Largest Area Parallelogram Inside a Digital Object in a Triangular Grid

  • Conference paper
  • First Online:
Combinatorial Image Analysis (IWCIA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13348))

Included in the following conference series:

  • 221 Accesses

Abstract

A combinatorial algorithm to construct Largest Area Parallelogram (LAPT) inside a digital object lying on a Triangular grid is proposed in this work. An inner triangular cover (ITC) is first constructed, where the sides of ITC lies on the grid line and within the object. After the ITC is constructed, the proposed algorithm maintain few lists and a set of rules to find the LAPT. It is observed that the algorithm runs in \(O(k\cdot \frac{n}{g}\lg \frac{n}{g})\) time where n number pixel on the boundary of the digital object, g is grid size, and k is the number of convexities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 64.19
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 80.24
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Milenkovic, V., Daniels, K., Li, Z.: Automatic marker making. In: Proceedings of the Third Canadian Conference on Computational Geometry, pp. 243–246. Simon Fraser University (1991)

    Google Scholar 

  2. Milenkovic, V., Daniels, K., Li, Z.: Placement and Compaction of Nonconvex Polygons for Clothing Manufacture (1992)

    Google Scholar 

  3. MacKenna, M., O’Rourke, J., Suri, S.: Finding the largest rectangle in an orthogonal polygon (1985)

    Google Scholar 

  4. DePano, A., Ke, Y., O’Rourke, J.: Finding largest inscribed equilateral triangles and squares. In: Proceedings of the 25th Allerton Conference Communication Control Computing, pp. 869–878 (1987)

    Google Scholar 

  5. Amenta, N.: Largest volume box is convex programming. Pers. Commun. (1992)

    Google Scholar 

  6. Fekete, S.P.: Finding all anchored squares in a convex polygon in subquadratic time. In: Proceedings of the Fourth Canadian Conference on Computational Geometry, pp. 71–76 (1992)

    Google Scholar 

  7. Alt, H., Hsu, D., Snoeyink, J.: Computing the largest inscribed isothetic rectangle. In: CCCG, pp. 67–72 (1995)

    Google Scholar 

  8. Daniels, K., Milenkovic, V., Roth, D.: Finding the largest area axis-parallel rectangle in a polygon. Comput. Geom. 7(1–2), 125–148 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chaudhuri, J., Nandy, S.C., Das, S.: Largest empty rectangle among a point set. J. Algorithms 46(1), 54–78 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ahn, H.-K., Brass, P., Cheong, O., Na, H.-S., Shin, C.-S., Vigneron, A.: Inscribing an axially symmetric polygon and other approximation algorithms for planar convex sets. Comput. Geom. 33(3), 152–164 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hall-Holt, O., Katz, M.J., Kumar, P., Mitchell, J.S., Sityon, A.: Finding large sticks and potatoes in polygons. In: SODA, vol. 6, pp. 474–483 (2006)

    Google Scholar 

  12. Knauer, C., Schlipf, L., Schmidt, J.M., Tiwary, H.R.: Largest inscribed rectangles in convex polygons. J. Discrete Algorithms 13, 78–85 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sarkar, A., Biswas, A., Dutt, M., Bhattacharya, A.: Finding a largest rectangle inside a digital object and rectangularization. J. Comput. Syst. Sci. 95, 204–217 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sarkar, A., Biswas, A., Dutt, M., Bhattacharya, A.: Finding largest rectangle inside a digital object. In: Computational Topology in Image Context, pp. 157–169 (2016)

    Google Scholar 

  15. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2004)

    MATH  Google Scholar 

  16. Nagy, B., Abuhmaidan, K.: A continuous coordinate system for the plane by triangular symmetry. Symmetry 11(2) (2019)

    Google Scholar 

  17. Biswas, A., Bhowmick, P., Bhattacharya, B.B., Das, B., Dutt, M., Sarkar, A.: Triangular covers of a digital object. Appl. Math. Comput. 58(1), 667–691 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apurba Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Al Aman, M.A.A., Paul, R., Sarkar, A., Biswas, A. (2023). Largest Area Parallelogram Inside a Digital Object in a Triangular Grid. In: Barneva, R.P., Brimkov, V.E., Nordo, G. (eds) Combinatorial Image Analysis. IWCIA 2022. Lecture Notes in Computer Science, vol 13348. Springer, Cham. https://doi.org/10.1007/978-3-031-23612-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23612-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23611-2

  • Online ISBN: 978-3-031-23612-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation