Anticancer Role of Natural Phenolic Acids by Targeting Angiotensin-Converting Enzyme (ACE)

  • Chapter
  • First Online:
The Renin Angiotensin System in Cancer, Lung, Liver and Infectious Diseases

Abstract

Recently, it has become obvious that renin-angiotensin system (RAS) plays an important role in cancer progression through angiotensin converting enzyme (ACE), involving activation and upregulation of multiple oncogenic molecules. Accordingly, suppression of ACE and its subsequent downstream cascades has received considerable attention as a possible way to combat oncological diseases. In this book chapter, the role of a several plant-derived phenolic acids (Ellagic acid, Gallic acid, Caffeic acid) on inhibition of ACE is demonstrated, and involvement of this action in chemopreventive and chemotherapeutic properties of these natural compounds is discussed, with a special focus on antiangiogenic and antiinflammatory activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sharma D, Goel N, Garg VK (2022) Predicting survivability in oral cancer patients. Algorithms for intelligent systems. Springer, Singapore, pp 153–162

    Google Scholar 

  2. Kashyap D, Garg VK, Goel N (2021) Intrinsic and extrinsic pathways of apoptosis: role in cancer development and prognosis, 1st ed. Elsevier Inc

    Google Scholar 

  3. Kashyap D, Garg VK, Sandberg EN et al (2021) Oncogenic and tumor suppressive components of the cell cycle in breast cancer progression and prognosis. Pharmaceutics 13:1–28. https://doi.org/10.3390/pharmaceutics13040569

    Article  CAS  Google Scholar 

  4. Kashyap D, Tuli HS, Garg VK et al (2018) Oncogenic and tumor-suppressive roles of MicroRNAs with special reference to apoptosis: molecular mechanisms and therapeutic potential. Mol Diagn Ther 22:179–201

    Article  CAS  PubMed  Google Scholar 

  5. Kashyap D, Sharma A, Garg V et al (2016) Reactive oxygen species (ROS): an activator of apoptosis and autophagy in cancer. J Biol Chem Sci 3:256–264

    Google Scholar 

  6. Garg VK, Kashyap D, Tuli HS (2018) Targeting telomerase and topoisomerase-II by natural moieties: an anti-cancer approach. Nov Approaches Cancer Study 1:3–4. https://doi.org/10.31031/nacs.2018.01.000520

  7. Kashyap D, Tuli HS, Yerer MB et al (2021) Natural product-based nanoformulations for cancer therapy: opportunities and challenges. Semin Cancer Biol 69:5–23. https://doi.org/10.1016/j.semcancer.2019.08.014

    Article  CAS  PubMed  Google Scholar 

  8. Ferlay J, Shin HR, Bray F et al (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917. https://doi.org/10.1002/ijc.25516

    Article  CAS  PubMed  Google Scholar 

  9. Kashyap D, Tuli HS, Garg VK et al (2017) Ursolic acid and quercetin: promising anticancer phytochemicals with antimetastatic and antiangiogenic potential, pp 1–7. https://doi.org/10.4103/tme.tme

  10. Kashyap D, Garg VK, Tuli HS et al (2019) Fisetin and quercetin: promising flavonoids with chemopreventive potential. Biomolecules 9:1–22. https://doi.org/10.3390/biom9050174

    Article  CAS  Google Scholar 

  11. Aggarwal V, Kashyap D, Sak K et al (2019) Molecular mechanisms of action of tocotrienols in cancer: recent trends and advancements. Int J Mol Sci 20. https://doi.org/10.3390/ijms20030656

  12. Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  13. Howes MJR (2018) The evolution of anticancer drug discovery from plants. Lancet Oncol 19:293–294. https://doi.org/10.1016/S1470-2045(18)30136-0

    Article  PubMed  Google Scholar 

  14. Lichota A, Gwozdzinski K (2018) Anticancer activity of natural compounds from plant and marine environment. Int J Mol Sci 19. https://doi.org/10.3390/IJMS19113533

  15. Tuli HS, Mistry H, Kaur G et al (2021) Gallic acid: a dietary polyphenol that exhibits anti-neoplastic activities by modulating multiple oncogenic targets. Anticancer Agents Med Chem 22:499–514. https://doi.org/10.2174/1871520621666211119085834

    Article  CAS  Google Scholar 

  16. Aggarwal V, Kashyap D, Sak K et al (2019) Molecular mechanisms of action of tocotrienols in cancer: recent trends and advancements. Int J Mol Sci 20

    Google Scholar 

  17. Kashyap D, Garg VK, Tuli HS et al (2019) Fisetin and quercetin: promising flavonoids with chemopreventive potential. Biomolecules 9. https://doi.org/10.3390/biom9050174

  18. Kashyap D, Tuli HS, Sak K et al (2019) Role of reactive oxygen species in cancer progression. Curr Pharmacol Rep 5:79–86

    Article  CAS  Google Scholar 

  19. Kashyap D, Sharma A, Tuli HS et al (2018) Apigenin: a natural bioactive flavone-type molecule with promising therapeutic function. J Funct Foods 48:457–471

    Article  CAS  Google Scholar 

  20. Wahle KWJ, Brown I, Rotondo D, Heys SD (2010) Plant phenolics in the prevention and treatment of cancer. Adv Exp Med Biol 698:36–51. https://doi.org/10.1007/978-1-4419-7347-4_4

    Article  CAS  PubMed  Google Scholar 

  21. Sun LR, Zhou W, Zhang HM et al (2019) Modulation of multiple signaling pathways of the plant-derived natural products in cancer. Front Oncol 9. https://doi.org/10.3389/FONC.2019.01153

  22. Abotaleb M, Liskova A, Kubatka P, Büsselberg D (2020) Therapeutic potential of plant phenolic acids in the treatment of cancer. Biomolecules 10. https://doi.org/10.3390/biom10020221

  23. Mc Menamin ÚC, Murray LJ, Cantwell MM, Hughes CM (2012) Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in cancer progression and survival: a systematic review. Cancer Causes Control 23:221–230. https://doi.org/10.1007/S10552-011-9881-X

    Article  PubMed  Google Scholar 

  24. Lindberg H, Nielsen D, Jensen BV et al (2004) Angiotensin converting enzyme inhibitors for cancer treatment? Acta Oncol 43:142–152. https://doi.org/10.1080/02841860310022346

    Article  CAS  PubMed  Google Scholar 

  25. Rosenthal T, Gavras I (2009) Angiotensin inhibition and malignancies: a review. J Hum Hypertens 23:623–635. https://doi.org/10.1038/JHH.2009.21

    Article  CAS  PubMed  Google Scholar 

  26. Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer Statistics, 2021. CA Cancer J Clin 71:7–33. https://doi.org/10.3322/caac.21654

    Article  PubMed  Google Scholar 

  27. Mirzaei S, Gholami MH, Zabolian A et al (2021) Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: new hope in the fight against cancer. Pharmacol Res 171. https://doi.org/10.1016/j.phrs.2021.105759

  28. George AJ, Thomas WG, Hannan RD (2010) The renin-angiotensin system and cancer: old dog, new tricks. Nat Rev Cancer 10:745–759. https://doi.org/10.1038/NRC2945

    Article  CAS  PubMed  Google Scholar 

  29. Pinter M, Jain RK (2017) Targeting the renin-angiotensin system to improve cancer treatment: implications for immunotherapy. Sci Transl Med 9. https://doi.org/10.1126/SCITRANSLMED.AAN5616

  30. Carlos-Escalante JA, de Jesús-Sánchez M, Rivas-Castro A et al (2021) The use of antihypertensive drugs as coadjuvant therapy in cancer. Front Oncol 11. https://doi.org/10.3389/FONC.2021.660943

  31. Cheung KS, Chan EW, Seto WK et al (2020) ACE (Angiotensin-converting enzyme) inhibitors/angiotensin receptor blockers are associated with lower colorectal cancer risk: a territory-wide study with propensity score analysis. Hypertension 76:968–975. https://doi.org/10.1161/HYPERTENSIONAHA.120.15317

    Article  CAS  PubMed  Google Scholar 

  32. Salvetti A, Pedrinelli R, Arzilli F et al (1985) Angiotensin-converting enzyme inhibitors in hypertension: a review. Int J Clin Pharmacol Res 5:429–438

    CAS  PubMed  Google Scholar 

  33. Dhanachandra Singh K, Karnik SS (2017) Angiotensin receptors: structure, function, signaling and clinical applications. J Cell Signal 1. https://doi.org/10.4172/2576-1471.1000111

  34. Guerrero L, Castillo J, Quiñones M et al (2012) Inhibition of angiotensin-converting enzyme activity by flavonoids: structure-activity relationship studies. PLoS ONE 7. https://doi.org/10.1371/journal.pone.0049493

