Nox5: Molecular Regulation and Pathophysiology

  • Chapter
  • First Online:
NADPH Oxidases Revisited: From Function to Structure

Abstract

Nox5 is considered to be the precursor NADPH oxidase in the evolution of the Noxs and is the most ancient member of the Nox family. It is widely conserved across species and five splice variants have been identified. Nox5 shares structural homology with other isoforms, specifically the catalytic core comprising six transmembrane helices chelating two hemes and a dehydrogenase domain that binds FAD and NADPH. Nox5 is distinct from Nox1–4 in that it has a calcium-binding region with EF-hand domains and is the only isoform that does not require NADPH oxidase subunits for its activation. Nox5 is activated by an increase in intracellular free calcium concentration and undergoes conformational change with consequent superoxide (O2•-) production. It is also regulated by postranslational modifications and interaction with regulatory partners. While there have been advances in the molecular biology of Nox5, there is a paucity of information on the pathophysiological role of this isoform. Nox5 may be important in sperm function and smooth muscle contraction and it has been implicated in various pathologies including cardiovascular disease, kidney disease and cancer. This chapter provides a comprehensive review of the discovery, regulation and function of Nox5 and the putative role in human health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 234.33
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 295.39
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 295.39
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banfi B, Molnar G, Maturana A et al (2001) A Ca(2+)-activated NADPH oxidase in testis, spleen, and lymph nodes. J Biol Chem 276:37594–37601

    Article  CAS  PubMed  Google Scholar 

  2. Cheng G, Cao Z, Xu X et al (2001) Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5. Gene 269:131–140

    Article  CAS  PubMed  Google Scholar 

  3. Bánfi B, Tirone F, Durussel I et al (2004) Mechanism of Ca2+ activation of the NADPH oxidase 5 (NOX5). J Biol Chem 279:18583–18591

    Article  PubMed  Google Scholar 

  4. Touyz RM, Anagnostopoulou A, Rios F et al (2019) NOX5: molecular biology and pathophysiology. Exp Physiol 104:605–616

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen F, Haigh S, Yu Y et al (2015) Nox5 stability and superoxide production is regulated by C-terminal binding of Hsp90 and CO-chaperones. Free Radic Biol Med 89:793–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jagnandan D, Church JE, Banfi B et al (2007) Novel mechanism of activation of NADPH oxidase 5. calcium sensitization via phosphorylation. J Biol Chem 282:6494–6507

    Article  CAS  PubMed  Google Scholar 

  7. Qian J, Chen F, Kovalenkov Y et al (2012) Nitric oxide reduces NADPH oxidase 5 (Nox5) activity by reversible S-nitrosylation. Free Radic Biol Med 52:1806–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Panday A, Sahoo MK, Osorio D et al (2015) NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol 12:5–23

    Article  CAS  PubMed  Google Scholar 

  9. Kawahara T, Lambeth JD (2008) Phosphatidylinositol (4, 5)-bisphosphate modulates Nox5 localization via an N-terminal polybasic region. Mol Biol Cell 19:4020–4031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Musset B, Clark RA, DeCoursey TE et al (2012) NOX5 in human spermatozoa: expression, function, and regulation. J Biol Chem 287:9376–9388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. El Jamali A, Valente AJ, Lechleiter JD et al (2008) Novel redox-dependent regulation of NOX5 by the tyrosine kinase c-Abl. Free Radic Biol Med 44:868–881

    Article  PubMed  Google Scholar 

  12. Fulton DJR (2019) The molecular regulation and functional roles of NOX5. Methods Mol Biol 1982:353–375

    Article  CAS  PubMed  Google Scholar 

  13. Rizvi F, Heimann T, O'Brien WJ (2012) Expression of NADPH oxidase (NOX) 5 in rabbit corneal stromal cells. PLoS One 7:e34440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miles JA, Egan JL, Fowler JA et al (2021) The evolutionary origins of peroxynitrite signalling. Biochem Biophys Res Commun 580:107–112

    Article  CAS  PubMed  Google Scholar 

  15. Zhang X, Krause KH, Xenarios I et al (2013) Evolution of the ferric reductase domain (FRD) superfamily: modularity, functional diversification, and signature motifs. PLoS One 8:e58126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bedard K, Jaquet V, Krause KH (2012) NOX5: from basic biology to signaling and disease. Free Radic Biol Med 52:725–734

    Article  CAS  PubMed  Google Scholar 

  17. Kawahara T, Quinn MT, Lambeth JD (2007) Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox) family of enzymes. BMC Evol Biol 7:109

    Article  PubMed  PubMed Central  Google Scholar 

  18. Magnani F, Nenci S, Millana Fananas E et al (2017) Crystal structures and atomic model of NADPH oxidase. Proc Natl Acad Sci U S A 114:6764–6769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kawahara T, Jackson HM, Smith SM et al (2011) Nox5 forms a functional oligomer mediated by self-association of its dehydrogenase domain. Biochemistry 50:2013–2025

    Article  CAS  PubMed  Google Scholar 

  20. Tirone F, Radu L, Craescu CT et al (2010) Identification of the binding site for the regulatory calcium-binding domain in the catalytic domain of NOX5. Biochemistry 49:761–771

    Article  CAS  PubMed  Google Scholar 

  21. Millana Fananas E, Todesca S, Sicorello A et al (2020) On the mechanism of calcium-dependent activation of NADPH oxidase 5 (NOX5). FEBS J 287:2486–2503

    Article  CAS  PubMed  Google Scholar 

  22. Wei CC, Fabry E, Hay E et al (2020) Metal binding and conformational studies of the calcium binding domain of NADPH oxidase 5 reveal its similarity and difference to calmodulin. J Biomol Struct Dyn 38:2352–2368

    Article  CAS  PubMed  Google Scholar 

  23. Aravind P, Chandra K, Reddy PP et al (2008) Regulatory and structural EF-hand motifs of neuronal calcium sensor-1: Mg 2+ modulates Ca 2+ binding, Ca 2+ −induced conformational changes, and equilibrium unfolding transitions. J Mol Biol 376:1100–1115

    Article  CAS  PubMed  Google Scholar 

  24. Tirone F, Cox JA (2007) NADPH oxidase 5 (NOX5) interacts with and is regulated by calmodulin. FEBS Lett 581:1202–1208

    Article  CAS  PubMed  Google Scholar 

  25. Smith D, Lloyd L, Wei E et al (2022) Calmodulin binding to the dehydrogenase domain of NADPH oxidase 5 alters its oligomeric state. Biochem Biophys Rep 29:101198

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen F, Barman S, Yu Y et al (2014) Caveolin-1 is a negative regulator of NADPH oxidase-derived reactive oxygen species. Free Radic Biol Med 73:201–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang RY, Noddings CM, Kirschke E et al (2022) Structure of Hsp90-Hsp70-Hop-GR reveals the Hsp90 client-loading mechanism. Nature 601:460–464

    Article  CAS  PubMed  Google Scholar 

  28. Sweeny EA, Schlanger S, Stuehr DJ (2020) Dynamic regulation of NADPH oxidase 5 by intracellular heme levels and cellular chaperones. Redox Biol 36:101656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Khechaduri A, Bayeva M, Chang HC et al (2013) Heme levels are increased in human failing hearts. J Am Coll Cardiol 61:1884–1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen F, Yu Y, Qian J et al (2012) Opposing actions of heat shock protein 90 and 70 regulate nicotinamide adenine dinucleotide phosphate oxidase stability and reactive oxygen species production. Arterioscler Thromb Vasc Biol 32:2989–2999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang Q, Malik P, Pandey D et al (2008) Paradoxical activation of endothelial nitric oxide synthase by NADPH oxidase. Arterioscler Thromb Vasc Biol 28:1627–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Elbatreek MH, Sadegh S, Anastasi E et al (2020) NOX5-induced uncoupling of endothelial NO synthase is a causal mechanism and theragnostic target of an age-related hypertension endotype. PLoS Biol 18:e3000885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Montezano AC, Touyz RM (2012) Reactive oxygen species and endothelial function--role of nitric oxide synthase uncoupling and Nox family nicotinamide adenine dinucleotide phosphate oxidases. Basic Clin Pharmacol Toxicol 110:87–94

    Article  CAS  PubMed  Google Scholar 

  34. Chen F, Yu Y, Haigh S et al (2014) Regulation of NADPH oxidase 5 by protein kinase C isoforms. PLoS One 9:e88405

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pandey D, Fulton DJ (2011) Molecular regulation of NADPH oxidase 5 via the MAPK pathway. Am J Physiol Heart Circ Physiol 300:H1336–H1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pandey D, Gratton JP, Rafikov R et al (2011) Calcium/calmodulin-dependent kinase II mediates the phosphorylation and activation of NADPH oxidase 5. Mol Pharmacol 80:407–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Anagnostopoulou A, Camargo LL, Rodrigues D et al (2020) Importance of cholesterol-rich microdomains in the regulation of Nox isoforms and redox signaling in human vascular smooth muscle cells. Sci Rep 10:17818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pendyala S, Natarajan V (2010) Redox regulation of Nox proteins. Respir Physiol Neurobiol 174:265–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Petrushanko IY, Lobachev VM, Kononikhin AS et al (2016) Oxidation of capital ES, Cyrillicsmall a, Cyrillic2+-binding domain of NADPH oxidase 5 (NOX5): toward understanding the mechanism of inactivation of NOX5 by ROS. PLoS One 11:e0158726

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yang Y, He Y, Wang X et al (2017) Protein SUMOylation modification and its associations with disease. Open Biol 7:170167

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pandey D, Chen F, Patel A et al (2011) SUMO1 negatively regulates reactive oxygen species production from NADPH oxidases. Arterioscler Thromb Vasc Biol 31:1634–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Serrander L, Jaquet V, Bedard K et al (2007) NOX5 is expressed at the plasma membrane and generates superoxide in response to protein kinase C activation. Biochimie 89:1159–1167

    Article  CAS  PubMed  Google Scholar 

  43. Fulton DJ (2009) Nox5 and the regulation of cellular function. Antioxid Redox Signal 11:2443–2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Manea SA, Todirita A, Raicu M et al (2014) C/EBP transcription factors regulate NADPH oxidase in human aortic smooth muscle cells. J Cell Mol Med 18:1467–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang Y, Chen F, Le B et al (2014) Impact of Nox5 polymorphisms on basal and stimulus-dependent ROS generation. PLoS One 9:e100102

    Article  PubMed  PubMed Central  Google Scholar 

  46. Segal AW (2016) NADPH oxidases as electrochemical generators to produce ion fluxes and turgor in fungi, plants and humans. Open Biol 6:50

    Article  Google Scholar 

  47. Henderson LM, Chappell JB, Jones OT (1987) The superoxide-generating NADPH oxidase of human neutrophils is electrogenic and associated with an H+ channel. Biochem J 246:325–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. DeCoursey TE (2016) The intimate and controversial relationship between voltage-gated proton channels and the phagocyte NADPH oxidase. Immunol Rev 273:194–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li D, Deconda D, Li A et al (2019) Effect of proton pump inhibitor therapy on NOX5, mPGES1 and iNOS expression in Barrett's Esophagus. Sci Rep 9:16242

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ahmarani L, Avedanian L, Al-Khoury J et al (2013) Whole-cell and nuclear NADPH oxidases levels and distribution in human endocardial endothelial, vascular smooth muscle, and vascular endothelial cells. Can J Physiol Pharmacol 91:71–79

    Article  CAS  PubMed  Google Scholar 

  51. Montezano AC, De Lucca CL, Persson P et al (2018) NADPH oxidase 5 is a pro-contractile Nox isoform and a point of cross-talk for calcium and redox signaling-implications in vascular function. J Am Heart Assoc 7:e009388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kiyohara T, Miyano K, Kamakura S et al (2018) Differential cell surface recruitment of the superoxide-producing NADPH oxidases Nox1, Nox2 and Nox5: the role of the small GTPase Sar1. Genes Cells 23:480–493

    Article  CAS  PubMed  Google Scholar 

  53. Chen J, Wang Y, Zhang W et al (2020) Membranous NOX5-derived ROS oxidizes and activates local Src to promote malignancy of tumor cells. Signal Transduct Target Ther 5:139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Camargo LL, Montezano AC, Hussain M et al (2022) Central role of c-Src in NOX5- mediated redox signalling in vascular smooth muscle cells in human hypertension. Cardiovasc Res 118:1359–1373

    Article  CAS  PubMed  Google Scholar 

  55. Ritsick DR, Edens WA, Finnerty V et al (2007) Nox regulation of smooth muscle contraction. Free Radic Biol Med 43:31–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gandara ACP, Dias FA, de Lemos PC et al (2021) Urate and NOX5 control blood digestion in the hematophagous insect. Front Physiol 12:633093

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sabeur K, Ball BA (2007) Characterization of NADPH oxidase 5 in equine testis and spermatozoa. Reproduction 134:263–270

