NADPH Oxidase 1: At the Interface of the Intestinal Epithelium and Gut Microbiota

  • Chapter
  • First Online:
NADPH Oxidases Revisited: From Function to Structure
  • 535 Accesses

Abstract

NOX1 was the first of the NOX family of NADPH oxidases described with sequence homologous to the well-known microbicidal NADPH oxidase of phagocytes. NOX1 not only shows close structural similarities with the phagocytic NOX2-based prototype, but also exhibits striking functional similarities as a regulated multi-component enzyme complex. Early studies explored proposed roles for NOX1 ranging from reactive oxygen species (ROS)-related signaling functions in responses to activated oncogenes, growth factors, and vascular agonists to voltage-gated proton transport. However, most current evidence supports notions of NOX1 functioning primarily in roles related to mucosal innate immunity, particularly in the colon epithelium where it exhibits its highest expression. Like its phagocytic counterpart, it acts as a tightly regulated ROS generator responsive to a variety of microbial patterns and induced by inflammatory cytokines. Defects in NOX1 in humans are associated with inflammatory bowel disease, consistent with roles of NOX1 related to innate immunity. Recent cancer transcriptomic analysis has not supported proposed links between high NOX1 expression and RAS mutations or cancer progression. This review provides an historical account of research developments on the NOX1-based NADPH oxidase and offers critical perspectives on these findings in the broader context of the redox biology field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 234.33
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 299.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 299.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suh YA, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D, Chung AB, Griendling KK, Lambeth JD (1999) Cell transformation by the superoxide-generating oxidase Mox1. Nature 401:79–82

    Article  CAS  PubMed  Google Scholar 

  2. Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189

    Article  CAS  PubMed  Google Scholar 

  3. Geiszt M, Leto TL (2004) NOX family of NAD(P)H oxidases: host defense and beyond. J Biol Chem 279:51715–51718

    Article  CAS  PubMed  Google Scholar 

  4. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  CAS  PubMed  Google Scholar 

  5. Yu SM, Ferrans Z-X, Irani VJ, Finkel K (1995) Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270:296–299

    Article  PubMed  Google Scholar 

  6. Irani K, **a Y, Zweier JL, Sollott SJ, Der CJ, Fearon ER, Sundaresan M, Finkel T, Goldschmidt-Clermont PJ (1997) Mitogenic signaling by oxidants in Ras-transformed fibroblasts. Science 275:1649–1652

    Article  CAS  PubMed  Google Scholar 

  7. Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB, Rhee SG (1997) Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem 272:217–221

    Article  CAS  PubMed  Google Scholar 

  8. Magnani F, Nenci S, Millana Fananas E, Ceccon M, Romero E, Fraaije MW, Mattevi A (2017) Crystal structures and atomic model of NADPH oxidases. Proc Natl Acad Sci U S A 114:6764–6769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Banfi B, Maturana A, Jaconi S, Arnaudeau S, Laforge T, Sinha B, Ligeti E, Demaurex N, Krause KH (2000) A mammalian H + channel generated through alternative splicing of the NADPH oxidase homolog NOH-1. Science 287:138–142

    Article  CAS  PubMed  Google Scholar 

  10. Geiszt M, Lekstrom K, Leto TL (2004) Analysis of mRNA transcripts from the NAD(P)H oxidase 1 (Nox1) gene. Evidence against production of the NADPH oxidase homolog-1 short (NOH-1S) transcript variant. J Biol Chem 279:51 661–668

    Article  Google Scholar 

  11. Harper RW, Xu CH, Soucek K, Setiadi H, Eiserich JP (2005) A reappraisal of the genomic organization of human Nox1 and its splice variants. Arch Biochem Biophys 435:323–330

    Article  CAS  PubMed  Google Scholar 

  12. Banfi B et al (2005) Corrections and clarifications. Science 307:44. https://doi.org/10.1126/science.307.5706.44

    Article  CAS  Google Scholar 

  13. Ramsey IS, Moran MM, Chong JA, Chapman DE (2006) A voltage-gated proton-selective channel lacking the pore domain. Nature 440:1213–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Arnold RS, Shi J, Murad E, Whalen AM, Sun CQ, Polavarapu R, Parthasarathy S, Petros JA, Lambeth JD (2001) Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase nox1. Proc Natl Acad Sci U S A 98:5550–5555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arbiser JL, Petros J, Klafter R, Govindajaran B, McLaughlin ER, Brown LF, Cohen C, Moses M, Kilroy S, Arnold RS, Lambeth JD (2002) Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proc Natl Acad Sci U S A 99:715–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Banfi B, Clark RA, Steger K, Krause KH (2003) Two novel proteins activate superoxide generation by the NADPH oxidase NOX1. J Biol Chem 278:3510–3513