  35. Radin DP, Krebs A, Maqsudlu A, Patel P (2018) Our ACE in the HOLE: justifying the use of angiotensin-converting enzyme inhibitors as adjuvants to standard chemotherapy. Anticancer Res 38:45–49. https://doi.org/10.21873/ANTICANRES.12190

  36. Sun H, Li T, Zhuang R et al (2017) Do renin-angiotensin system inhibitors influence the recurrence, metastasis, and survival in cancer patients? Evidence from a meta-analysis including 55 studies. Medicine (United States) 96. https://doi.org/10.1097/MD.0000000000006394

  37. De Alvarenga EC, De Castro Fonseca M, Carvalho CC, et al (2016) Angiotensin converting enzyme regulates cell proliferation and migration. PLoS ONE 11. https://doi.org/10.1371/journal.pone.0165371

  38. Klick S, Herrmann K (1988) Glucosides and glucose esters of hydroxybenzoic acids in plants. Phytochemistry 27:2177–2180. https://doi.org/10.1016/0031-9422(88)80121-3

  39. Andreasen MF, Christensen LP, Meyer AS, Hansen Å (2000) Content of phenolic acids and ferulic acid dehydrodimers in 17 rye (Secale cereale L.) varieties. J Agric Food Chem 48:2837–2842. https://doi.org/10.1021/jf991266w

  40. Lattanzio V (2013) Phenolic compounds: introduction. In: Natural products: phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes. Springer, Berlin, Heidelberg, pp 1543–1580

    Google Scholar 

  41. Macheix JJ, Fleuriet A, Billot J (1990) Fruit phenolics. CRC, p 378

    Google Scholar 

  42. Te Riet L, Van Esch JHM, Roks AJM et al (2015) Hypertension: renin-angiotensin-aldosterone system alterations. Circ Res 116:960–975. https://doi.org/10.1161/CIRCRESAHA.116.303587

  43. Small W, Molteni A, Kim YT et al (1997) Captopril modulates hormone receptor concentration and inhibits proliferation of human mammary ductal carcinoma cells in culture. Breast Cancer Res Treat 44:217–224. https://doi.org/10.1023/A:1005827119296

  44. Volpert OV, Ward WF, Lingen MW et al (1996) Captopril inhibits angiogenesis and slows the growth of experimental tumors in rats. J Clin Invest 98:671–679. https://doi.org/10.1172/JCI118838

  45. Lever AF, Hole DJ, Gillis CR et al (1998) Do inhibitors of angiotensin-I-converting enzyme protect against risk of cancer? Lancet 352:179–184. https://doi.org/10.1016/S0140-6736(98)03228-0

  46. Molteni A, Ward W, Ts’ao C et al (2005) Cytostatic properties of some Angiotensin I converting enzyme inhibitors and of Angiotensin II Type I receptor antagonists. Curr Pharm Des 9:751–761. https://doi.org/10.2174/1381612033455396

  47. Chochieva AR, Bolieva LZ, Dzhioev FK (2008) New approaches to the drug prophylaxis of mammary tumor: evaluation of the prophylactic effect of lovastatin and captopril in rats with model mammary gland tumors. Eksp Klin Farmakol 71:43–45

    CAS  PubMed  Google Scholar 

  48. Folkman J, Watson K, Ingber D, Hanahan D (1989) Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339:58–61. https://doi.org/10.1038/339058a0

  49. Escobar E, Rodriguez-Reyna T, Arrieta O, Sotelo J (2005) Angiotensin II, cell proliferation and angiogenesis regulator: biologic and therapeutic implications in cancer. Curr Vasc Pharmacol 2:385–399. https://doi.org/10.2174/1570161043385556

  50. Deshayes F, Nahmias C (2005) Angiotensin receptors: a new role in cancer? Trends Endocrinol Metab 16:293–299. https://doi.org/10.1016/j.tem.2005.07.009

  51. Sipahi I, Debanne SM, Rowland DY et al (2010) Angiotensin-receptor blockade and risk of cancer: meta-analysis of randomised controlled trials. Lancet Oncol 11:627–636. https://doi.org/10.1016/S1470-2045(10)70106-6

  52. Bangalore S, Kumar S, Kjeldsen SE et al (2011) Antihypertensive drugs and risk of cancer: network meta-analyses and trial sequential analyses of 324 168 participants from randomised trials. Lancet Oncol 12:65–82. https://doi.org/10.1016/S1470-2045(10)70260-6

  53. Hicks BM, Filion KB, Yin H et al (2018) Angiotensin converting enzyme inhibitors and risk of lung cancer: population based cohort study. BMJ 363. https://doi.org/10.1136/bmj.k4209

  54. Kristensen KB, Hicks B, Azoulay L, Pottegård A (2021) Use of ACE (Angiotensin-Converting Enzyme) inhibitors and risk of lung cancer: a nationwide nested case-control study. Circ Cardiovasc Qual Outcomes 14:17–27. https://doi.org/10.1161/CIRCOUTCOMES.120.006687

  55. Suganuma T, Ino K, Shibata K et al (2005) Functional expression of the angiotensin II type 1 receptor in human ovarian carcinoma cells and its blockadetherapy resulting in suppression of tumor invasion, angiogenesis, and peritoneal dissemination. Clin Cancer Res 11:2686–2694. https://doi.org/10.1158/1078-0432.CCR-04-1946

  56. Ishiguro H, Ishiguro Y, Kubota Y, Uemura H (2007) Regulation of prostate cancer cell growth and PSA expression by angiotensin II receptor blocker with peroxisome proliferator-activated receptor gamma ligand like action. Prostate 67:924–932. https://doi.org/10.1002/pros.20571

  57. Yoshiji H, Kuriyama S, Kawata M et al (2001) The angiotensin-I-converting enzyme inhibitor perindopril suppresses tumor growth and angiogenesis: possible role of the vascular endothelial growth factor. Clin Cancer Res 7:1073–1078

    CAS  PubMed  Google Scholar 

  58. Yoshiji H, Kuriyama S, Noguchi R, Fukui H (2005) Angiotensin-I converting enzyme inhibitors as potential anti-angiogenic agents for cancer therapy. Curr Cancer Drug Targets 4:555–567. https://doi.org/10.2174/1568009043332790

  59. Ascacio-Valdés JA, Buenrostro-Figueroa JJ, Aguilera-Carbo A et al (2011) Ellagitannins: biosynthesis, biodegradation and biological properties. J Med Plant Res 5:4696–4703

    Google Scholar 

  60. Razani Z, Dastani M, Kazerani HR (2017) Cardioprotective effects of Pomegranate (Punica granatum) juice in patients with ischemic heart disease. Phyther Res 31:1731–1738. https://doi.org/10.1002/ptr.5901

  61. Istas G, Feliciano RP, Weber T et al (2018) Plasma urolithin metabolites correlate with improvements in endothelial function after red raspberry consumption: a double-blind randomized controlled trial. Arch Biochem Biophys 651:43–51. https://doi.org/10.1016/j.abb.2018.05.016

  62. Tang B, Chen GX, Liang MY et al (2015) Ellagic acid prevents monocrotaline-induced pulmonary artery hypertension via inhibiting NLRP3 inflammasome activation in rats. Int J Cardiol 180:134–141. https://doi.org/10.1016/j.ijcard.2014.11.161

  63. Berkban T, Boonprom P, Bunbupha S et al (2015) Ellagic acid prevents L-NAME-induced hypertension via restoration of eNOS and p47phox expression in rats. Nutrients 7:5265–5280. https://doi.org/10.3390/nu7075222

  64. Yilmaz B, Usta C (2013) Ellagic acid-induced endothelium-dependent and endothelium-independent vasorelaxation in rat thoracic aortic rings and the underlying mechanism. Phyther Res 27:285–289. https://doi.org/10.1002/ptr.4716

  65. Looi D, Goh BH, Khan SU et al (2021) Metabolites of the ellagitannin, geraniin inhibit human ACE; in vitro and in silico evidence. Int J Food Sci Nutr 72:470–477. https://doi.org/10.1080/09637486.2020.1830263

  66. Ceci C, Lacal PM, Tentori L et al (2018) Experimental evidence of the antitumor, antimetastatic and antiangiogenic activity of ellagic acid. Nutrients 10. https://doi.org/10.3390/nu10111756

  67. Losso JN, Bansode RR, Trappey A et al (2004) In vitro anti-proliferative activities of ellagic acid. J Nutr Biochem 15:672–678. https://doi.org/10.1016/j.jnutbio.2004.06.004

  68. Wang N, Wang ZY, Mo SL et al (2012) Ellagic acid, a phenolic compound, exerts anti-angiogenesis effects via VEGFR-2 signaling pathway in breast cancer. Breast Cancer Res Treat 134:943–955. https://doi.org/10.1007/s10549-012-1977-9

  69. Zhao J, Li G, Bo W et al (2017) Multiple effects of ellagic acid on human colorectal carcinoma cells identified by gene expression profile analysis. Int J Oncol 50:613–621. https://doi.org/10.3892/ijo.2017.3843

  70. Vanella L, Di Giacomo C, Acquaviva R et al (2013) Effects of ellagic acid on angiogenic factors in prostate cancer cells. Cancers (Basel) 5:726–738. https://doi.org/10.3390/cancers5020726

  71. Wang L, Li W, Lin M et al (2014) Luteolin, ellagic acid and punicic acid are natural products that inhibit prostate cancer metastasis. Carcinogenesis 35:2321–2330. https://doi.org/10.1093/carcin/bgu145

  72. Ceci C, Tentori L, Atzori MG et al (2016) Ellagic acid inhibits bladder cancer invasiveness and in vivo tumor growth. Nutrients 8. https://doi.org/10.3390/nu8110744

  73. Zaazaa AM, Lokman MS, Shalby AB et al (2018) Ellagic acid holds promise against hepatocellular carcinoma in an experimental model: mechanisms of action. Asian Pac J Cancer Prev 19:387–393. https://doi.org/10.22034/APJCP.2018.19.2.387

  74. Kowshik J, Giri H, Kishore T et al (2014) Ellagic acid inhibits VEGF/VEGFR2, PI3K/Akt and MAPK signalling cascades in the hamster cheek pouch carcinogenesis model. Anticancer Agents Med Chem 14:1249–1260. https://doi.org/10.2174/1871520614666140723114217

    Article  CAS  PubMed  Google Scholar 

  75. Kumar G, Tuli HS, Mittal S et al (2015) Isothiocyanates: a class of bioactive metabolites with chemopreventive potential. Tumor Biol 36:4005–4016. https://doi.org/10.1007/s13277-015-3391-5

  76. Kashyap D, Kumar G, Sharma A et al (2017) Mechanistic insight into carnosol-mediated pharmacological effects: recent trends and advancements. Life Sci 169:27–36. https://doi.org/10.1016/J.LFS.2016.11.013

  77. Kashyap D, Mondal R, Tuli HS et al (2016) Molecular targets of gambogic acid in cancer: recent trends and advancements. Tumor Biol 37:12915–12925. https://doi.org/10.1007/s13277-016-5194-8

  78. Badhani B, Sharma N, Kakkar R (2015) Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. RSC Adv 5:27540–27557. https://doi.org/10.1039/c5ra01911g

  79. Polewski K, Kniat S, Ska DSŁAWIŃ (2002) Gallic acid, a natural antioxidant , in aqueous and micellar environment: spectroscopic studies. Curr Top Biophys 26:217–227

    Google Scholar 

  80. Kumar G, Dey SK, Kundu S (2020) Functional implications of vascular endothelium in regulation of endothelial nitric oxide synthesis to control blood pressure and cardiac functions. Life Sci 259. https://doi.org/10.1016/J.LFS.2020.118377

  81. Kumar G, Dey SK, Kundu S (2021) Herbs and their bioactive ingredients in cardio-protection: underlying molecular mechanisms and evidences from clinical studies. Phytomedicine 92. https://doi.org/10.1016/j.phymed.2021.153753

  82. Kumar G, Saini M, Kundu S (2021) Therapeutic enzymes as non-conventional targets in cardiovascular impairments: a comprehensive review. Can J Physiol Pharmacol 1–13. https://doi.org/10.1139/cjpp-2020-0732

  83. Kiss A, Kowalski J, Melzig MF (2006) Induction of neutral endopeptidase activity in PC-3 cells by an aqueous extract of Epilobium angustifolium L. and oenothein B. Phytomedicine 13:284–289. https://doi.org/10.1016/j.phymed.2004.08.002

  84. Garciá-Saura MF, Galisteo M, Villar IC et al (2005) Effects of chronic quercetin treatment in experimental renovascular hypertension. Mol Cell Biochem 270:147–155. https://doi.org/10.1007/s11010-005-4503-0

  85. Hidalgo M, Martin-Santamaria S, Recio I et al (2012) Potential anti-inflammatory, anti-adhesive, anti/estrogenic, and angiotensin-converting enzyme inhibitory activities of anthocyanins and their gut metabolites. Genes Nutr 7:295–306. https://doi.org/10.1007/s12263-011-0263-5

  86. Hassani A, Azarian MMS, Ibrahim WN, Hussain SA (2020) Preparation, characterization and therapeutic properties of gum Arabic-stabilized Gallic acid nanoparticles. Sci Rep 10. https://doi.org/10.1038/s41598-020-71175-8

  87. Chio IIC, Tuveson DA (2017) ROS in cancer: the burning question. Trends Mol Med 23:411–429. https://doi.org/10.1016/J.MOLMED.2017.03.004

  88. Fidelis M, Santos JS, Escher GB et al (2021) Polyphenols of Jabuticaba [Myrciaria jaboticaba (Vell.) O. Berg] seeds incorporated in a yogurt model exert antioxidant activity and modulate gut microbiota of 1,2-dimethylhydrazine-induced colon cancer in rats. Food Chem 334. https://doi.org/10.1016/j.foodchem.2020.127565

  89. Kumar G, Mittal S, Sak K, Tuli HS (2016) Molecular mechanisms underlying chemopreventive potential of curcumin: current challenges and future perspectives. Life Sci 148:313–328. https://doi.org/10.1016/J.LFS.2016.02.022

  90. Tuli HS, Kashyap D, Bedi SK et al (2015) Molecular aspects of metal oxide nanoparticle (MO-NPs) mediated pharmacological effects. Life Sci 143:71–79. https://doi.org/10.1016/J.LFS.2015.10.021

  91. Tewari D, Bawari S, Sharma S et al (2021) Targeting the crosstalk between canonical Wnt/β-catenin and inflammatory signaling cascades: a novel strategy for cancer prevention and therapy. Pharmacol Ther 227. https://doi.org/10.1016/J.PHARMTHERA.2021.107876

  92. Kanwal N, Rasul A, Hussain G et al (2020) Oleandrin: a bioactive phytochemical and potential cancer killer via multiple cellular signaling pathways. Food Chem Toxicol 143. https://doi.org/10.1016/j.fct.2020.111570

  93. Atanasov AG, Zotchev SB, Dirsch VM et al (2021) Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov 20:200–216. https://doi.org/10.1038/S41573-020-00114-Z

  94. Jaradat NA, Shawahna R, Eid AM et al (2016) Herbal remedies use by breast cancer patients in the West Bank of Palestine. J Ethnopharmacol 178:1–8. https://doi.org/10.1016/j.jep.2015.11.050

  95. Mohan A, Narayanan S, Sethuraman S, Maheswari Krishnan U (2013) Combinations of plant polyphenols & anti-cancer molecules: a novel treatment strategy for cancer chemotherapy. Anticancer Agents Med Chem 13:281–295. https://doi.org/10.2174/1871520611313020015

  96. Ozturk G, Ginis Z, Akyol S et al (2012) The anticancer mechanism of caffeic acid phenethyl ester (CAPE): review of melanomas, lung and prostate cancers. Eur. Rev. Med. Pharmacol. Sci. 16:2064–2068

    Google Scholar 

  97. Murtaza G, Sajjad A, Mehmood Z et al (2015) Possible molecular targets for therapeutic applications of Caffeic acid phenethyl ester in inflammation and cancer. J Food Drug Anal 23:11–18. https://doi.org/10.1016/J.JFDA.2014.06.001

  98. Marin EH, Paek H, Li M et al (2019) Caffeic acid phenethyl ester exerts apoptotic and oxidative stress on human multiple myeloma cells. Invest New Drugs 37:837–848. https://doi.org/10.1007/s10637-018-0701-y

  99. Olgierd B, Kamila Ż, Anna B, Emilia M (2021) The pluripotent activities of caffeic acid phenethyl ester. Molecules 26. https://doi.org/10.3390/molecules26051335

  100. Silva T, Oliveira C, Borges F (2014) Caffeic acid derivatives, analogs and applications: a patent review (2009-2013). Expert Opin Ther Pat 24:1257–1270. https://doi.org/10.1517/13543776.2014.959492

  101. Kabała-Dzik A, Rzepecka-Stojko A, Kubina R, et al (2017) Comparison of two components of propolis: Caffeic acid (CA) and Caffeic acid phenethyl ester (CAPE) induce apoptosis and cell cycle arrest of breast cancer cells MDA-MB-231. Molecules 22. https://doi.org/10.3390/molecules22091554