    Article  CAS  PubMed  Google Scholar 

  58. Kraja AT, Cook JP, Warren HR et al (2017) New blood pressure-associated loci identified in meta-analyses of 475 000 individuals. Circ Cardiovasc Genet 10:e001778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Han X, Hu Z, Chen J et al (2017) Associations between genetic variants of NADPH oxidase-related genes and blood pressure responses to dietary sodium intervention: the GenSalt study. Am J Hypertens 30:427–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pandey D, Patel A, Patel V et al (2012) Expression and functional significance of NADPH oxidase 5 (Nox5) and its splice variants in human blood vessels. Am J Physiol Heart Circ Physiol 302:H1919–H1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Deliyanti D, Alrashdi SF, Touyz RM et al (2020) Nox (NADPH oxidase) 1, Nox4, and Nox5 promote vascular permeability and neovascularization in retinopathy. Hypertension 75:1091–1101

    Article  CAS  PubMed  Google Scholar 

  62. Montezano AC, Burger D, Paravicini TM et al (2010) Nicotinamide adenine dinucleotide phosphate reduced oxidase 5 (Nox5) regulation by angiotensin II and endothelin-1 is mediated via calcium/calmodulin-dependent, rac-1-independent pathways in human endothelial cells. Circ Res 106:1363–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yeung KR, Chiu CL, Pidsley R et al (2016) DNA methylation profiles in preeclampsia and healthy control placentas. Am J Physiol Heart Circ Physiol 310:H1295–H1303

    Article  PubMed  Google Scholar 

  64. Zhu C, Yu ZB, Chen XH et al (2011) DNA hypermethylation of the NOX5 gene in fetal ventricular septal defect. Exp Ther Med 2:1011–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lucas-Herald AK, Montezano AC, Alves-Lopes R et al (2022) Vascular dysfunction and increased cardiovascular risk in hypospadias. Eur Heart J 43:1832–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Siuda D, Zechner U, El Hajj N et al (2012) Transcriptional regulation of Nox4 by histone deacetylases in human endothelial cells. Basic Res Cardiol 107:283

    Article  PubMed  Google Scholar 

  67. Manea SA, Antonescu ML, Fenyo IM et al (2018) Epigenetic regulation of vascular NADPH oxidase expression and reactive oxygen species production by histone deacetylase-dependent mechanisms in experimental diabetes. Redox Biol 16:332–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen F, Li X, Aquadro E et al (2016) Inhibition of histone deacetylase reduces transcription of NADPH oxidases and ROS production and ameliorates pulmonary arterial hypertension. Free Radic Biol Med 99:167–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kigawa Y, Miyazaki T, Lei XF et al (2017) Functional heterogeneity of Nadph oxidases in atherosclerotic and aneurysmal diseases. J Atheroscler Thromb 24:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Guzik TJ, Chen W, Gongora MC et al (2008) Calcium-dependent NOX5 nicotinamide adenine dinucleotide phosphate oxidase contributes to vascular oxidative stress in human coronary artery disease. J Am Coll Cardiol 52:1803–1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gole HK, Tharp DL, Bowles DK (2014) Upregulation of intermediate-conductance Ca2+−activated K+ channels (KCNN4) in porcine coronary smooth muscle requires NADPH oxidase 5 (NOX5). PLoS One 9:e105337

    Article  PubMed  PubMed Central  Google Scholar 

  72. Manea A, Manea SA, Gan AM et al (2015) Human monocytes and macrophages express NADPH oxidase 5; a potential source of reactive oxygen species in atherosclerosis. Biochem Biophys Res Commun 461:172–179

    Article  CAS  PubMed  Google Scholar 

  73. Vlad ML, Manea SA, Lazar AG et al (2019) Histone acetyltransferase-dependent pathways mediate upregulation of NADPH oxidase 5 in human macrophages under inflammatory conditions: a potential mechanism of reactive oxygen species overproduction in atherosclerosis. Oxidative Med Cell Longev 2019:3201062

    Article  Google Scholar 

  74. Petheo GL, Kerekes A, Mihalffy M et al (2021) Disruption of the NOX5 gene aggravates atherosclerosis in rabbits. Circ Res 128:1320–1322

    Article  CAS  PubMed  Google Scholar 

  75. Stanic B, Pandey D, Fulton DJ et al (2012) Increased epidermal growth factor-like ligands are associated with elevated vascular nicotinamide adenine dinucleotide phosphate oxidase in a primate model of atherosclerosis. Arterioscler Thromb Vasc Biol 32:2452–2460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Siu KL, Li Q, Zhang Y et al (2017) NOX isoforms in the development of abdominal aortic aneurysm. Redox Biol 11:118–125

    Article  CAS  PubMed  Google Scholar 

  77. Guzik B, Sagan A, Ludew D et al (2013) Mechanisms of oxidative stress in human aortic aneurysms--association with clinical risk factors for atherosclerosis and disease severity. Int J Cardiol 168:2389–2396

    Article  PubMed  PubMed Central  Google Scholar 

  78. Furmanik M, Chatrou M, van Gorp R et al (2020) Reactive oxygen-forming Nox5 links vascular smooth muscle cell phenotypic switching and extracellular vesicle-mediated vascular calcification. Circ Res 127:911–927

    Article  CAS  PubMed  Google Scholar 

  79. Petsophonsakul P, Burgmaier M, Willems B et al (2022) Nicotine promotes vascular calcification via intracellular Ca2+−mediated, Nox5-induced oxidative stress, and extracellular vesicle release in vascular smooth muscle cells. Cardiovasc Res 118:2196–2210

    Article  CAS  PubMed  Google Scholar 

  80. Ho F, Watson AMD, Elbatreek MH et al (2022) Endothelial reactive oxygen-forming NADPH oxidase 5 is a possible player in diabetic aortic aneurysm but not atherosclerosis. Sci Rep 12:11570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Casas AI, Kleikers PW, Geuss E et al (2019) Calcium-dependent blood-brain barrier breakdown by NOX5 limits postreperfusion benefit in stroke. J Clin Invest 129:1772–1778

    Article  PubMed  PubMed Central  Google Scholar 

  82. Neves KB, Harvey AP, Moreton F et al (2019) ER stress and Rho kinase activation underlie the vasculopathy of CADASIL. JCI Insight 4:e131344

    Article  PubMed  PubMed Central  Google Scholar 

  83. Cortes A, Solas M, Pejenaute A et al (2021) Expression of endothelial NOX5 alters the integrity of the blood-brain barrier and causes loss of memory in aging mice. Antioxidants (Basel) 10:1311

    Article  CAS  PubMed  Google Scholar 

  84. Fouillade C, Monet-Leprêtre M, Baron-Menguy C et al (2012) Notch signalling in smooth muscle cells during development and disease. Cardiovasc Res 95:138–146

    Article  CAS  PubMed  Google Scholar 

  85. Zhao GJ, Zhao CL, Ouyang S et al (2020) Ca(2+)-dependent NOX5 (NADPH oxidase 5) exaggerates cardiac hypertrophy through reactive oxygen species production. Hypertension 76:827–838

    Article  CAS  PubMed  Google Scholar 

  86. Holterman CE, Thibodeau JF, Towaij C et al (2014) Nephropathy and elevated BP in mice with podocyte-specific NADPH oxidase 5 expression. J Am Soc Nephrol 25:784–797

    Article  CAS  PubMed  Google Scholar 

  87. Jha JC, Banal C, Okabe J et al (2017) NADPH oxidase Nox5 accelerates renal injury in diabetic nephropathy. Diabetes 66:2691–2703

    Article  CAS  PubMed  Google Scholar 

  88. Holterman CE, Boisvert NC, Thibodeau JF et al (2019) Podocyte NADPH oxidase 5 promotes renal inflammation regulated by the toll-like receptor pathway. Antioxid Redox Signal 30:1817–1830

    Article  CAS  PubMed  Google Scholar 

  89. Jha JC, Dai A, Holterman CE et al (2019) Endothelial or vascular smooth muscle cell-specific expression of human NOX5 exacerbates renal inflammation, fibrosis and albuminuria in the Akita mouse. Diabetologia 62:1712–1726

    Article  CAS  PubMed  Google Scholar 

  90. Yu P, Han W, Villar VA et al (2014) Unique role of NADPH oxidase 5 in oxidative stress in human renal proximal tubule cells. Redox Biol 2:570–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ge QM, Huang CM, Zhu XY et al (2017) Differentially expressed miRNAs in sepsis-induced acute kidney injury target oxidative stress and mitochondrial dysfunction pathways. PLoS One 12:e0173292

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kim JH, Cheong HS, Sul JH et al (2014) A genome-wide association study identifies potential susceptibility loci for Hirschsprung disease. PLoS One 9:e110292

    Article  PubMed  PubMed Central  Google Scholar 

  93. Shin JG, Seo JY, Seo JM et al (2019) Association analysis of NOX5 polymorphisms with Hirschsprung disease. J Pediatr Surg 54:1815–1819

    Article  PubMed  Google Scholar 

  94. Wang J, **ao J, Meng X et al (2021) NOX5 is expressed aberrantly but not a critical pathogenetic gene in Hirschsprung disease. BMC Pediatr 21:153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Antony S, Jiang G, Wu Y et al (2017) NADPH oxidase 5 (NOX5)-induced reactive oxygen signaling modulates normoxic HIF-1alpha and p27 (Kip1) expression in malignant melanoma and other human tumors. Mol Carcinog 56:2643–2662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dho SH, Kim JY, Lee KP et al (2017) STAT5A-mediated NOX5-L expression promotes the proliferation and metastasis of breast cancer cells. Exp Cell Res 351:51–58

    Article  CAS  PubMed  Google Scholar 

  97. Kalatskaya I (2016) Overview of major molecular alterations during progression from Barrett's esophagus to esophageal adenocarcinoma. Ann N Y Acad Sci 1381:74–91

    Article  CAS  PubMed  Google Scholar 

  98. Roy K, Wu Y, Meitzler JL et al (2015) NADPH oxidases and cancer. Clin Sci (Lond) 128:863–875

    Article  CAS  PubMed  Google Scholar 

  99. Antony S, Wu Y, Hewitt SM et al (2013) Characterization of NADPH oxidase 5 expression in human tumors and tumor cell lines with a novel mouse monoclonal antibody. Free Radic Biol Med 65:497–508

    Article  CAS  PubMed  Google Scholar 

  100. Hong J, Li D, Wands J et al (2013) Role of NADPH oxidase NOX5-S, NF-kappaB, and DNMT1 in acid-induced p16 hypermethylation in Barrett's cells. Am J Phys Cell Phys 305:C1069–C1079

    CAS  Google Scholar 

  101. Chen J, Wang Y, Zhang W et al (2021) NOX5 mediates the crosstalk between tumor cells and cancer-associated fibroblasts via regulating cytokine network. Clin Transl Med 11:e472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Goncalves JDS, Carvalho FL, Coutinho I et al (2020) NADPH oxidase 5 upregulation is associated with lymphoma aggressiveness. Rev Assoc Med Bras (1992) 66:210–215

    Article  PubMed  Google Scholar 

  103. Carnesecchi S, Rougemont AL, Doroshow JH et al (2015) The NADPH oxidase NOX5 protects against apoptosis in ALK-positive anaplastic large-cell lymphoma cell lines. Free Radic Biol Med 84:22–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Holl M, Koziel R, Schafer G et al (2016) ROS signaling by NADPH oxidase 5 modulates the proliferation and survival of prostate carcinoma cells. Mol Carcinog 55:27–39

    Article  PubMed  Google Scholar 

  105. Dho SH, Kim JY, Kwon ES et al (2015) NOX5-L can stimulate proliferation and apoptosis depending on its levels and cellular context, determining cancer cell susceptibility to cisplatin. Oncotarget 6:39235–39246

    Article  PubMed  PubMed Central  Google Scholar 

  106. Park S, Oh SS, Lee KW et al (2018) NDRG2 contributes to cisplatin sensitivity through modulation of BAK-to-Mcl-1 ratio. Cell Death Dis 9:30

    Article  PubMed  PubMed Central  Google Scholar 

  107. Kalinina EV, Andreev YA, Petrova AS et al (2018) Redox-dependent expression of genes encoding NADPH oxidase 5 and the key antioxidant enzymes during formation of drug resistance of tumor cells to cisplatin. Bull Exp Biol Med 165:678–681

    Article  CAS  PubMed  Google Scholar 

  108. Massari M, Nicoll CR, Marchese S, Mattevi A, Mascotti ML (2022) Evolutionary and structural analyses of the NADPH oxidase family in eukaryotes reveal an initial calcium dependency. Redox Biol 12(56):102436

    Article  Google Scholar 

Download references

Acknowledgements

The authors have received funds from the British Heart Foundation (BHF) (RG/13/7/30099, RE/13/5/30177). RMT is supported through the Dr. Phil Gold Chair, McGill University, Montreal.

Conflicts

There are no conflicts to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rhian M. Touyz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Camargo, L.L., Rios, F., Montezano, A., Touyz, R.M. (2023). Nox5: Molecular Regulation and Pathophysiology. In: Pick, E. (eds) NADPH Oxidases Revisited: From Function to Structure. Springer, Cham. https://doi.org/10.1007/978-3-031-23752-2_13

Download citation

Publish with us

Policies and ethics

Navigation