    Article  CAS  PubMed  Google Scholar 

  17. Geiszt M, Lekstrom K, Witta J, Leto TL (2003) Proteins homologous to p47phox and p67phox support superoxide production by NAD(P)H oxidase 1 in colon epithelial cells. J Biol Chem 278:20006–20012

    Article  CAS  PubMed  Google Scholar 

  18. Takeya R, Ueno N, Kami K, Taura M, Kohjima M, Izaki T, Nunoi H, Sumimoto H (2003) Novel human homologues of p47phox and p67phox participate in activation of superoxide-producing NADPH oxidases. J Biol Chem 278:25234–25246

    Article  CAS  PubMed  Google Scholar 

  19. Fagerberg L, Hallstrom B, Oksvold P et al (2014) Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics 13:397–406. https://doi.org/10.1074/mcp.M113.035600

    Article  CAS  PubMed  Google Scholar 

  20. Leto TL, Morand S, Hurt D, Ueyama T (2009) Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxid Redox Signal 11:2607–2619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sumimoto H, Minakami R, Miyano K (2019) Soluble regulatory proteins for activation of NOX Family NADPH oxidases. In: Knaus UG, Leto TL (eds) NADPH oxidases: methods and protocols. Methods in molecular biology, vol 1982. Springer, New York, pp 121–128

    Chapter  Google Scholar 

  22. Ambasta RK, Kumar P, Griendling KK, Schmidt H, Busse R, Brandes RP (2004) Direct interaction of the novel nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase. J Biol Chem 279:45935–45941

    Article  CAS  PubMed  Google Scholar 

  23. Ueyama T, Geiszt M, Leto TL (2006) Involvement of Rac1 in activation of multicomponent Nox1- and Nox3-based NADPH oxidases. Mol Cell Biol 26:2160–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dutta S, Rittinger K (2010) Regulation of NOXO1 activity through reversible interactions with p22phox and NOXA1. PLoS One 5:e10478

    Article  PubMed  PubMed Central  Google Scholar 

  25. Miyano K, Ueno N, Takeya R, Sumimoto H (2006) Direct involvement of the small GTPase Rac in activation of the superoxide producing NADPH oxidase Nox1. J Biol Chem 281:21857–21868

    Article  CAS  PubMed  Google Scholar 

  26. Cheng G, Diebold BA, Hughes Y, Lambeth JD (2006) Nox1-dependent reactive oxygen generation is regulated by Rac1. J Biol Chem 281:17718–17726

    Article  CAS  PubMed  Google Scholar 

  27. Abo A, Pick E, Hall A, Totty N, Teahan CG, Segal AW (1991) Activation of the NADPH oxidase involves the small GTP-binding protein p21 rac1. Nature 353:668–670

    Article  CAS  PubMed  Google Scholar 

  28. Geiszt M, Lekstrom K, Brenner S, Hewitt SM, Dana R, Malech HL, Leto TL (2003) NAD(P)H oxidase 1, a product of differentiated colon epithelial cells, can partially replace glycoprotein 91phox in the regulated production of superoxide by phagocytes. J Immunol 171:299–306

    Article  CAS  PubMed  Google Scholar 

  29. Lavigne M, Holland SM, Leto TL (2001) Genetic demonstration of p47phox-dependent superoxide anion production in murine vascular smooth muscle cells. Circulation 104:79–84

    Article  CAS  PubMed  Google Scholar 

  30. Li JM, Wheatcroft S, Fan LM, Kearney MT, Shah AM (2004) Opposing roles of p47phox in basal versus angiotensin II–stimulated alterations in vascular O2 production, vascular tone, and mitogen-activated protein kinase activation. Circulation 109:1307–1313

    Article  CAS  PubMed  Google Scholar 

  31. Szanto I, Rubbia-Brandt L, Kiss P et al (2005) Expression of NOX1, a superoxide generating NADPH oxidase, in colon cancer and inflammatory bowel disease. J Pathol 207:164–176

    Article  CAS  PubMed  Google Scholar 

  32. Borregaard N, Heiple JM, Simons ER et al (1983) Subcellular localization of the b-cytochrome component of the human neutrophil microbicidal oxidase: translocation during activation. J Cell Biol 97:52–61

    Article  CAS  PubMed  Google Scholar 

  33. Miller FJ Jr, Filali M, Huss GJ, Stanic B, Chamseddine A, Barna TJ, Lamb FS (2007) Cytokine activation of nuclear factor kappa B in vascular smooth muscle cells requires signaling endosomes containing Nox1 and CIC-3. Circ Res 101:663–671

    Article  CAS  PubMed  Google Scholar 

  34. Yamamoto A, Takeya R, Matsumoto M, Nakayama KI, Sumimoto H (2013) Phosphorylation of Noxo1 at threonine 341 regulates its interaction with Noxa1 and the superoxide producing activity of Nox1. FEBS J 280:5145–5159

    Article  CAS  PubMed  Google Scholar 

  35. Debbabi M, Kroviarski Y, Bournier O, Gougerot-Pocidalo MA, El-Benna J, Dang PM (2013) NOXO1 phosphorylation on serine 154 is critical for optimal NADPH oxidase 1 assembly and activation. FASEB J 27:1733–1748

    Article  CAS  PubMed  Google Scholar 

  36. Streeter J, Schickling BM, Jiang S, Stanic B, Thiel WH, Gakhar L, Houtman JC, Miller FJ Jr (2014) Phosphorylation of Nox1 regulates association with NoxA1 activation domain. Circ Res 115:911–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim JS, Diebold BA, Babior BM, Knaus UG, Bokoch GM (2007) Regulation of Nox1 activity via protein kinase A-mediated phosphorylation of NoxA1 and 14-3-3 binding. J Biol Chem 282:34787–34800

    Article  CAS  PubMed  Google Scholar 

  38. Kroviarski Y, Debbabi M, Bachoual R, Perianin A, Gougerot-Pocidalo MA, El-Benna J, Dang PM (2010) Phosphorylation of NADPH oxidase activator 1 (NOXA1) on serine 282 by MAP kinases and on serine 172 by protein kinase C and protein kinase A prevents NOX1 hyperactivation. FASEB J 24:2077–2092

    Article  CAS  PubMed  Google Scholar 

  39. Karathanassis D, Stahelin RV, Bravo J, Perisic O, Pacold CM, Cho WW, Williams RL (2002) Binding of the PX domain of p47 phox to phosphatidylinositol 3,4-bisphosphate and phosphatidic acid is masked by an intramolecular interaction. EMBO J 21(19):5057–5068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ueyama T, Lekstrom K, Tsujibe S, Saito N, Leto TL (2007) Subcellular localization and function of alternatively spliced Noxo1 isoforms. Free Radic Biol Med 42:180–190

    Article  CAS  PubMed  Google Scholar 

  41. Cheng G, Lambeth JD (2004) NOXO1, regulation of lipid binding, localization, and activation of Nox1 by the Phox homology (PX) domain. J Biol Chem 279:4737–4742

    Article  CAS  PubMed  Google Scholar 

  42. Takeya R, Taura M, Yamasaki T, Naito S, Sumimoto H (2006) Expression and function of Noxo1γ, an alternative splicing form of the NADPH oxidase organizer 1. FEBS J 273:3663–3677

    Article  CAS  PubMed  Google Scholar 

  43. Tian W, Li XJ, Stull ND, Ming W, Suh CI, Bissonnette SA, Yaffe MB, Grinstein S, Atkinson SJ, Dinauer MC (2008) FcgR-stimulated activation of the NADPH oxidase: phosphoinositide-binding protein p40phox regulates NADPH oxidase activity after enzyme assembly on the phagosome. Blood 112:3867–3877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ueyama T, Kusakabe T, Karasawa S, Kawasaki T, Shimizu A, Son J, Leto TL, Miyawaki A, Saito NJ (2008) Sequential binding of cytosolic Phox complex to phagosomes through regulated adaptor proteins: evaluation using novel monomeric Kusabira-green system and live imaging of phagocytosis. J Immunol 181:629–640

    Article  CAS  PubMed  Google Scholar 

  45. Fisher AB (2017) Peroxiredoxin 6 in the repair of peroxidized cell membranes and cell signaling. Arch Biochem Biophys 617:68–83

    Article  CAS  PubMed  Google Scholar 

  46. Chatterjee S, Feinstein SI, Dodia C, Sorokina E, Lien YC, Nguyen S, Debolt K, Speicher D, Fisher AB (2011) Peroxiredoxin 6 phosphorylation and subsequent phospholipase A2 activity are required for agonist-mediated activation of NADPH oxidase in mouse pulmonary microvasculature endothelium and alveolar macrophages. J Biol Chem 286:11696–11706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ambruso DR, Ellison MA, Thurman GW, Leto TL (2012) Peroxiredoxin 6 translocates to the plasma membrane during neutrophil activation and is required for optimal NADPH oxidase activity. Biochim Biophys Acta 1823:306–315

    Article  CAS  PubMed  Google Scholar 

  48. Vázquez-Medina JP, Dodia C, Weng L et al (2016) The phospholipase A2 activity of peroxiredoxin 6 modulates NADPH oxidase 2 activation via lysophosphatidic acid receptor signaling in the pulmonary endothelium and alveolar macrophages. FASEB J 30:2885–3898