  102. Maity S, Kinra M, Nampoothiri M, et al (2021) Caffeic acid, a dietary polyphenol, as a promising candidate for combination therapy. Chem Pap. https://doi.org/10.1007/s11696-021-01947-7

  103. Oršolić N, Kunštić M, Kukolj M, et al (2016) Oxidative stress, polarization of macrophages and tumour angiogenesis: efficacy of Caffeic acid. Chem Biol Interact 256:111–124. https://doi.org/10.1016/j.cbi.2016.06.027

  104. Damasceno SS, Dantas BB, Ribeiro-Filho J et al (2017) Chemical properties of Caffeic and Ferulic acids in biological system: implications in cancer therapy. A review. Curr Pharm Des 23. https://doi.org/10.2174/1381612822666161208145508

  105. El-Refaei, MF, Mady EA (2013) Regulation of apoptosis, invasion and angiogenesis of tumor cells by Caffeic acid phenethyl ester. In: Carcinogenesis. IntechOpen

    Google Scholar 

  106. Hettihewa SK, Hemar Y, Vasantha Rupasinghe HP (2018) Flavonoid-rich extract of actinidia macrosperma (a wild kiwifruit) inhibits angiotensin-converting enzyme in vitro. Foods 7. https://doi.org/10.3390/foods7090146

  107. Muchtaridi M, Fauzi M, Ikram NKK et al (2020) Natural flavonoids as potential angiotensin-converting enzyme 2 inhibitors for anti-SARS-CoV-2. Molecules 25. https://doi.org/10.3390/MOLECULES25173980

  108. Oboh G, Adeoyo OO, Ademosun AO et al (2018) Effect of combinations of Caffeine and Caffeic acid on key enzymes linked to hypertension (in vitro). Orient Pharm Exp Med 18:247–255. https://doi.org/10.1007/s13596-018-0313-2

  109. Zieliski H, Honke J, Topolska J et al (2020) ACE inhibitory properties and phenolics profile of fermented flours and of baked and digested biscuits from Buckwheat. Foods 9. https://doi.org/10.3390/foods9070847

  110. Bhullar KS, Lassalle-Claux G, Touaibia M, Vasantha Rupasinghe HP (2014) Antihypertensive effect of Caffeic acid and its analogs through dual renin-angiotensin-aldosterone system inhibition. Eur J Pharmacol 730:125–132. https://doi.org/10.1016/j.ejphar.2014.02.038

  111. Bare Y, Kuki AD, Daeng Tiring SSN et al (2020) In Silico study: prediction the potential of Caffeic acid as ACE inhibitor. El-Hayah 7:94–98. https://doi.org/10.18860/elha.v7i3.10053

  112. Tasaki M, Umemura T, Maeda M et al (2008) Safety assessment of ellagic acid, a food additive, in a subchronic toxicity study using F344 rats. Food Chem Toxicol 46:1119–1124. https://doi.org/10.1016/j.fct.2007.10.043

  113. Rajalakshmi K, Devaraj H, Niranjali Devaraj S (2001) Assessment of the no-observed-adverse-effect level (NOAEL) of Gallic acid in mice. Food Chem Toxicol 39:919–922. https://doi.org/10.1016/S0278-6915(01)00022-9

  114. Variya BC, Bakrania AK, Madan P, Patel SS (2019) Acute and 28-days repeated dose sub-acute toxicity study of Gallic acid in albino mice. Regul Toxicol Pharmacol 101:71–78. https://doi.org/10.1016/j.yrtph.2018.11.010

  115. Liu Y, Qiu S, Wang L et al (2019) Reproductive and developmental toxicity study of Caffeic acid in mice. Food Chem Toxicol 123:106–112. https://doi.org/10.1016/j.fct.2018.10.040

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hardeep Singh Tuli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tuli, H.S. et al. (2023). Anticancer Role of Natural Phenolic Acids by Targeting Angiotensin-Converting Enzyme (ACE). In: Bhullar, S.K., Tappia, P.S., Dhalla, N.S. (eds) The Renin Angiotensin System in Cancer, Lung, Liver and Infectious Diseases. Advances in Biochemistry in Health and Disease, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-031-23621-1_23

Download citation

Publish with us

Policies and ethics

Navigation