X-rays CT and Mesoscale FEM of the Shot-Earth Material

  • Chapter
  • First Online:
Shot-Earth for an Eco-friendly and Human-Comfortable Construction Industry

Part of the book series: Springer Tracts in Civil Engineering ((SPRTRCIENG))

  • 101 Accesses

Abstract

The present contribution deals with the mechanical characterization of “shot-earth” material. Akin to shotcrete technology, the shot-earth material is made by a mix of cement, stabilized soil, aggregates and water that is installed by high-speed projection rather than by mechanical compaction to obtain structural elements and architectural finishings. The task of the ongoing researches it to set up a procedure to highlight as the characteristics and percentage of the components influence the elastic and plastic behaviour of the composite. For the first time, X-rays micro computed tomography (micro-CT) is used to investigate the effective composition of material cubical samples. Moreover, several image processing techniques are devised to enhance the acquisitions’ quality and to extract the data necessary for the creation of a finite element model. This last permits to investigate the relations between the material/physical characteristics and properties of cubical samples of shot-earth. In particular, a numerical homogenization procedure is applied to obtain the main elastic mechanical properties of the material. These are compared to the results of a mechanical experimental campaign (compressive tests) conducted on the same cubical samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Curto, A., Lanzoni, L., Tarantino, A., Viviani, M.: Shot-earth for sustainable constructions. Constr. Build. Mater. 239, 117775 (2020) https://doi.org/10.1016/j.conbuildmat.2019.117775. https://www.sciencedirect.com/science/article/pii/S0950061819332283

  2. Carrara, P., Kruse, R., Bentz, D., Lunardelli, M., Leusmann, T., Varady, P., De Lorenzis, L.: Improved mesoscale segmentation of concrete from 3d x-ray images using contrast enhancers. Cement Concrete Compos. 93, 30–42 (2018). https://doi.org/10.1016/j.cemconcomp.2018.06.014. https://www.sciencedirect.com/science/article/pii/S0958946517311745

  3. Mazzucco, G., Pomaro, B., Xotta, G., Garbin, E., Majorana, C., De Marchi, N., Concheri, G.: Meso-scale xct-based modeling of ordinary concrete. Constr. Build. Mater. 286, 122850 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122850. https://www.sciencedirect.com/science/article/pii/S0950061821006103

  4. Hounsfield, G.N.: Computerized transverse axial scanning (tomography): part 1. description of system. Br. J. Radiol. 46(552), 1016–1022 (1973). https://doi.org/10.1259/0007-1285-46-552-1016. PMID: 4757352

  5. Van Rossum, G., Drake Jr, F.L.: Python tutorial. Centrum voor Wiskunde en Informatica Amsterdam, The Netherlands (1995)

    Google Scholar 

  6. Visual Sciences Group: Avizo User’s Guide Version 6. FEI Visual Sciences Group Burlington, MA (2009)

    Google Scholar 

  7. Cluni, F., Costarelli, D., Gusella, V., Vinti, G.: Reliability increase of masonry characteristics estimation by a sampling algorithm applied to thermographic digital images. Probab. Eng. Mech. 60, 103022 (2020). https://doi.org/10.1016/j.probengmech.2020.103022. http://www.sciencedirect.com/science/article/pii/S0266892020300072

  8. Gusella, V., Cluni, F., Liberotti, R.: Feasibility of a thermography nondestructive technique for determining the quality of historical frescoed masonries: Applications on the templar church of san bevignate. Appl. Sci. 11(1) (2021). https://doi.org/10.3390/app11010281. https://www.mdpi.com/2076-3417/11/1/281

  9. Cluni, F., Gusella, V., Vinti, G.: Masonry elastic characteristics assessment by thermographic images. Meccanica 54, 1339–1349 (2019). https://doi.org/10.1007/s11012-019-00982-9

    Article  Google Scholar 

  10. Liberotti, R., Gusella, V.: Infra redable. thermography for the diagnosis and conservation of frescoed walls: the case of the templar church of san bevignate. Restauro Archeologico 30(1), 114–133 (2022). https://doi.org/10.36253/rar-12594. https://oaj.fupress.net/index.php/ra/article/view/12594

  11. Ralf, J., Fredrik, L., Kenneth, R.: A poro-viscoelastic substitute model of fine-scale poroelasticity obtained from homogenization and numerical model reduction. Comput. Mech. 65 (2020). https://doi.org/10.1007/s00466-019-01808-x

  12. Van der Walt, S., Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D., Yager, N., Gouillart, E., Yu, T.: Scikit-image: image processing in python. PeerJ 2, e453 (2014)

    Article  Google Scholar 

  13. Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: Nih image to imageJ: 25 years of image analysis. Nature Methods 9(7), 671–675 (2012). https://doi.org/10.1038/nmeth.2089

  14. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybernet. 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076

    Article  MathSciNet  Google Scholar 

  15. Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imag. 13(1), 146–165 (2004). https://doi.org/10.1117/1.1631315

    Article  Google Scholar 

  16. Ridler, T.W., Cavard, S.: Picture thresholding using an iterative selection method. IEEE Trans. Syst. Man, Cybernet. 8(8), 630–632 (1978). https://doi.org/10.1109/TSMC.1978.4310039

  17. Prewitt, J.M.S., Mendelsohn, M.L.: The analysis of cell images. Annals New York Acad. Sci. 128(3), 1035–1053 (1966). https://doi.org/10.1111/j.1749-6632.1965.tb11715.x

    Article  Google Scholar 

  18. Li, C., Tam, P.: An iterative algorithm for minimum cross entropy thresholding. Pattern Recogn. Lett. 19(8), 771–776 (1998). https://doi.org/10.1016/S0167-8655(98)00057-9. https://www.sciencedirect.com/science/article/pii/S0167865598000579

  19. Glasbey, C.: An analysis of histogram-based thresholding algorithms. CVGIP: Graph. Models Image Proc. 55(6), 532–537 (1993). https://doi.org/10.1006/cgip.1993.1040. https://www.sciencedirect.com/science/article/pii/S1049965283710400

  20. Zack, G.W., Rogers, W.E., Latt, S.A.: Automatic measurement of sister chromatid exchange frequency. J. Histochem. Cytochem. 25(7), 741–753 (1977). https://doi.org/10.1177/25.7.70454

    Article  Google Scholar 

  21. Yen, J.C., Chang, F.J., Chang, S.: A new criterion for automatic multilevel thresholding. IEEE Trans. Image Proc. 4(3), 370–378 (1995). https://doi.org/10.1109/83.366472

    Article  Google Scholar 

  22. High Resolution CT and Pore-Network Models to Assess Petrophysical Properties of Homogeneous and Heterogeneous Carbonates, SPE Reservoir Characterisation and Simulation Conference and Exhibition, vol. All Days (2007). https://doi.org/10.2118/111427-MS

  23. Voigt, W.: Ueber die beziehung zwischen den beiden elasticitätsconstanten isotroper körper. Annalen der Physik 274(12), 573–587 (1889). https://doi.org/10.1002/andp.18892741206

    Article  MATH  Google Scholar 

  24. Reuss, A.: Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle . ZAMM - J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 49–58 (1929). https://doi.org/10.1002/zamm.19290090104

  25. Hill, R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Section A 65(5), 349–354 (1952). https://doi.org/10.1088/0370-1298/65/5/307

    Article  Google Scholar 

  26. Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica 21(5), 571–574 (1973). https://doi.org/10.1016/0001-6160(73)90064-3. https://www.sciencedirect.com/science/article/pii/0001616073900643

  27. Christensen, R.M.: A critical evaluation for a class of micro-mechanics models. J. Mech. Phys. Solids 38(3), 379–404 (1990). https://doi.org/10.1016/0022-5096(90)90005-O. https://www.sciencedirect.com/science/article/pii/002250969090005O

  28. Smith, M.: ABAQUS/Standard User’s Manual, Version 6.9. United States (2009)

    Google Scholar 

  29. Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del Río, J.F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature 585(7825), 357–362 (2020). https://doi.org/10.1038/s41586-020-2649-2

    Article  Google Scholar 

  30. McKinney, W.: Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Gusella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cluni, F., Faralli, F., Gusella, V., Liberotti, R. (2023). X-rays CT and Mesoscale FEM of the Shot-Earth Material. In: Tarantino, A.M., Cotana, F., Viviani, M. (eds) Shot-Earth for an Eco-friendly and Human-Comfortable Construction Industry. Springer Tracts in Civil Engineering . Springer, Cham. https://doi.org/10.1007/978-3-031-23507-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23507-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23506-1

  • Online ISBN: 978-3-031-23507-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation