MPCDDI: A Secure Multiparty Computation-Based Deep Learning Framework for Drug-Drug Interaction Predictions

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13760))

Included in the following conference series:

  • 745 Accesses

Abstract

Drug-drug interaction (DDI) is a key concern in drug development and pharmacovigilance. It is important to improve DDI predictions by integrating multi-source data from various pharmaceutical companies. Unfortunately, the data privacy and financial interest issues seriously influence the inter-institutional collaborations for DDI predictions. We propose MPCDDI, a secure multiparty computation-based deep learning framework for drug-drug interaction predictions. MPCDDI leverages the secret sharing technologies to incorporate the drug-related feature data from multiple institutions and develops a deep learning model for DDI predictions. In MPCDDI, all data transmission and deep learning operations are integrated into secure multiparty computation (MPC) frameworks to enable high-quality collaboration among pharmaceutical institutions without divulging private drug-related information. The results suggest that MPCDDI is superior to other five baselines and achieves the similar performance to that of the corresponding plaintext collaborations. More interestingly, MPCDDI significantly outperforms methods that use private data from the single institution. In summary, MPCDDI is an effective framework for promoting collaborative and privacy-preserving drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_34

    Chapter  Google Scholar 

  2. Cao, S., Lu, W., Xu, Q.: GraRep: learning graph representations with global structural information. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 891–900 (2015)

    Google Scholar 

  3. Cho, H., Wu, D.J., Berger, B.: Secure genome-wide association analysis using multiparty computation. Nat. Biotechnol. 36(6), 547–551 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cramer, R., Damgård, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 342–362. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7_19

    Chapter  Google Scholar 

  5. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38

    Chapter  Google Scholar 

  6. Davis, A.P., et al.: The comparative toxicogenomics database: update 2013. Nucleic Acids Res. 41(D1), D1104–D1114 (2013)

    Article  CAS  PubMed  Google Scholar 

  7. Deac, A., Huang, Y.H., Veličković, P., Liò, P., Tang, J.: Drug-drug adverse effect prediction with graph co-attention. ar**v preprint ar**v:1905.00534 (2019)

  8. Demmler, D., Schneider, T., Zohner, M.: ABY-a framework for efficient mixed-protocol secure two-party computation. In: NDSS (2015)

    Google Scholar 

  9. Deng, Y., Xu, X., Qiu, Y., **a, J., Zhang, W., Liu, S.: A multimodal deep learning framework for predicting drug-drug interaction events. Bioinformatics 36(15), 4316–4322 (2020)

    Article  CAS  PubMed  Google Scholar 

  10. Edwards, I.R., Aronson, J.K.: Adverse drug reactions: definitions, diagnosis, and management. Lancet 356(9237), 1255–1259 (2000)

    Article  CAS  PubMed  Google Scholar 

  11. Evans, W.E., McLeod, H.L.: Pharmacogenomics-drug disposition, drug targets, and side effects. N. Engl. J. Med. 348(6), 538–549 (2003)

    Article  CAS  PubMed  Google Scholar 

  12. Giacomini, K.M., Krauss, R.M., Roden, D.M., Eichelbaum, M., Hayden, M.R., Nakamura, Y.: When good drugs go bad. Nature 446(7139), 975–977 (2007)

    Article  CAS  PubMed  Google Scholar 

  13. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, or a completeness theorem for protocols with honest majority. In: Providing Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali, pp. 307–328 (2019)

    Google Scholar 

  14. Hecker, N., et al.: SuperTarget goes quantitative: update on drug-target interactions. Nucleic Acids Res. 40(D1), D1113–D1117 (2012)

    Article  CAS  PubMed  Google Scholar 

  15. Hie, B., Cho, H., Berger, B.: Realizing private and practical pharmacological collaboration. Science 362(6412), 347–350 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)

    Google Scholar 

  17. Jagadeesh, K.A., Wu, D.J., Birgmeier, J.A., Boneh, D., Bejerano, G.: Deriving genomic diagnoses without revealing patient genomes. Science 357(6352), 692–695 (2017)

    Article  CAS  PubMed  Google Scholar 

  18. Knott, B., Venkataraman, S., Hannun, A., Sengupta, S., Ibrahim, M., van der Maaten, L.: CRYPTEN: secure multi-party computation meets machine learning. In: Advances in Neural Information Processing Systems, vol. 34, pp. 4961–4973 (2021)

    Google Scholar 

  19. Knox, C., et al.: DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res. 39(suppl_1), D1035–D1041 (2010)

    Google Scholar 

  20. Kuhn, M., Campillos, M., Letunic, I., Jensen, L.J., Bork, P.: A side effect resource to capture phenotypic effects of drugs. Mol. Syst. Biol. 6(1), 343 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  21. Landrum, G.: RDKit documentation. Release 1(1–79), 4 (2013)

    Google Scholar 

  22. Law, V., et al.: DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 42(D1), D1091–D1097 (2014)

    Google Scholar 

  23. Luo, Y., et al.: A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat. Commun. 8(1), 1–13 (2017)

    Article  Google Scholar 

  24. Ma, R., et al.: Secure multiparty computation for privacy-preserving drug discovery. Bioinformatics 36(9), 2872–2880 (2020)

    Article  CAS  PubMed  Google Scholar 

  25. Ma, T., **ao, C., Zhou, J., Wang, F.: Drug similarity integration through attentive multi-view graph auto-encoders. ar**v preprint ar**v:1804.10850 (2018)

  26. Qin, C., et al.: Therapeutic target database update 2014: a resource for targeted therapeutics. Nucleic Acids Res. 42(D1), D1118–D1123 (2014)

    Article  CAS  PubMed  Google Scholar 

  27. Ribeiro, L.F., Saverese, P.H., Figueiredo, D.R.: struc2vec: learning node representations from structural identity. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 385–394 (2017)

    Google Scholar 

  28. Ryu, J.Y., Kim, H.U., Lee, S.Y.: Deep learning improves prediction of drug-drug and drug-food interactions. Proc. Natl. Acad. Sci. 115(18), E4304–E4311 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  Google Scholar 

  30. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    Google Scholar 

  31. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077 (2015)

    Google Scholar 

  32. Vilar, S., et al.: Similarity-based modeling in large-scale prediction of drug-drug interactions. Nat. Protoc. 9(9), 2147–2163 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang, X., Cheng, Y., Yang, Y., Li, F., Peng, S.: Multi-task joint strategies of self-supervised representation learning on biomedical networks for drug discovery. ar**v preprint ar**v:2201.04437 (2022)

  34. Yue, X., et al.: Graph embedding on biomedical networks: methods, applications and evaluations. Bioinformatics 36(4), 1241–1251 (2020)

    Article  CAS  PubMed  Google Scholar 

  35. Zitnik, M., Agrawal, M., Leskovec, J.: Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34(13), i457–i466 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC Grants U19A2067; National Key R &D Program of China 2022YFC3400404; Science Foundation for Distinguished Young Scholars of Hunan Province (2020JJ2009); Science Foundation of Changsha Z202069420652, kq2004010; JZ20195242029, JH20199142034; The Funds of State Key Laboratory of Chemo/Biosensing and Chemometrics, the National Supercomputing Center in Changsha (http://nscc.hnu.edu.cn/), and Peng Cheng Lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoliang Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

**ao, X., Wang, X., Liu, S., Peng, S. (2022). MPCDDI: A Secure Multiparty Computation-Based Deep Learning Framework for Drug-Drug Interaction Predictions. In: Bansal, M.S., Cai, Z., Mangul, S. (eds) Bioinformatics Research and Applications. ISBRA 2022. Lecture Notes in Computer Science(), vol 13760. Springer, Cham. https://doi.org/10.1007/978-3-031-23198-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23198-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23197-1

  • Online ISBN: 978-3-031-23198-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation