A Systematic Approach for Tracking the Evolution of XAI as a Field of Research

  • Conference paper
  • First Online:
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2022)

Abstract

The increasing use of AI methods in various applications has raised concerns about their explainability and transparency. Many solutions have been developed within the last few years to either explain the model itself or the decisions provided by the model. However, the number of contributions in the field of eXplainable AI (XAI) is increasing at such a high pace that it is almost impossible for a newcomer to identify key ideas, track the field’s evolution, or find promising new research directions.

Typically, survey papers serve as a starting point, providing a feasible entry point into a research area. However, this is not trivial for some fields with exponential growth in the literature, such as XAI. For instance, we analyzed 23 surveys in the XAI domain published within the last three years and surprisingly found no common conceptualization among them. This makes XAI one of the most challenging research areas to enter. To address this problem, we propose a systematic approach that enables newcomers to identify the principal ideas and track their evolution. The proposed method includes automating the retrieval of relevant papers, extracting their semantic relationship, and creating a temporal graph of ideas by post-analysis of citation graphs.

The main outcome of our method is Field’s Evolution Graph (FEG), which can be used to find the core idea of each approach in this field, see how a given concept has developed and evolved over time, observe how different notions interact with each other, and perceive how a new paradigm emerges through combining multiple ideas. As for demonstration, we show that FEG successfully identifies the field’s key articles, such as LIME or Grad-CAM, and maps out their evolution and relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abu-Jbara, A., Radev, D.: Coherent citation-based summarization of scientific papers. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 500–509 (2011)

    Google Scholar 

  2. Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., Kim, B.: Sanity checks for saliency maps. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  3. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), e0130140 (2015)

    Article  Google Scholar 

  4. Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., Müller, K.R.: How to explain individual classification decisions. J. Mach. Learn. Res. 11, 1803–1831 (2010)

    MATH  Google Scholar 

  5. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. ar**v preprint ar**v:1409.0473 (2014)

  6. Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A.: Network dissection: quantifying interpretability of deep visual representations. In: Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition, pp. 6541–6549 (2017)

    Google Scholar 

  7. Bien, J., Tibshirani, R.: Prototype selection for interpretable classification. Ann. Appl. Statist. 5(4), 2403–2424 (2011)

    Article  MATH  Google Scholar 

  8. Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., Elhadad, N.: Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1721–1730 (2015)

    Google Scholar 

  9. Chen, J., Zhuge, H.: Automatic generation of related work through summarizing citations. Concurr. Comput. Pract. Exp. 31(3), e4261 (2019)

    Article  Google Scholar 

  10. Craven, M., Shavlik, J.: Extracting tree-structured representations of trained networks. In: Advances in Neural Information Processing Systems, vol. 8 (1995)

    Google Scholar 

  11. Dabkowski, P., Gal, Y.: Real time image saliency for black box classifiers. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  12. Danilevsky, M., Qian, K., Aharonov, R., Katsis, Y., Kawas, B., Sen, P.: A survey of the state of explainable ai for natural language processing. ar**v preprint ar**v:2010.00711 (2020)

  13. Datta, A., Sen, S., Zick, Y.: Algorithmic transparency via quantitative input influence: theory and experiments with learning systems. In: 2016 IEEE Symposium on Security and Privacy (SP), pp. 598–617. IEEE (2016)

    Google Scholar 

  14. Fink, O., Wang, Q., Svensen, M., Dersin, P., Lee, W.J., Ducoffe, M.: Potential, challenges and future directions for deep learning in prognostics and health management applications. Eng. Appl. Artif. Intell. 92, 103678 (2020)

    Article  Google Scholar 

  15. Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3429–3437 (2017)

    Google Scholar 

  16. Hannousse, A.: Searching relevant papers for software engineering secondary studies: semantic scholar coverage and identification role. IET Softw. 15(1), 126–146 (2021)

    Article  Google Scholar 

  17. Hendricks, L.A., Akata, Z., Rohrbach, M., Donahue, J., Schiele, B., Darrell, T.: Generating visual explanations. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 3–19. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_1

    Chapter  Google Scholar 

  18. Huysmans, J., Dejaeger, K., Mues, C., Vanthienen, J., Baesens, B.: An empirical evaluation of the comprehensibility of decision table, tree and rule based predictive models. Decis. Support Syst. 51(1), 141–154 (2011)

    Article  Google Scholar 

  19. Kan, M.S., Tan, A.C., Mathew, J.: A review on prognostic techniques for non-stationary and non-linear rotating systems. Mech. Syst. Signal Process. 62, 1–20 (2015)

    Article  Google Scholar 

  20. Kim, B., Khanna, R., Koyejo, O.O.: Examples are not enough, learn to criticize! criticism for interpretability. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  21. Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J., Viegas, F., et al.: Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (TCAV). In: International Conference on Machine Learning, pp. 2668–2677. PMLR (2018)

    Google Scholar 

  22. Koh, P.W., Liang, P.: Understanding black-box predictions via influence functions. In: International Conference on Machine Learning, pp. 1885–1894. PMLR (2017)

    Google Scholar 

  23. Lakkaraju, H., Kamar, E., Caruana, R., Leskovec, J.: Interpretable and explorable approximations of black box models. ar**v preprint ar**v:1707.01154 (2017)