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kwon J, Wang A, Burke DJ, Boudreau HE, Lekstrom KJ, Korzeniowska A, Sugamata R, Kim YS, Yi L, Ersoy I, Jaeger S, Palaniappan K, Ambruso DR, Jackson SH, Leto TL (2016) Peroxiredoxin 6 (Prdx6) supports NADPH oxidase1 (Nox1)-based superoxide generation and cell migration. Free Radic Biol Med 96:99–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. van der Post S, Birchenough GMH, Held JM (2021) NOX1-dependent redox signaling potentiates colonic stem cell proliferation to adapt to the intestinal microbiota by linking EGFR and TLR activation. Cell Rep 35:108949

    Article  PubMed  Google Scholar 

  51. Fukuyama M, Rokutan K, Sano T, Miyake H, Shimada M, Tashiro S (2005) Overexpression of a novel superoxide producing enzyme, NADPH oxidase 1, in adenoma and well differentiated adenocarcinoma of the human colon. Cancer Lett 221:97–104

    Article  CAS  PubMed  Google Scholar 

  52. Laurent E, McCoy JW 3rd, Macina RA, Liu W, Cheng G, Robine S, Papkoff J, Lambeth JD (2008) Nox1 is over-expressed in human colon cancers and correlates with activating mutations in K-Ras. Int J Cancer 123:100–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Matsumoto M, Katsuyama M, Iwata K, Ibi M, Zhang J, Zhu K, Nauseef WM, Yabe-Nishimura C (2014) Characterization of N-glycosylation sites on the extracellular domain of NOX1/NADPH oxidase. Free Radic Biol Med 68:196–204

    Article  CAS  PubMed  Google Scholar 

  54. Lu J, Jiang G, Wu Y, Antony S, Meitzler JL, Juhasz A, Liu H, Roy K, Makhlouf H, Chuaqui R, Butcher D, Konaté MM, Doroshow JH (2020) NADPH oxidase 1 is highly expressed in human large and small bowel cancers. PLoS One 15:e0233208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kuwano Y, Kawahara T, Yamamoto H, Teshima-Kondo S, Tomiga K, Masuda K, Kishi K, Morita K, Rokutan K (2006) Interferon-gamma activated transcription of NADPH oxidase 1 gene and upregulates production of superoxide anion by human large intestinal epithelial cells. Am J Phys Cell Physiol 290:c433–c443

    Article  CAS  Google Scholar 

  56. Kuwano Y, Tominaga K, Kawahara T, Sasaki H, Takeo K, Nishida K, Masuda K, Kawai T, Teshima-Kondo S, Rokutan K (2008) Tumor necrosis factor alpha activates transcription of NADPH oxidase organizer 1 (NOXO) gene and upregulates superoxide production in colon epithelial cells. Free Radic Biol Med 45:1642–1652

    Article  CAS  PubMed  Google Scholar 

  57. Kamizato M, Nishida K, Masuda K, Takeo K, Yamamoto Y, Kawai T, Teshima-Kondo S, Tanahashi T, Rokutan K (2009) Interleukin 10 inhibits interferon gamma- and tumor necrosis factor alpha-stimulated activation of NADPH oxidase 1 in human colonic epithelial cells and the mouse colon. J Gastroenterol 44:1172–1184

    Article  CAS  PubMed  Google Scholar 

  58. Makhezer N, Ben Khemis M, Liu D, Khichane Y, Marzaioli V, Tlili A, Mojallali M, Pintard C, Letteron P, Hurtado-Nedelec M, El-Benna J, Marie JC, Sannier A, Pelletier AL, Dang PM (2019) NOX1-derived ROS drive the expression of Lipocalin-2 in colonic epithelial cells in inflammatory conditions. Mucosal Immunol 12:117–131

    Article  CAS  PubMed  Google Scholar 

  59. Liu H, Antony S, Roy K, Juhasz A, Wu Y, Lu J, Meitzler JL, Jiang G, Polley E, Doroshow JH (2017) Interleukin-4 and interleukin-13 increase NADPH oxidase 1-related proliferation of human colon cancer cells. Oncotarget 8:38113–38135

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kawahara T, Teshima S, Oka A, Sugiyama T, Kishi K, Rokutan K (2001) Type I helicobacter pylori lipopolysaccharide stimulates toll-like receptor 4 and activates mitogen oxidase 1 in gastric pit cells. Infect Immun 69:4382–4389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kawahara T, Kuwano Y, Teshima-Kondo S et al (2004) Role of nicotinamide adenine dinucleotide phosphate oxidase 1 in oxidative burst response to toll-like receptor 5 signaling in large intestinal epithelial cells. J Immunol 172:3051–3058

    Article  CAS  PubMed  Google Scholar 

  62. Aviello G, Knaus UG (2018) NADPH oxidases and ROS signaling in the gastrointestinal tract. Mucosal Immunol 11:1011–1023

    Article  CAS  PubMed  Google Scholar 

  63. Dang PM, Rolas L, El-Benna J (2020) The dual role of reactive oxygen species-generating nicotinamide adenine dinucleotide phosphate oxidases in gastrointestinal inflammation and therapeutic perspectives Antioxid & Redox. Signals 33:354–373

    CAS  Google Scholar 

  64. Esworthy RS, Kim BW, Chow J, Shen B, Doroshow JH, Chu FF (2014) Nox1 causes ileocolitis in mice deficient in glutathione peroxidase-1 and -2. Free Radic Biol Med 68:315–325

    Article  CAS  PubMed  Google Scholar 

  65. Coant N, Ben Mkaddem S, Pedruzzi E et al (2010) NADPH oxidase 1 modulates WNT and NOTCH1 signaling to control the fate of proliferative progenitor cells in the colon. Mol Cell Biol 30:2636–2650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tréton X, Pedruzzi E, Guichard C, Ladeiro Y, Sedghi S, Vallée M, Fernandez N, Bruyère E, Woerther PL, Ducroc R et al (2014) Combined NADPH oxidase 1 and interleukin 10 deficiency induces chronic endoplasmic reticulum stress and causes ulcerative colitis-like disease in mice. PLoS One 9:e101669

    Article  PubMed  PubMed Central  Google Scholar 

  67. Jones RM, Luo L, Ardita CS, Richardson AN, Kwon YM, Mercante JW et al (2013) Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. EMBO J 32:3017–3028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Alam A, Leoni G, Wentworth CC, Kwal JM, Wu H, Ardita CS, Swanson PA, Lambeth JD, Jones RM, Nusrat A, Neish AS (2014) Redox signaling regulates commensal-mediated mucosal homeostasis and restitution and requires formyl peptide receptor 1. Mucosal Immunol 7:645–655

    Article  CAS  PubMed  Google Scholar 

  69. Leoni G, Alam A, Neumann PA, Lambeth JD, Cheng G, McCoy J, Hilgarth RS, Kundu K, Murthy N, Kusters D, Reutelingsperger C, Perretti M, Parkos CA et al (2013) Annexin A1, formyl peptide receptor, and NOX1 orchestrate epithelial repair. J Clin Invest 123:443–454

    Article  CAS  PubMed  Google Scholar 

  70. Kato M, Marumo M, Nakayama J, Matsumoto M, Yabe-Nishimura C, Kamata T (2016) The ROS-generating oxidase Nox1 is required for epithelial restitution following colitis. Exp Anim 65:197–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu J, Iwata K, Zhu K, Matsumoto M, Matsumoto K, Asaoka N, Zhang X, Ibi M, Katsuyama M, Tsutsui M, Kato S, Yabe-Nishimura C (2020) NOX1/NADPH oxidase in bone marrow-derived cells modulates intestinal barrier function. Free Radic Biol Med 147:90–101

    Article  CAS  PubMed  Google Scholar 

  72. Stenke E, Bourke B, Knaus UG (2019) NADPH oxidases in inflammatory bowel disease. In: Knaus UG, Leto TL (eds) NADPH oxidases: methods and protocols. Methods in molecular biology, vol 1982. Springer, New York, pp 695–713

    Chapter  Google Scholar 

  73. Falcone EL, Holland SM (2019) Gastrointestinal complications in chronic granulomatous disease. In: Knaus UG, Leto TL (eds) NADPH oxidases: methods and protocols. Methods in molecular biology, vol 1982. Springer, New York, pp 573–586

    Chapter  Google Scholar 

  74. Schwerd T, Bryant RV, Pandey S, Capitani M, Meran L, Cazier JB et al (2018) NOX1 loss-of-function genetic variants in patients with inflammatory bowel disease. Mucosal Immunol 11:562–574

    Article  CAS  PubMed  Google Scholar 

  75. Hayes P, Dhillon S, O’Neill K, Thoeni C, Hui KY, Elkadri A et al (2015) Defects in NADPH oxidase genes NOX1 and DUOX2 in very early onset inflammatory bowel disease. Cell Mol Gastroenterol Hepatol 1:489–502

    Article  PubMed  PubMed Central  Google Scholar 

  76. Lipinski S, Till A, Sina C et al (2009) DUOX2-derived reactive oxygen species are effectors of NOD2-mediated antibacterial responses. J Cell Sci 122:3522–3530

    Article  CAS  PubMed  Google Scholar 

  77. Khoshnevisan R, Anderson M, Babcock S, Anderson S, Illig D, Marquardt B, Sherkat R, Schröder K, Moll F, Hollizeck S, Rohlfs M, Walz C, Adibi P, Rezaei A, Andalib A, Koletzko S, Muise AM, Snapper SB, Klein C, Thiagarajah JR, Kotlarz D (2020) NOX1 regulates collective and planktonic cell migration: insights from patients with pediatric-onset IBD and NOX1 deficiency. Inflamm Bowel Dis 26:1166–1176

    PubMed  PubMed Central  Google Scholar 

  78. Kuhns DB, Alvord WG, Heller T, Feld JJ, Pike KM, Marciano BE et al (2010) Residual NADPH oxidase and survival in chronic granulomatous disease. N Engl J Med 363:2600–2610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Huang C, De Ravin SS, Paul AR, Heller T, Ho N, Wu Datta L, Zerbe CS, Marciano BE, Kuhns DB, Kader HA, Holland SM, Malech HL, Brant SR, NIDDK IBD Genetics Consortium (2016) Genetic risk for inflammatory bowel disease is a determinant of Crohn’s disease development in chronic granulomatous disease. Inflamm Bowel Dis 22:2794–2801

    Article  PubMed  Google Scholar 

  80. LaBere B, Gutierrez MJ, Wright H, Garabedian E, Ochs HD, Fuleihan RL, Secord E, Marsh R, Sullivan KE, Cunningham-Rundles C, Notarangelo LD, Chen K (2022) Chronic granulomatous disease with inflammatory bowel disease: clinical presentation, treatment, and outcomes from the USIDNET Registry. J Allergy Clin Immunol Pract 10:1325–1333

    Article  PubMed  PubMed Central  Google Scholar 

  81. Dhillon SS, Fattouh R, Elkadri A et al (2014) Variants in nicotinamide adenine dinucleotide phosphate oxidase complex components determine susceptibility to very early onset inflammatory bowel disease. Gastroenterology 147:680–689

    Article  CAS  PubMed  Google Scholar 

  82. Marsh RA, Leiding JW, Logan BR, Griffith LM, Arnold DE, Haddad E, Falcone EL, Yin Z et al (2019) Chronic granulomatous disease-associated IBD resolves and does not adversely impact survival following allogeneic HCT. J Clin Immunol 39:653–667

    Article  PubMed  PubMed Central  Google Scholar 

  83. Campbell EL, Bruyninckx WJ, Kelly CJ, Glover LE, McNamee EN, Bowers BE et al (2014) Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation. Immunity 40:66–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dupuy C, Ohayon R, Valent A et al (1999) Purification of a novel flavoprotein involved in the thyroid NADPH oxidase. Cloning of the porcine and human cDNAs. J Biol Chem 274:37265–37269

    Article  CAS  PubMed  Google Scholar 

  85. De Deken X, Wang D, Many MC et al (2000) Cloning of two human thyroid cDNAs encoding new members of the NADPH oxidase family. J Biol Chem 275:23227–23233

    Article  PubMed  Google Scholar 

  86. DeDeken X, Miot F (2019) Duox defects and their roles in congenital hypothyroidism. In: Knaus UG, Leto TL (eds) NADPH oxidases: methods and protocols. Methods in molecular biology, vol 1982. Springer, New York, pp 667–693

    Chapter  Google Scholar 

  87. Geiszt M, Witta J, Baffi J, Lekstrom K, Leto TL (2003) Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense. FASEB J 17:1502–1504

    Article  CAS  PubMed  Google Scholar 

  88. Ha EM, Oh CT, Bae YS et al (2005) A direct role for dual oxidase in drosophila gut immunity. Science 310:847–850

    Article  CAS  PubMed  Google Scholar 

  89. Chavez V, Mohri-Shiomi A, Garsin DA (2009) Ce-Duox1/BLI-3 generates reactive oxygen species as a protective innate immune mechanism in Caenorhabditis elegans. Infect Immun 77:4983–4989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Flores MV, Crawford KC, Pullin LM et al (2010) Dual oxidase in the intestinal epithelium of zebrafish larvae has anti-bacterial properties. Biochem Biophys Res Commun 400:164–168

    Article  CAS  PubMed  Google Scholar 

  91. Parlato M, Charbit-Henrion F, Hayes P, Tiberti A, Aloi M, Cucchiara S et al (2017) First identification of biallelic inherited DUOX2 inactivating mutations as a cause of very early onset inflammatory bowel disease. Gastroenterology 153:609–611.e3

    Article  PubMed  Google Scholar 

  92. Haberman Y, Tickle TL, Dexheimer PJ, Kim MO, Tang D, Karns R, Baldassano RN, Noe JD, Rosh J, Markowitz J, Heyman MB, Griffiths AM, Crandall WV, Mack DR, Baker SS, Huttenhower C, Keljo DJ, Hyams JS, Kugathasan S, Walters TD, Aronow B, Xavier RJ, Gevers D, Denson LA (2014) Pediatric Crohn disease patients exhibit specific ileal transcriptome and microbiome signature. J Clin Invest 124:3617–3633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Grasberger H, Gao J, Nagao-Kitamoto H, Kitamoto S, Zhang M, Kamada N et al (2015) Increased expression of DUOX2 is an epithelial response to mucosal dysbiosis required for immune homeostasis in mouse intestine. Gastroenterology 149:1849–1859

    Article  CAS  PubMed  Google Scholar 

  94. Grasberger H, Magis AT, Sheng E, Conomos MP, Zhang M, Garzotto LS, Hou G, Bishu S, Nagao-Kitamoto H, El-Zaatari M, Kitamoto S, Kamada N, Stidham RW, Akiba Y, Kaunitz J, Haberman Y, Kugathasan S, Denson LA, Omenn GS, Kao JY (2021) DUOX2 variants associate with preclinical disturbances in microbiota-immune homeostasis and increased inflammatory bowel disease risk. J Clin Invest 131(9):e141676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Corcionivoschi N, Alvarez LA, Sharp TH, Strengert M, Alemka A, Mantell J, Verkade P, Knaus UG, Bourke B (2012) Mucosal reactive oxygen species decrease virulence by disrupting Campylobacter jejuni phosphotyrosine signaling. Cell Host Microbe 12:47–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Grasberger H, El-Zaatari M, Dang DT et al (2013) Dual oxidases control release of hydrogen peroxide by the gastric epithelium to prevent Helicobacter felis infection and inflammation in mice. Gastroenterology 145:1045–1054

    Article  CAS  PubMed  Google Scholar 

  97. Sommer F, Backhed F (2015) The gut microbiota engages different signaling pathways to induce Duox2 expression in the ileum and colon epithelium. Mucosal Immunol 8:372–379

    Article  CAS  PubMed  Google Scholar 

  98. MacFie TS, Poulsom R, Parker A, Warnes G, Boitsova T, Nijhuis A et al (2014) DUOX2 and DUOXA2 form the predominant enzyme system capable of producing the reactive oxygen species H2O2 in active ulcerative colitis and are modulated by 5-aminosalicylic acid. Inflamm Bowel Dis 20:514–524

    Article  PubMed  Google Scholar 

  99. Matziouridou SD, Roch C, Haabeth OA, Rudi K, Carlsen H, Kielland A (2018) iNOS- and NOX1-dependent ROS production maintains bacterial homeostasis in the ileum of mice. Mucosal Immunol 11:774–784

    Article  CAS  PubMed  Google Scholar 

  100. Pircalabioru G, Aviello G, Kubica M, Zhdanov A, Paclet MH, Brennan L, Hertzberger R, Papkovsky D, Bourke B, Knaus UG (2016) Defensive mutualism rescues NADPH Oxidase inactivation in gut infection. Cell Host Microbe 19:651–663

    Article  CAS  PubMed  Google Scholar 

  101. Falcone EL, Abusleme L, Swamydas M, Lionakis MS, Ding L, Hsu AP et al (2016) Colitis susceptibility in p47(phox-/-) mice is mediated by the microbiome. Microbiome 4:13

    Article  PubMed  PubMed Central  Google Scholar 

  102. Rodrigues-Sousa T, Ladeirinha AF, Santiago AR, Carvalheiro H, Raposo B, Alarcao A et al (2014) Deficient production of reactive oxygen species leads to severe chronic DSS-induced colitis in Ncf1/p47phox-mutant mice. PLoS One 9(5):e97532

    Article  PubMed  PubMed Central  Google Scholar 

  103. Miller BM, Liou MJ, Zhang LF, Nguyen H, Litvak Y, Schorr EM, Jang KK, Tiffany CR, Butler BP, Bäumler AJ (2020) Anaerobic respiration of NOX1-Derived hydrogen Peroxide licenses bacterial growth at the colonic surface. Cell Host Microbe 28:789–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Aviello G, Singh AK, O'Neill S, Conroy E, Gallagher W, D'Agostino G, Walker AW, Bourke B, Scholz D, Knaus UG (2019) Colitis susceptibility in mice with reactive oxygen species deficiency is mediated by mucus barrier and immune defense defects. Mucosal Immunol 12:1316–1326

    Article  CAS  PubMed  Google Scholar 

  105. Matsunaga Y, Clark T, Wanek AG, Bitoun JP, Gong Q, Good M, Kolls JK (2021) Intestinal IL-17R Signaling controls secretory IgA and oxidase balance in Citrobacter rodentium infection. J Immunol 206:766–775

    Article  CAS  PubMed  Google Scholar 

  106. Kumar P, Monin L, Castillo P, Elsegeiny W, Horne W, Eddens T, Vikram A, Good M, Schoenborn AA, Bibby K et al (2016) Intestinal interleukin-17 receptor signaling mediates reciprocal control of the gut microbiota and auto-immune inflammation. Immunity 44:659–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gimenez M, Schickling BM, Lopes LR, Miller FJ Jr (2016) Nox1 in cardiovascular diseases: regulation and pathophysiology. Clin Sci (Lond) 130:151–165

    Article  CAS  PubMed  Google Scholar 

  108. Sirokmany G, Donko A, Geiszt M (2016) Nox/Duox family of NADPH oxidases: lessons from knockout mouse models. Trends Pharmacol Sci 37:318–327

    Article  CAS  PubMed  Google Scholar 

  109. Lamb FS, Choi H, Miller MR, Stark RJ (2020) TNFα and reactive oxygen signaling in vascular smooth muscle cells in hypertension and atherosclerosis. Am J Hypertens 33:902–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Schröder K (2010) Isoform specific functions of Nox protein-derived reactive oxygen species in the vasculature. Curr Opin Pharmacol 10:122–126

    Article  PubMed  Google Scholar 

  111. Kamata T (2009) Roles of Nox1 and other Nox isoforms in cancer development. Cancer Sci 100:1382–1388

    Article  CAS  PubMed  Google Scholar 

  112. Sirokmany G, Pató A, Zana M, Donkó A, Bíró A, Nagy P, Geiszt M (2016) Epidermal growth factor-induced hydrogen peroxide production is mediated by dual oxidase 1. Free Radic Biol Med 97:204–211

    Article  CAS  PubMed  Google Scholar 

  113. Heppner D, Hristova M, Dustin CM, Danyal K, Habibovic A, van der Vliet A (2016) The NADPH oxidases DUOX1 and NOX2 play distinct roles in redox regulation of epidermal growth factor receptor signaling. J Biol Chem 291:23282–23293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ma WF, Boudreau HE, Leto TL (2021) Pan-cancer analysis shows TP53 mutations modulate the association of NOX4 with genetic programs of cancer progression and clinical outcome. Antioxidants (Basel) 10:235

    Article  CAS  PubMed  Google Scholar 

  115. Boudreau HE, Ma WF, Korzeniowska A, Park JJ, Bhagwat MA, Leto TL (2017) Histone modifications affect differential regulation of TGFβ- induced NADPH oxidase 4 (NOX4) by wild-type and mutant p53. Oncotarget 8:44379–44397

    Article  PubMed  PubMed Central  Google Scholar 

  116. Rokutan K, Kawahara T, Kuwano Y, Tominaga K, Sekiyama A, Teshima-Kondo S (2006) NADPH oxidases in the gastrointestinal tract: a potential role of Nox1 in innate immune response and carcinogenesis. Antioxid Redox Signal 8:1573–1582

    Article  CAS  PubMed  Google Scholar 

  117. Uhlem M, Zhang C, Lee S et al (2017) A pathology atlas of the human cancer transcriptome. Science 357. https://doi.org/10.1126/science.aa2507

  118. Ekbom A, Helmick C, Zack M et al (1990) Ulcerative colitis and colorectal cancer. A population-based study. N Engl J Med 323:1228–1233

    Article  CAS  PubMed  Google Scholar 

  119. Rubio CA, Befrits R (1997) Colorectal adenocarcinoma in Crohn’s disease: a retrospective histologic study. Dis Colon Rectum 40:1072–1078

    Article  CAS  PubMed  Google Scholar 

  120. Burgueño JF, Fritsch J, Gonzalez EE et al (2020) Epithelial TLR4 signaling activates DUOX2 to induce microbiota-driven tumorigenesis. Gastroenterology 160:797–808

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases, NIH (T.L.L.). The research of M.G. is supported by a grant from the National Research, Development, and Innovation Office (K133002) and by grant VEKOP-2.3.2-16-2016-00002. His work is also supported by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the MOLORKIV funding scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas L. Leto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leto, T.L., Geiszt, M. (2023). NADPH Oxidase 1: At the Interface of the Intestinal Epithelium and Gut Microbiota. In: Pick, E. (eds) NADPH Oxidases Revisited: From Function to Structure. Springer, Cham. https://doi.org/10.1007/978-3-031-23752-2_10

Download citation

Publish with us

Policies and ethics

Navigation