clin Endocrinol Metabol 105:839–853. https://doi.org/10.1210/clinem/dgz185

    Article  Google Scholar 

  85. Viglietto G, Chiappetta G, Martinez-Tello FJ et al (1995) RET/PTC oncogene activation is an early event in thyroid carcinogenesis. Oncogene 11:1207–1210

    CAS  PubMed  Google Scholar 

  86. Ameziane-El-Hassani R, Boufraqech M, Lagente-Chevallier O et al (2010) Role of H 2 O 2 in RET/PTC1 chromosomal rearrangement produced by ionizing radiation in human thyroid cells. Cancer Res 70:4123–4132. https://doi.org/10.1158/0008-5472.CAN-09-4336

    Article  CAS  PubMed  Google Scholar 

  87. Ameziane-El-Hassani R, Buffet C, Leboulleux S, Dupuy C (2019) Oxidative stress in thyroid carcinomas: biological and clinical significance. Endocr Relat Cancer 26:R131–R143. https://doi.org/10.1530/ERC-18-0476

    Article  PubMed  Google Scholar 

  88. Ron E, Lubin JH, Shore RE et al (2012) Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Radiat Res 178:AV43–AV60. https://doi.org/10.1667/RRAV05.1

    Article  CAS  Google Scholar 

  89. Williams ED, Abrosimov A, Bogdanova T et al (2004) Thyroid carcinoma after Chernobyl latent period, morphology and aggressiveness. Br J Cancer 90:2219–2224. https://doi.org/10.1038/sj.bjc.6601860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nikiforov YE, Nikiforova MN (2011) Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol 7:569–580. https://doi.org/10.1038/nrendo.2011.142

    Article  CAS  PubMed  Google Scholar 

  91. Suzuki K, Ojima M, Kodama S, Watanabe M (2003) Radiation-induced DNA damage and delayed induced genomic instability. Oncogene 22:6988–6993. https://doi.org/10.1038/SJ.ONC.1206881

    Article  CAS  PubMed  Google Scholar 

  92. Lorimore SA, Coates PJ, Wright EG (2003) Radiation-induced genomic instability and bystander effects: inter-related nontargeted effects of exposure to ionizing radiation. Oncogene 22:7058–7069. https://doi.org/10.1038/SJ.ONC.1207044

    Article  CAS  PubMed  Google Scholar 

  93. Ameziane-El-Hassani R, Talbot M, de Souza Dos Santos MC et al (2015) NADPH oxidase DUOX1 promotes long-term persistence of oxidative stress after an exposure to irradiation. Proc Natl Acad Sci 112:5051–5056. https://doi.org/10.1073/pnas.1420707112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Detours V, Delys L, Libert F et al (2007) Genome-wide gene expression profiling suggests distinct radiation susceptibilities in sporadic and post-Chernobyl papillary thyroid cancers. Br J Cancer 97:818–825. https://doi.org/10.1038/sj.bjc.6603938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dom G, Tarabichi M, Unger K et al (2012) A gene expression signature distinguishes normal tissues of sporadic and radiation-induced papillary thyroid carcinomas. Br J Cancer 107:994–1000. https://doi.org/10.1038/bjc.2012.302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Meitzler JL, Brandman R, Ortiz de Montellano PR (2010) Perturbed Heme binding is responsible for the blistering phenotype associated with mutations in the Caenorhabditis elegans dual oxidase 1 (DUOX1) peroxidase domain. J Biol Chem 285:40991–41000. https://doi.org/10.1074/jbc.M110.170902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Thein MC, Winter AD, Stepek G et al (2009) Combined extracellular matrix cross-linking activity of the peroxidase MLT-7 and the dual oxidase BLI-3 is critical for post-embryonic viability in Caenorhabditis elegans. J Biol Chem 284:17549–17563. https://doi.org/10.1074/jbc.M900831200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wong JL, Créton R, Wessel GM (2004) The oxidative burst at fertilization is dependent upon activation of the dual oxidase Udx 1. Dev Cell 7:801–814. https://doi.org/10.1016/j.devcel.2004.10.014

    Article  CAS  PubMed  Google Scholar 

  99. Dias FA, Gandara ACP, Queiroz-Barros FG et al (2013) Ovarian dual oxidase (Duox) activity is essential for insect eggshell hardening and waterproofing. J Biol Chem 288:35058–35067. https://doi.org/10.1074/jbc.M113.522201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kumar S, Molina-Cruz A, Gupta L et al (2010) A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae. Science 327:1644–1648. https://doi.org/10.1126/science.1184008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jang S, Mergaert P, Ohbayashi T et al (2021) Dual oxidase enables insect gut symbiosis by mediating respiratory network formation. Proc Natl Acad Sci U S A 118:1–12. https://doi.org/10.1073/pnas.2020922118

    Article  CAS  Google Scholar 

  102. Geiszt M, Witta J, Baff J et al (2003) Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense. FASEB J 17:1–14. https://doi.org/10.1096/fj.02-1104fje

    Article  CAS  Google Scholar 

  103. Conner GE, Salathe M, Forteza R (2002) Lactoperoxidase and hydrogen peroxide metabolism in the airway. Am J Respir Crit Care Med 166:S57–S61. https://doi.org/10.1164/rccm.2206018

    Article  PubMed  Google Scholar 

  104. Forteza R, Salathe M, Miot F et al (2005) Regulated hydrogen peroxide production by Duox in human airway epithelial cells. Am J Respir Cell Mol Biol 32:462–469. https://doi.org/10.1165/rcmb.2004-0302OC

    Article  CAS  PubMed  Google Scholar 

  105. Moskwa P, Lorentzen D, Excoffon KJD et al (2007) A novel host defense system of airways is defective in cystic fibrosis. Am J Respir Crit Care Med 175:174–183. https://doi.org/10.1164/rccm.200607-1029OC

    Article  CAS  PubMed  Google Scholar 

  106. Gattas MV, Forteza R, Fragoso M et al (2009) Oxidative epithelial host defense is regulated by infectious and inflammatory stimuli. Free Radic Biol Med 47:1450–1458. https://doi.org/10.1016/j.freeradbiomed.2009.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sarr D, Toth E, Gingerich A, Rada B (2018) Antimicrobial actions of dual oxidases and lactoperoxidase. J Microbiol 56:373–386. https://doi.org/10.1007/s12275-018-7545-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Linderholm AL, Onitsuka J, Xu C et al (2010) All- trans retinoic acid mediates DUOX2 expression and function in respiratory tract epithelium. Am J Phys Lung Cell Mol Phys 299:L215–L221. https://doi.org/10.1152/ajplung.00015.2010

    Article  CAS  Google Scholar 

  109. Fischer H, Gonzales LK, Kolla V et al (2007) Developmental regulation of DUOX1 expression and function in human fetal lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 292:L1506–L1514. https://doi.org/10.1152/ajplung.00029.2007

    Article  CAS  PubMed  Google Scholar 

  110. Luxen S, Noack D, Frausto M et al (2009) Heterodimerization controls localization of Duox-DuoxA NADPH oxidases in airway cells. J Cell Sci 122:1238–1247. https://doi.org/10.1242/jcs.044123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Conner GE, Wijkstrom-Frei C, Randell SH et al (2007) The lactoperoxidase system links anion transport to host defense in cystic fibrosis. FEBS Lett 581:271–278. https://doi.org/10.1016/j.febslet.2006.12.025

    Article  CAS  PubMed  Google Scholar 

  112. Rada B, Lekstrom K, Damian S et al (2008) The pseudomonas toxin pyocyanin inhibits the dual oxidase-based antimicrobial system as it imposes oxidative stress on airway epithelial cells. J Immunol 181:4883–4893. https://doi.org/10.4049/jimmunol.181.7.4883

    Article  CAS  PubMed  Google Scholar 

  113. Harper RW, Xu C, Eiserich JP et al (2005) Differential regulation of dual NADPH oxidases/peroxidases, Duox1 and Duox2, by Th1 and Th2 cytokines in respiratory tract epithelium. FEBS Lett 579:4911–4917. https://doi.org/10.1016/j.febslet.2005.08.002

    Article  CAS  PubMed  Google Scholar 

  114. Hill T, Xu C, Harper RW (2010) IFNγ mediates DUOX2 expression via a STAT-independent signaling pathway. Biochem Biophys Res Commun 395:270–274. https://doi.org/10.1016/j.bbrc.2010.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Iwasaki A, Medzhitov R (2015) Control of adaptive immunity by the innate immune system. Nat Immunol 16:343–353. https://doi.org/10.1038/ni.3123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Grandvaux N, Soucy-Faulkner A, Fink K (2007) Innate host defense: Nox and Duox on phox’s tail. Biochimie 89:1113–1122. https://doi.org/10.1016/j.biochi.2007.04.008

    Article  CAS  PubMed  Google Scholar 

  117. Yang C-S, Shin D-M, Kim K-H et al (2009) NADPH oxidase 2 interaction with TLR2 is required for efficient innate immune responses to mycobacteria via cathelicidin expression. J Immunol 182:3696–3705. https://doi.org/10.4049/jimmunol.0802217

    Article  CAS  PubMed  Google Scholar 

  118. Lv J, He X, Wang H et al (2017) TLR4-NOX2 axis regulates the phagocytosis and killing of Mycobacterium tuberculosis by macrophages. BMC Pulm Med 17:194–202. https://doi.org/10.1186/s12890-017-0517-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Joo J-H, Ryu J-H, Kim C-H et al (2012) Dual oxidase 2 is essential for the toll-like receptor 5-mediated inflammatory response in airway mucosa. Antioxid Redox Signal 16:57–70. https://doi.org/10.1089/ars.2011.3898

    Article  CAS  PubMed  Google Scholar 

  120. Boots AW, Hristova M, Kasahara DI et al (2009) ATP-mediated activation of the NADPH oxidase DUOX1 mediates airway epithelial responses to bacterial stimuli. J Biol Chem 284:17858–17867. https://doi.org/10.1074/jbc.M809761200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Habibovic A, Hristova M, Heppner DE et al (2016) DUOX1 mediates persistent epithelial EGFR activation, mucous cell metaplasia, and airway remodeling during allergic asthma. JCI Insight 1:1–25. https://doi.org/10.1172/jci.insight.88811

    Article  Google Scholar 

  122. Hristova M, Habibovic A, Veith C et al (2016) Airway epithelial dual oxidase 1 mediates allergen-induced IL-33 secretion and activation of type 2 immune responses. J Allergy Clin Immunol 137:1545–1556. https://doi.org/10.1016/j.jaci.2015.10.003

    Article  CAS  PubMed  Google Scholar 

  123. Chang S, Linderholm A, Franzi L et al (2013) Dual oxidase regulates neutrophil recruitment in allergic airways. Free Radic Biol Med 65:38–46. https://doi.org/10.1016/j.freeradbiomed.2013.06.012

    Article  CAS  PubMed  Google Scholar 

  124. Fink K, Martin L, Mukawera E et al (2013) IFNβ/TNFα synergism induces a non-canonical STAT2/IRF9-dependent pathway triggering a novel DUOX2 NADPH oxidase-mediated airway antiviral response. Cell Res 23:673–690. https://doi.org/10.1038/cr.2013.47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Strengert M, Jennings R, Davanture S et al (2014) Mucosal reactive oxygen species are required for antiviral response: role of Duox in influenza a virus infection. Antioxid Redox Signal 20:2695–2709. https://doi.org/10.1089/ars.2013.5353

    Article  CAS  PubMed  Google Scholar 

  126. Grandvaux N, Mariani M, Fink K (2015) Lung epithelial NOX/DUOX and respiratory virus infections. Clin Sci 128:337–347. https://doi.org/10.1042/CS20140321

    Article  CAS  Google Scholar 

  127. Kim HJ, Seo YH, An S et al (2018) Chemiluminescence imaging of Duox2-derived hydrogen peroxide for longitudinal visualization of biological response to viral infection in nasal mucosa. Theranostics 8:1798–1807. https://doi.org/10.7150/thno.22481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ioannidis I, McNally B, Willette M et al (2012) Plasticity and virus specificity of the airway epithelial cell immune response during respiratory virus infection. J Virol 86:5422–5436. https://doi.org/10.1128/JVI.06757-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Mariani MK, Dasmeh P, Fortin A et al (2019) The combination of IFN β and TNF induces an antiviral and immunoregulatory program via non-canonical pathways involving STAT2 and IRF9. Cell 8:919. https://doi.org/10.3390/cells8080919

    Article  CAS  Google Scholar 

  130. Cegolon L, Salata C, Piccoli E et al (2014) In vitro antiviral activity of hypothiocyanite against A/H1N1/2009 pandemic influenza virus. Int J Hyg Environ Health 217:17–22. https://doi.org/10.1016/j.ijheh.2013.03.001

    Article  CAS  PubMed  Google Scholar 

  131. Mikola H, Waris M, Tenovuo J (1995) Inhibition of herpes simplex virus type 1, respiratory syncytial virus and echovirus type 11 by peroxidase-generated hypothiocyanite. Antivir Res 26:161–171. https://doi.org/10.1016/0166-3542(94)00073-h

    Article  CAS  PubMed  Google Scholar 

  132. Goto Y, Ivanov II (2013) Intestinal epithelial cells as mediators of the commensal–host immune crosstalk. Immunol Cell Biol 91:204–214. https://doi.org/10.1038/icb.2012.80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Burgueño JF, Fritsch J, Santander AM et al (2019) Intestinal epithelial cells respond to chronic inflammation and dysbiosis by synthesizing H2O2. Front Physiol 10:1484. https://doi.org/10.3389/fphys.2019.01484

    Article  PubMed  PubMed Central  Google Scholar 

  134. Ameziane-El-Hassani R, Benfares N, Caillou B et al (2005) Dual oxidase2 is expressed all along the digestive tract. Am J Physiol Lung Cell Mol Physiol 288:G933–G942. https://doi.org/10.1152/ajpgi.00198.2004

    Article  CAS  Google Scholar 

  135. Grasberger H, Gao J, Nagao-Kitamoto H et al (2015) Increased expression of DUOX2 is an epithelial response to mucosal dysbiosis required for immune homeostasis in mouse intestine. Gastroenterology 149:1849–1859. https://doi.org/10.1053/j.gastro.2015.07.062

    Article  CAS  PubMed  Google Scholar 

  136. Ha E-M, Oh C-T, Bae YS, Lee W-J (2005) A direct role for dual oxidase in drosophila gut immunity. Science 310:847–850. https://doi.org/10.1126/science.1117311

    Article  CAS  PubMed  Google Scholar 

  137. Ha E-M, Oh C-T, Ryu J-H et al (2005) An antioxidant system required for host protection against gut infection in drosophila. Dev Cell 8:125–132. https://doi.org/10.1016/j.devcel.2004.11.007

    Article  CAS  PubMed  Google Scholar 

  138. Chávez V, Mohri-Shiomi A, Garsin D (2009) Ce-Duox1/BLI-3 generates reactive oxygen species as a protective innate immune mechanism in Caenorhabditis elegans. Infect Immun 77:4983–4989. https://doi.org/10.1128/IAI.00627-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Flores MV, Crawford KC, Pullin LM et al (2010) Dual oxidase in the intestinal epithelium of zebrafish larvae has anti-bacterial properties. Biochem Biophys Res Commun 400:164–168. https://doi.org/10.1016/j.bbrc.2010.08.037

    Article  CAS  PubMed  Google Scholar 

  140. Grasberger H, El-Zaatari M, Dang DT, Merchant JL (2013) Dual oxidases control release of hydrogen peroxide by the gastric epithelium to prevent helicobacter felis infection and inflammation in mice. Gastroenterology 145:1045–1054. https://doi.org/10.1053/j.gastro.2013.07.011

    Article  CAS  PubMed  Google Scholar 

  141. Allaoui A, Botteaux A, Dumont JE et al (2009) Dual oxidases and hydrogen peroxide in a complex dialogue between host mucosae and bacteria. Trends Mol Med 15:571–579. https://doi.org/10.1016/j.molmed.2009.10.003

    Article  CAS  PubMed  Google Scholar 

  142. Botteaux A, Hoste C, Dumont JE et al (2009) Potential role of Noxes in the protection of mucosae: H2O2 as abacterial repellent. Microbes Infect 11:537–544. https://doi.org/10.1016/j.micinf.2009.02.009

    Article  CAS  PubMed  Google Scholar 

  143. Haberman Y, Tickle TL, Dexheimer PJ et al (2014) Pediatric Crohn disease patients exhibit specific ileal transcriptome and microbiome signature. J Clin Investig 124:3617–3633. https://doi.org/10.1172/JCI75436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hayes P, Dhillon S, O’Neill K et al (2015) Defects in nicotinamide-adenine dinucleotide phosphate oxidase genes NOX1 and DUOX2 in very early onset inflammatory bowel disease. Cell Mol Gastroenterol Hepatol 1:489–502. https://doi.org/10.1016/j.jcmgh.2015.06.005

    Article  PubMed  PubMed Central  Google Scholar 

  145. Parlato M, Charbit-Henrion F, Hayes P et al (2017) First identification of biallelic inherited DUOX2 inactivating mutations as a cause of very early onset inflammatory bowel disease. Gastroenterology 153:609–611.e3. https://doi.org/10.1053/j.gastro.2016.12.053

    Article  PubMed  Google Scholar 

  146. Levine AP, Pontikos N, Schiff ER et al (2016) Genetic complexity of Crohn’s disease in two large Ashkenazi Jewish families. Gastroenterology 151:698–709. https://doi.org/10.1053/j.gastro.2016.06.040

    Article  PubMed  Google Scholar 

  147. Grasberger H, Noureldin M, Kao TD et al (2018) Increased risk for inflammatory bowel disease in congenital hypothyroidism supports the existence of a shared susceptibility factor. Sci Rep 8:10158–10163. https://doi.org/10.1038/s41598-018-28586-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Grasberger H, Magis AT, Sheng E et al (2021) DUOX2 variants associate with preclinical disturbances in microbiota-immune homeostasis and increased inflammatory bowel disease risk. J Clin Investig 131:e141676. https://doi.org/10.1172/JCI141676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support for their own research over the years of the “Fonds de la Recherche Scientifique (FRS-FNRS)”, the “Fonds Yvonne Smits” and “Fonds Dr JP Naets” managed by the “Fondation Roi Baudouin”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Françoise Miot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miot, F., De Deken, X. (2023). DUOX1 and DUOX2, DUOXA1 and DUOXA2. In: Pick, E. (eds) NADPH Oxidases Revisited: From Function to Structure. Springer, Cham. https://doi.org/10.1007/978-3-031-23752-2_14

Download citation

Publish with us

Policies and ethics

Navigation