  24. Letham, B., Rudin, C., McCormick, T.H., Madigan, D.: Interpretable classifiers using rules and Bayesian analysis: building a better stroke prediction model. Ann. Appl. Statist. 9(3), 1350–1371 (2015)

    Article  MATH  Google Scholar 

  25. Li, W., **ao, X., Liu, J., Wu, H., Wang, H., Du, J.: Leveraging graph to improve abstractive multi-document summarization. ar**v preprint ar**v:2005.10043 (2020)

  26. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  27. Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015)

    Google Scholar 

  28. Markus, A.F., Kors, J.A., Rijnbeek, P.R.: The role of explainability in creating trustworthy artificial intelligence for health care: a comprehensive survey of the terminology, design choices, and evaluation strategies. J. Biomed. Inform. 113, 103655 (2021)

    Article  Google Scholar 

  29. Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019)

    Article  MATH  Google Scholar 

  30. Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Müller, K.R.: Explaining nonlinear classification decisions with deep Taylor decomposition. Pattern Recogn. 65, 211–222 (2017)

    Article  Google Scholar 

  31. Nguyen, A., Dosovitskiy, A., Yosinski, J., Brox, T., Clune, J.: Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  32. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: high confidence predictions for unrecognizable images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 427–436 (2015)

    Google Scholar 

  33. Nikiforovskaya, A., Kapralov, N., Vlasova, A., Shpynov, O., Shpilman, A.: Automatic generation of reviews of scientific papers. In: 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 314–319. IEEE (2020)

    Google Scholar 

  34. Rezaeianjouybari, B., Shang, Y.: Deep learning for prognostics and health management: state of the art, challenges, and opportunities. Measurement 163, 107929 (2020)

    Article  Google Scholar 

  35. Ribeiro, M.T., Singh, S., Guestrin, C.: “why should i trust you?” Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  36. Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: High-precision model-agnostic explanations. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  37. Robnik-Šikonja, M., Kononenko, I.: Explaining classifications for individual instances. IEEE Trans. Knowl. Data Eng. 20(5), 589–600 (2008)

    Article  Google Scholar 

  38. Ross, A.S., Hughes, M.C., Doshi-Velez, F.: Right for the right reasons: training differentiable models by constraining their explanations. ar**v preprint ar**v:1703.03717 (2017)

  39. Samek, W., Binder, A., Montavon, G., Lapuschkin, S., Müller, K.R.: Evaluating the visualization of what a deep neural network has learned. IEEE Trans. Neural Netw. Learn. Syst. 28(11), 2660–2673 (2016)

    Article  Google Scholar 

  40. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  41. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. In: International Conference on Machine Learning, pp. 3145–3153. PMLR (2017)

    Google Scholar 

  42. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. In: Workshop at International Conference on Learning Representations. Citeseer (2014)

    Google Scholar 

  43. Smilkov, D., Thorat, N., Kim, B., Viégas, F., Wattenberg, M.: Smoothgrad: removing noise by adding noise. ar**v preprint ar**v:1706.03825 (2017)

  44. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. ar**v preprint ar**v:1412.6806 (2014)

  45. Sun, X., Zhuge, H.: Automatic generation of survey paper based on template tree. In: 2019 15th International Conference on Semantics, Knowledge and Grids (SKG), pp. 89–96. IEEE (2019)

    Google Scholar 

  46. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: International Conference on Machine Learning, pp. 3319–3328. PMLR (2017)

    Google Scholar 

  47. Tjoa, E., Guan, C.: A survey on explainable artificial intelligence (XAI): toward medical XAI. IEEE Trans. Neural Netw. Learn. Syst. 32(11), 4793–4813 (2020)

    Article  Google Scholar 

  48. Tohalino, J.V., Amancio, D.R.: Extractive multi-document summarization using multilayer networks. Physica A 503, 526–539 (2018)

    Article  Google Scholar 

  49. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  50. Wang, J., Zhang, C., Zhang, M., Deng, S.: Citationas: a tool of automatic survey generation based on citation content. J. Data Inf. Sci. 3(2), 20–37 (2018)

    Google Scholar 

  51. Xu, K., et al.: Show, attend and tell: Neural image caption generation with visual attention. In: International Conference on Machine Learning, pp. 2048–2057. PMLR (2015)

    Google Scholar 

  52. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  53. Zhang, Q., Wu, Y.N., Zhu, S.C.: Interpretable convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8827–8836 (2018)

    Google Scholar 

  54. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

    Google Scholar 

  55. Zintgraf, L.M., Cohen, T.S., Adel, T., Welling, M.: Visualizing deep neural network decisions: prediction difference analysis. ar**v preprint ar**v:1702.04595 (2017)

Download references

Acknowledgments

This work was supported by CHIST-ERA grant CHIST-ERA-19-XAI-012 funded by Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sławomir Nowaczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jamshidi, S., Nowaczyk, S., Fanaee-T, H., Rahat, M. (2023). A Systematic Approach for Tracking the Evolution of XAI as a Field of Research. In: Koprinska, I., et al. Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2022. Communications in Computer and Information Science, vol 1753. Springer, Cham. https://doi.org/10.1007/978-3-031-23633-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23633-4_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23632-7

  • Online ISBN: 978-3-031-23633-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation