Renin Angiotensin System (RAS): The Common Thread Between Cancer and Heart Failure

  • Chapter
  • First Online:
The Renin Angiotensin System in Cancer, Lung, Liver and Infectious Diseases

Abstract

Cancer is a chronic illness that directly or indirectly affects many individuals worldwide. As the second most commonly diagnosed cancer worldwide, breast cancer is a major public health concern affecting 1 in 8 women in their lifetime. Breast cancer, along with many other cancers, is typically treated using a combination of surgery, chemotherapy, radiation, and/or targeted therapies. Despite the beneficial effects of anti-cancer therapy in reducing overall patient morbidity and mortality, these treatments are associated with cardiotoxic side effects. Although the renin-angiotensin system (RAS) plays an important role in cardiovascular and renal homeostasis, RAS inhibitors (RASi) may be used in the treatment of cancer and chemotherapy mediated cardiotoxicity. The following chapter explores the role of various RASi as adjunctive treatment options for women with breast cancer and as future anti-cancer agents with a potential use in both the prevention and treatment of chemotherapy mediated cardiotoxicity.

Both Sara M. Telles-Langdon and Vibhuti Arya contributed equally to the writing of this manuscript as co-first authors

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brenner DR, Weir HK, Demers AA et al (2020) Projected estimates of cancer in Canada in 2020. CMAJ 192(9):E199–E205. https://doi.org/10.1503/CMAJ.191292/-/DC1

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cancer—Symptoms and causes—Mayo clinic. Accessed 1 Dec 2021. https://www.mayoclinic.org/diseases-conditions/cancer/symptoms-causes/syc-20370588

  3. How do cancer cells grow and spread? Published online June 19, 2019

    Google Scholar 

  4. Edge SB, Compton CC (2010) The American joint committee on cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol 17(6):1471–1474. https://doi.org/10.1245/S10434-010-0985-4

  5. Cancer statistics at a glance | Canadian Cancer Society. Accessed 16 Apr 2021. https://action.cancer.ca/en/research/cancer-statistics/cancer-statistics-at-a-glance

  6. Coughlin SS (2019) Social determinants of breast cancer risk, stage, and survival. Breast Cancer Res Treat 177(3):537–548. https://doi.org/10.1007/S10549-019-05340-7

    Article  PubMed  Google Scholar 

  7. King MC, Marks JH, Mandell JB (2003) Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 302(5645):643–646. https://doi.org/10.1126/SCIENCE.1088759

    Article  CAS  PubMed  Google Scholar 

  8. Antoniou A, Pharoah PDP, Narod S et al (2003) Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet 72(5):1117–1130. https://doi.org/10.1086/375033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. BRCA Gene Mutations: Cancer Risk and Genetic Testing Fact Sheet—National Cancer Institute. Accessed 29 Nov 2021. https://www.cancer.gov/about-cancer/causes-prevention/genetics/brca-fact-sheet

  10. Horr C, Buechler SA (2021) Breast cancer consensus subtypes: a system for subty** breast cancer tumors based on gene expression. NPJ Breast Cancer 7(1):1–13. https://doi.org/10.1038/s41523-021-00345-2

    Article  CAS  Google Scholar 

  11. Scoccianti C, Lauby-Secretan B, Bello PY, Chajes V, Romieu I (2014) Female breast cancer and alcohol consumption: a review of the literature. Am J Prev Med 46(3):S16–S25. https://doi.org/10.1016/J.AMEPRE.2013.10.031

    Article  PubMed  Google Scholar 

  12. Chen WY, Rosner B, Hankinson SE, Colditz GA, Willett WC (2011) Moderate alcohol consumption during adult life, drinking patterns, and breast cancer risk. JAMA 306(17):1884–1890. https://doi.org/10.1001/JAMA.2011.1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rock CL, Thomson C, Gansler T et al (2020) American cancer society guideline for diet and physical activity for cancer prevention. CA: Cancer J Clinicians 70(4):245–271. https://doi.org/10.3322/CAAC.21591

  14. Park J, Morley TS, Kim M, Clegg DJ, Scherer PE (2014) Obesity and cancer—mechanisms underlying tumour progression and recurrence. Nat Rev Endocrinol 10(8):455–465. https://doi.org/10.1038/NRENDO.2014.94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Park J, Euhus DM, Scherer PE (2011) Paracrine and endocrine effects of adipose tissue on cancer development and progression. Endocr Rev 32(4):550–570. https://doi.org/10.1210/ER.2010-0030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Matsen CB, Neumayer LA (2013) Breast cancer: a review for the general surgeon. JAMA Surg 148(10):971–979. https://doi.org/10.1001/JAMASURG.2013.3393

    Article  PubMed  Google Scholar 

  17. Darby S, McGale P, Correa C et al (2011) Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet 378(9804):1707–1716. https://doi.org/10.1016/S0140-6736(11)61629-2

    Article  CAS  PubMed  Google Scholar 

  18. Anampa J, Makower D, Sparano JA (2015) Progress in adjuvant chemotherapy for breast cancer: an overview. BMC Med 13(1):1–13. https://doi.org/10.1186/S12916-015-0439-8/TABLES/4

    Article  CAS  Google Scholar 

  19. AC-PACL(DD) Patient Information – Cancer Care Ontario. Accessed 16 Dec 2021. https://www.cancercareontario.ca/en/drugformulary/regimens/regimen-info/ac-pacl-dd-patient-info

  20. Altena R, Perik PJ, van Veldhuisen DJ, de Vries EG, Gietema JA (2009) Cardiovascular toxicity caused by cancer treatment: strategies for early detection. Lancet Oncol 10(4):391–399. https://doi.org/10.1016/S1470-2045(09)70042-7

    Article  CAS  PubMed  Google Scholar 

  21. Singal PK, Iliskovic N (1998) Doxorubicin-induced cardiomyopathy. N Engl J Med 339(13):900–905. https://doi.org/10.1056/NEJM199809243391307

    Article  CAS  PubMed  Google Scholar 

  22. de Miranda FS, Guimarães JPT, Menikdiwela KR et al (2021) Breast cancer and the renin-angiotensin system (RAS): therapeutic approaches and related metabolic diseases. Mol Cell Endocrinol 528:111245. https://doi.org/10.1016/J.MCE.2021.111245

    Article  PubMed  Google Scholar 

  23. Deshayes F, Nahmias C (2005) Angiotensin receptors: a new role in cancer? Trends Endocrinol Metab 16(7):293–299. https://doi.org/10.1016/J.TEM.2005.07.009

    Article  CAS  PubMed  Google Scholar 

  24. Mirabito Colafella KM, Bovée DM, Danser AHJ (2019) The renin-angiotensin-aldosterone system and its therapeutic targets. Exp Eye Res 186. https://doi.org/10.1016/j.exer.2019.05.020

  25. Paz Ocaranza M, Riquelme JA, García L et al (2020) Counter-regulatory renin–angiotensin system in cardiovascular disease. Nat Rev Cardiol 17(2):116–129. https://doi.org/10.1038/s41569-019-0244-8

    Article  PubMed  Google Scholar 

  26. Poulsen SB, Fenton RA (2019) K+ and the renin–angiotensin–aldosterone system: new insights into their role in blood pressure control and hypertension treatment. J Physiol 597(17):4451–4464. https://doi.org/10.1113/JP276844

    Article  CAS  PubMed  Google Scholar 

  27. Persson PB (2003) Renin: origin, secretion and synthesis. J Physiol 552(3):667–671. https://doi.org/10.1113/jphysiol.2003.049890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ames MK, Atkins CE, Pitt B (2019) The renin-angiotensin-aldosterone system and its suppression. J Vet Intern Med 33(2):363–382. https://doi.org/10.1111/jvim.15454

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nguyen Dinh Cat A, Touyz RM (2011) A new look at the renin-angiotensin system—Focusing on the vascular system. Peptides (NY) 32(10):2141–2150. https://doi.org/10.1016/j.peptides.2011.09.010

  30. Jaisser F, Farman N (2016) Emerging roles of the mineralocorticoid receptor in pathology: toward new paradigms in clinical pharmacology. Pharmacol Rev 68(1):49–75. https://doi.org/10.1124/PR.115.011106

    Article  CAS  PubMed  Google Scholar 

  31. Marzolla V, Armani A, Zennaro MC et al (2012) The role of the mineralocorticoid receptor in adipocyte biology and fat metabolism. Mol Cell Endocrinol 350(2):281–288. https://doi.org/10.1016/J.MCE.2011.09.011

    Article  CAS  PubMed  Google Scholar 

  32. Marzolla V, Armani A, Feraco A et al (2014) Mineralocorticoid receptor in adipocytes and macrophages: a promising target to fight metabolic syndrome. Steroids 91:46–53. https://doi.org/10.1016/J.STEROIDS.2014.05.001

    Article  CAS  PubMed  Google Scholar 

  33. Kawasaki1 T, Cugini P, Uezono K, et al. Circadian variations of total renin, active renin, plasma renin activity and plasma aldosterone in clinically healthy young subjects.

    Google Scholar 

  34. van de Wal RMA, Plokker HWM, Lok DJA, et al (2005) Determinants of increased angiotensin II levels in severe chronic heart failure patients despite ACE inhibition. Published online 2005. https://doi.org/10.1016/j.ijcard.2005.02.016

  35. Cohn JN (2010) Role of the renin-angiotensin system in cardiovascular disease. In: Cardiovascular drugs and therapy. vol 24. Springer New York LLC 341–344. https://doi.org/10.1007/s10557-010-6230-3

  36. Kawada N, Isaka Y, Kitamura H, Rakugi H, Moriyama T (2015) A pilot study of the effects of eplerenone add-on therapy in patients taking renin-angiotensin system blockers. J Renin Angiotensin Aldosterone Syst 16(2):360–365. https://doi.org/10.1177/1470320314532509

    Article  CAS  PubMed  Google Scholar 

  37. Jansen PM, Danser AHJ, Imholz BP, van den Meiracker AH (2009) Aldosterone-receptor antagonism in hypertension. J Hypertens 27(4):680–691. https://doi.org/10.1097/HJH.0B013E32832810ED

    Article  CAS  PubMed  Google Scholar 

  38. Krum H, Nolly H, Workman D et al (2002) Efficacy of eplerenone added to renin-angiotensin blockade in hypertensive patients. Hypertension 40(2):117–123. https://doi.org/10.1161/01.HYP.0000025146.19104.FE

    Article  CAS  PubMed  Google Scholar 

  39. Yusuf S (2010) Effect of Enalapril on Survival in Patients with Reduced Left Ventricular Ejection Fractions and Congestive Heart Failure. https://doi-org.uml.idm.oclc.org/101056/NEJM199108013250501. 115(SUPPL.3):67. https://doi.org/10.1056/NEJM199108013250501

  40. Sobczuk P, Czerwińska M, Kleibert M, Cudnoch-Jędrzejewska A (2022) Anthracycline-induced cardiotoxicity and renin-angiotensin-aldosterone system—from molecular mechanisms to therapeutic applications. Heart Fail Rev 27(1):295–319. https://doi.org/10.1007/s10741-020-09977-1

    Article  CAS  PubMed  Google Scholar 

  41. The top 10 causes of death. Accessed 13 Jan 2022. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death

  42. Metra M, Teerlink JR (2017) Heart failure. The Lancet 390(10106):1981–1995. https://doi.org/10.1016/S0140-6736(17)31071-1

    Article  Google Scholar 

  43. De Paepe B, Verstraeten VLRM, De Potter CR, Vakaet LAML, Bullock GR (2001) Growth stimulatory angiotensin II type-1 receptor is upregulated in breast hyperplasia and in situ carcinoma but not in invasive carcinoma. Histochem Cell Biol 116(3):247–254. https://doi.org/10.1007/s004180100313

    Article  CAS  PubMed  Google Scholar 

  44. O’donnell E, Floras JS, Harvey PJ (2014) Estrogen status and the renin angiotensin aldosterone system. Data Diuresis Am J Physiol Regul Integr Comp Physiol 307:498–500. https://doi.org/10.1152/ajpregu.00182.2014.-The

  45. Kowalczyk W, Waliszczak G, Jach R, Dulińska-Litewka J (2021) Steroid receptors in breast cancer: understanding of molecular function as a basis for effective therapy development. Cancers (Basel) 13(19). https://doi.org/10.3390/cancers13194779

  46. Leignadier J, Dalenc F, Poirot M, Silvente-Poirot S (2017) Improving the efficacy of hormone therapy in breast cancer: the role of cholesterol metabolism in SERM-mediated autophagy, cell differentiation and death. Biochem Pharmacol 144:18–28. https://doi.org/10.1016/J.BCP.2017.06.120

    Article  CAS  PubMed  Google Scholar 

  47. Rasha F, Kahathuduwa C, Ramalingam L, Hernandez A, Moussa H, Moustaid-Moussa N (2020) Combined effects of eicosapentaenoic acid and adipocyte renin–angiotensin system inhibition on breast cancer cell inflammation and migration. Cancers (Basel) 12(1). https://doi.org/10.3390/cancers12010220

  48. Namazi S, Ardeshir-Rouhani-Fard S, Abedtash H (2011) The effect of renin angiotensin system on tamoxifen resistance. Med Hypotheses 77(1):152–155. https://doi.org/10.1016/j.mehy.2011.04.004

    Article  CAS  PubMed  Google Scholar 

  49. Namazi S, Rouhani Fard SA, Abedtash H (2008) Role of endothelin-1 in tamoxifen resistance: mechanism for a new possible treatment strategy in breast cancer. Med Hypotheses 70(1):109–111. https://doi.org/10.1016/j.mehy.2007.01.092

    Article  CAS  PubMed  Google Scholar 

  50. Rasha F, Ramalingam L, Menikdiwela K, et al (2020) Renin angiotensin system inhibition attenuates adipocyte-breast cancer cell interactions. Exp Cell Res 394(1). https://doi.org/10.1016/j.yexcr.2020.112114

  51. Pinter M, Jain RK (2017) C A N C E R targeting the renin-angiotensin system to improve cancer treatment: implications for immunotherapy. https://www.science.org

  52. Chauhan VP, Martin JD, Liu H et al (2013) Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat Commun 4(1):1–11. https://doi.org/10.1038/NCOMMS3516

    Article  Google Scholar 

  53. De Francesco EM, Lappano R, Santolla MF, Marsico S, Caruso A, Maggiolini M (2013) HIF-1α/GPER signaling mediates the expression of VEGF induced by hypoxia in breast cancer associated fibroblasts (CAFs). Breast Cancer Res 15(4). https://doi.org/10.1186/bcr3458

  54. Ramírez-Exposito MJ, Dueñas-Rodríguez B, Martínez-Martos JM (2019) Circulating renin-angiotensin system-regulating specific aminopeptidase activities in pre- and post- menopausal women with breast cancer treated or not with neoadyuvant chemotherapy. A two years follow up study. Breast 43:28–30. https://doi.org/10.1016/j.breast.2018.10.010

    Article  PubMed  Google Scholar 

  55. Rigiracciolo DC, Scarpelli A, Lappano R et al (2016) GPER is involved in the stimulatory effects of aldosterone in breast cancer cells and breast tumor-derived endothelial cells. Oncotarget 7(1):94–111. https://doi.org/10.18632/ONCOTARGET.6475

    Article  PubMed  Google Scholar 

  56. Le MT, Vanderheyden PML, Szaszák M, Lák, Hunyady L, Vauquelin G (2002) Angiotensin IV is a potent agonist for constitutive active human AT1 receptors: distinct roles of the N- and C-terminal residues of angiotensin II during AT1 receptor activation. J Biol Chem 277(26):23107–23110. https://doi.org/10.1074/JBC.C200201200

  57. Ramírez-Expósito MJ, Carrera-González MDP, Mayas MD, Dueñas B, Martínez-Ferrol J, Martínez-Martos JM (2012) Neoadjuvant chemotherapy modifies serum angiotensinase activities in women with breast cancer. Maturitas 72(1):79–83. https://doi.org/10.1016/J.MATURITAS.2012.02.007

    Article  PubMed  Google Scholar 

  58. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56(2):185–229. https://doi.org/10.1124/PR.56.2.6

    Article  CAS  PubMed  Google Scholar 

  59. Kirkham AA, Pituskin E, Thompson RB, et al. Cardiac and cardiometabolic phenoty** of trastuzumab-mediated cardiotoxicity: a secondary analysis of the MANTICORE trial. https://doi.org/10.1093/ehjcvp/pvab016

  60. Pituskin E, Mackey JR, Koshman S et al (2017) Multidisciplinary approach to novel therapies in cardio-oncology research (MANTICORE 101-Breast): a randomized trial for the prevention of trastuzumab-associated cardiotoxicity. J Clin Oncol 35(8):870–877. https://doi.org/10.1200/JCO.2016.68.7830

    Article  CAS  PubMed  Google Scholar 

  61. Thavendiranathan P, Amir E (2017) Left ventricular dysfunction with trastuzumab therapy: is primary prevention the best option? J Clin Oncol 35(8):820–825. https://doi.org/10.1200/JCO.2016.71.0038

    Article  PubMed  Google Scholar 

  62. Virani SA, Dent S, Brezden-Masley C et al (2016) Canadian cardiovascular society guidelines for evaluation and management of cardiovascular complications of cancer therapy. Can J Cardiol 32(7):831–841. https://doi.org/10.1016/j.cjca.2016.02.078

    Article  PubMed  Google Scholar 

  63. Mitry MA, Edwards JG (2016) Doxorubicin induced heart failure: phenotype and molecular mechanisms. IJC Heart Vasc 10:17–24. https://doi.org/10.1016/J.IJCHA.2015.11.004

    Article  Google Scholar 

  64. Jassal DS, Han SY, Hans C et al (2009) Utility of tissue doppler and strain rate imaging in the early detection of trastuzumab and anthracycline mediated cardiomyopathy. J Am Soc Echocardiogr 22(4):418–424. https://doi.org/10.1016/J.ECHO.2009.01.016

    Article  PubMed  Google Scholar 

  65. Saeed MF, Premecz S, Goyal V, Singal PK, Jassal DS (2014) Catching broken hearts: pre-clinical detection of doxorubicin and trastuzumab mediated cardiac dysfunction in the breast cancer setting1. 92(7):546-550. https://doi.org/10.1139/CJPP-2013-0470

  66. Ananthan K, Lyon AR (2020) The role of biomarkers in cardio-oncology. J Cardiovascular Transl Res 13(3):431–450. https://doi.org/10.1007/S12265-020-10042-3

    Article  Google Scholar 

  67. Fallah-Rad N, Walker JR, Wassef A et al (2011) The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor ii-positive breast cancer treated with adjuvant trastuzumab therapy. JAC 57:2263–2270. https://doi.org/10.1016/j.jacc.2010.11.063

    Article  CAS  Google Scholar 

  68. Zheng M, Kang YM, Liu W, Zang WJ, Bao CY, Qin DN (2012) Inhibition of cyclooxygenase-2 reduces hypothalamic excitation in rats with adriamycin-induced heart failure. PLoS ONE 7(11):e48771. https://doi.org/10.1371/JOURNAL.PONE.0048771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Francis J, Wei SG, Weiss RM, Felder RB (2004) Brain angiotensin-converting enzyme activity and autonomic regulation in heart failure. Am J Physiol—Heart Circulatory Physiol 287(5 56–5):2138–2146. https://doi.org/10.1152/AJPHEART.00112.2004

  70. Goyal V, Bews H, Cheung D et al (2016) The cardioprotective role of N-acetyl cysteine amide in the prevention of doxorubicin and trastuzumab-mediated cardiac dysfunction. Can J Cardiol 32(12):1513–1519. https://doi.org/10.1016/J.CJCA.2016.06.002

    Article  PubMed  Google Scholar 

  71. Jassal DS (2019) Cardio-oncology: a tale of two cities: the art of preventing broken hearts in women with breast cancer. Clin Invest Med 42(1):13–18. https://doi.org/10.25011/CIM.V42I1.32385

    Article  Google Scholar 

  72. Asselin CY, Lam A, Cheung DYC et al (2020) The cardioprotective role of flaxseed in the prevention of doxorubicin- and trastuzumab-mediated cardiotoxicity in C57BL/6 mice. J Nutr 150(9):2353–2363. https://doi.org/10.1093/JN/NXAA144

    Article  PubMed  Google Scholar 

  73. Walker JR, Singal PK, Jassal DS (2009) The art of healing broken hearts in breast cancer patients: trastuzumab and heart failure. Exp Clin Cardiol 14(3):e62. Accessed 13 Apr 2022. /pmc/articles/PMC2807779/

    Google Scholar 

  74. El-Aziz TAA, Mohamed RH, Pasha HF, Abdel-Aziz HR (2012) Catechin protects against oxidative stress and inflammatory-mediated cardiotoxicity in adriamycin-treated rats. Clin Exp Med 12(4):233–240. https://doi.org/10.1007/S10238-011-0165-2

    Article  Google Scholar 

  75. Stone JA, Stone JE (2015) Statins to protect against cancer chemotherapy cardiotoxicity. Can J Cardiol 31(3):244–246. https://doi.org/10.1016/J.CJCA.2015.01.017

    Article  PubMed  Google Scholar 

  76. Ludke A, Akolkar G, Ayyappan P, Sharma AK, Singal PK (2017) Time course of changes in oxidative stress and stress-induced proteins in cardiomyocytes exposed to doxorubicin and prevention by vitamin C. PLoS One 12(7). https://doi.org/10.1371/JOURNAL.PONE.0179452

  77. Akolkar G, Bagchi AK, Ayyappan P, Jassal DS, Singal PK (2017) Doxorubicin-induced nitrosative stress is mitigated by vitamin C via the modulation of nitric oxide synthases. Am J Physiol Cell Physiol 312(4):C418–C427. https://doi.org/10.1152/AJPCELL.00356.2016

    Article  PubMed  Google Scholar 

  78. Lehenbauer Ludke AR, Al-Shudiefat AARS, Dhingra S, Jassal DS, Singal PK (2009) A concise description of cardioprotective strategies in doxorubicin-induced cardiotoxicity. Can J Physiol Pharmacol 87(10):756–763. https://doi.org/10.1139/Y09-059

    Article  CAS  Google Scholar 

  79. Varghese SS, Eekhoudt CR, Jassal DS (2021) Mechanisms of anthracycline-mediated cardiotoxicity and preventative strategies in women with breast cancer. Mol Cell Biochem 476(8):3099–3109. https://doi.org/10.1007/s11010-021-04152-y

    Article  CAS  PubMed  Google Scholar 

  80. Mozolevska V, Schwartz A, Cheung D et al (2019) Role of renin-angiotensin system antagonists in the prevention of bevacizumab-and sunitinib-mediated cardiac dysfunction. Am J Physiol—Heart Circulatory Physiol 316(3):H446–H458. https://doi.org/10.1152/AJPHEART.00344.2018

    Article  CAS  Google Scholar 

  81. Akolkar G, Bhullar N, Bews H, et al (2015) The role of renin angiotensin system antagonists in the prevention of doxorubicin and trastuzumab induced cardiotoxicity. Cardiovascular Ultrasound 13(1). https://doi.org/10.1186/s12947-015-0011-x

  82. Zhang Y Chen, Tang Y, Zhang M, et al (2012) Fosinopril attenuates the doxorubicin-induced cardiomyopathy by restoring the function of sarcoplasmic reticulum. Cell Biochem Biophys. 64(3):205–211. https://doi.org/10.1007/S12013-012-9386-6/FIGURES/5

  83. Hiona A, Lee AS, Nagendran J et al (2011) Pretreatment with angiotensin-converting enzyme inhibitor improves doxorubicin-induced cardiomyopathy via preservation of mitochondrial function. J Thorac Cardiovasc Surg 142(2):396-403.e3. https://doi.org/10.1016/J.JTCVS.2010.07.097

    Article  CAS  PubMed  Google Scholar 

  84. Soga M, Kamal FA, Watanabe K et al (2006) Effects of angiotensin II receptor blocker (candesartan) in daunorubicin-induced cardiomyopathic rats. Int J Cardiol 110(3):378–385. https://doi.org/10.1016/J.IJCARD.2005.08.061

    Article  PubMed  Google Scholar 

  85. Sakr HF, Abbas AM, Elsamanoudy AZ (2015) Effect of valsartan on cardiac senescence and apoptosis in a rat model of cardiotoxicity. 94(6):588–598. https://doi.org/10.1139/CJPP-2015-0461

  86. Blaes AH, Gaillard P, Peterson BA, Yee D, Virnig B (2010) Angiotensin converting enzyme inhibitors may be protective against cardiac complications following anthracycline chemotherapy. Breast Cancer Res Treat 122(2):585–590. https://doi.org/10.1007/S10549-009-0730-5/TABLES/3

    Article  CAS  PubMed  Google Scholar 

  87. Janbabai G, Nabati M, Faghihinia M, Azizi S, Borhani S, Yazdani J (2017) Effect of enalapril on preventing anthracycline-induced cardiomyopathy. Cardiovasc Toxicol 17(2):130–139. https://doi.org/10.1007/S12012-016-9365-Z/TABLES/3

    Article  CAS  PubMed  Google Scholar 

  88. Bosch X, Rovira M, Sitges M et al (2013) Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: the overcome trial (prevention of left ventricular dysfunction with enalapril and carvedilol in patients submitted to intensive chemotherapy for the treatment of malignant hemopathies). J Am Coll Cardiol 61(23):2355–2362. https://doi.org/10.1016/J.JACC.2013.02.072

    Article  CAS  PubMed  Google Scholar 

  89. Dessì M, Madeddu C, Piras A et al (2013) Long-term, up to 18 months, protective effects of the angiotensin II receptor blocker telmisartan on Epirubin-induced inflammation and oxidative stress assessed by serial strain rate. Springerplus 2(1):1–10. https://doi.org/10.1186/2193-1801-2-198/TABLES/5

    Article  Google Scholar 

  90. Cadeddu C, Piras A, Mantovani G et al (2010) Protective effects of the angiotensin II receptor blocker telmisartan on epirubicin-induced inflammation, oxidative stress, and early ventricular impairment. Am Heart J 160(3):487.e1-487.e7. https://doi.org/10.1016/J.AHJ.2010.05.037

    Article  PubMed  Google Scholar 

  91. Gulati G, Heck SL, Ree AH et al (2016) Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 × 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur Heart J 37(21):1671–1680. https://doi.org/10.1093/EURHEARTJ/EHW022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Akpek M, Ozdogru I, Sahin O et al (2015) Protective effects of spironolactone against anthracycline-induced cardiomyopathy. Eur J Heart Fail 17(1):81–89. https://doi.org/10.1002/EJHF.196

    Article  CAS  PubMed  Google Scholar 

  93. Armenian SH, Lacchetti C, Barac A et al (2017) Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American society of clinical oncology clinical practice guideline. J Clin Oncol 35(8):893–911. https://doi.org/10.1200/JCO.2016.70.5400

    Article  PubMed  Google Scholar 

  94. Zamorano JL, Lancellotti P, Rodriguez Muñoz D et al (2016) 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC committee for practice guidelines the task force for cancer treatments and cardiovascular toxicity of the European society of cardiology (ESC). Eur Heart J 37(36):2768–2801. https://doi.org/10.1093/EURHEARTJ/EHW211

    Article  PubMed  Google Scholar 

  95. Davis MK, Virani SA (2016) Routine prophylactic cardioprotective therapy should not be given to all recipients of potentially cardiotoxic cancer chemotherapy. Can J Cardiol 32(7):926–930. https://doi.org/10.1016/J.CJCA.2016.02.061

    Article  PubMed  Google Scholar 

  96. McKay RR, Rodriguez GE, Lin X et al (2015) Angiotensin system inhibitors and survival outcomes in patients with metastatic renal Cell Carcinoma. Clin Cancer Res 21(11):2471–2479. https://doi.org/10.1158/1078-0432.CCR-14-2332/175376/AM/ANGIOTENSIN-SYSTEM-INHIBITORS-AND-SURVIVAL

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Monti M, Terzuoli E, Ziche M, Morbidelli L (2013) The sulphydryl containing ACE inhibitor Zofenoprilat protects coronary endothelium from Doxorubicin-induced apoptosis. Pharmacol Res 76:171–181. https://doi.org/10.1016/J.PHRS.2013.08.003

    Article  CAS  PubMed  Google Scholar 

  98. Lipshultz SE, Lipsitz SR, Sallan SE et al (2002) Long-term enalapril therapy for left ventricular dysfunction in doxorubicin-treated survivors of childhood cancer. J Clin Oncol 20(23):4517–4522. https://doi.org/10.1200/JCO.2002.12.102

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davinder S. Jassal .

Editor information

Editors and Affiliations

Appendix

Appendix

See Table 21.2.

Table 21.2 A comprehensive list of all the abbreviations used in the chapter

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Telles-Langdon, S.M., Arya, V., Jassal, D.S. (2023). Renin Angiotensin System (RAS): The Common Thread Between Cancer and Heart Failure. In: Bhullar, S.K., Tappia, P.S., Dhalla, N.S. (eds) The Renin Angiotensin System in Cancer, Lung, Liver and Infectious Diseases. Advances in Biochemistry in Health and Disease, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-031-23621-1_21

Download citation

Publish with us

Policies and ethics

Navigation