Interrelation Between the Immune and the Nervous Systems in the Context of Cerebellar Development and Developmental Disorders

  • Chapter
  • First Online:
Development of the Cerebellum from Molecular Aspects to Diseases

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 468 Accesses

Abstract

In recent years, the interplay between the development and function of the central nervous system and the immune system in the homeostatic and pathological state has become evident. Thus, understanding the crosstalk between the immune system and cerebellar development and functions has noticeable implications for managing neurodevelopmental, neurodegenerative, and neuroinflammatory disorders. In this chapter, we highlight the current progress of knowledge in the field of neuroimmunology and psychoneuroimmunology. Specifically, we discuss the contribution of the various immune responses in cerebellar development and its associated pathologies and highlight the current understanding of mechanisms involved in these processes. Immune pathways that play a crucial role in cerebellar development and functions are likely to become therapeutic targets for several neurodevelopmental, neurodegenerative, and neuroinflammatory disorders, thus suppression or activation of these selected immune pathways may propose new therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

(RAG)-1:

Recombination activating gene

AICA:

Anterior inferior cerebellar artery

ALRs:

AIM2-like receptors

ALS:

Amyotrophic lateral sclerosis

ANS:

Autonomic nervous system

APCs:

Antigen-presenting cells

BBB:

Blood-brain barrier

CCL:

C-C motif chemokine ligand

CNS:

Central nervous system

Cop-1:

Copolymer 1

COVID-19:

Corona virus disease 2019

CSF:

Cerebrospinal fluid

DAMPs:

Damage-associated molecular patterns

DC:

Dendritic cells

EAE:

Experimental autoimmune encephalomyelitis

EGL:

External granule cell layer

FOXP3:

Forkhead box P3

GAD:

Glutamic acid decarboxylase antibodies

GIT:

Gastrointestinal tract

HE:

Hashimoto’s encephalopathy

HSP:

Heat-shock proteins

IBS:

Irritable bowel syndrome

IFN:

Interferon

Ig:

Immunoglobulin

IGL:

Internal granule cell layer

IL:

Interleukin

LGP2:

Laboratory of genetics and physiology 2

MDA5:

Melanoma differentiation-associated gene 5

MHC:

Major histocompatibility

MIP:

Macrophage inflammatory protein

MSA:

Multiple system atrophy

NLRs:

Nod-like receptors

OPCA:

Olivopontocerebellar

P2X7R:

Purinergic receptor P2X7

PACA:

Primary autoimmune cerebellar ataxia

PAMPs:

Pathogen-associated molecular patterns

PICA:

Posterior inferior cerebellar artery

PRRs:

Pattern recognition receptors

Rig1:

Retinoic acid-inducible gene-1

RLRs:

RIG-like receptors

Rora:

Retinoic-acid-related orphan receptor alpha

ROS:

Reactive oxygen species

SCA:

Superior cerebellar artery

SCID:

Severe combined immunodeficiency

SND:

Striatonigral

SOCS3:

Suppressor of cytokine signaling 3

TGF:

Tumor growth factor

Th:

T helper

TLRs:

Toll-like receptors

TNF:

Tumor necrosis factor

Treg:

Regulatory T cells

URL:

Upper rhombic lip

References

  1. Dantzer R. Innate immunity at the forefront of psychoneuroimmunology. Brain Behav Immun. 2004;18(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  2. Jiang C-L, Lu C-L, Liu X-Y. The molecular basis for bidirectional communication between the immune and neuroendocrine systems. Domest Anim Endocrinol. 1998;15(5):363–9.

    Article  CAS  PubMed  Google Scholar 

  3. Zengeler KE, Lukens JR. Innate immunity at the crossroads of healthy brain maturation and neurodevelopmental disorders. Nat Rev Immunol Springer US. 2021:454–68.

    Google Scholar 

  4. Nutma E, Willison H, Martino G, Amor S. Neuroimmunology – the past, present and future. Clin Exp Immunol. 2019:278–93.

    Google Scholar 

  5. Glickstein M, Strata P, Voogd J. Cerebellum: history. Neuroscience. 2009;162(3):549–59.

    Article  CAS  PubMed  Google Scholar 

  6. Kip** JA, **%20JA%2C%20**e%20Y%2C%20Qiu%20A.%20Cerebellar%20development%20and%20its%20mediation%20role%20in%20cognitive%20planning%20in%20childhood.%20Hum%20Brain%20Mapp.%202018%3A5074%E2%80%9384."> Google Scholar 

  7. Steinlin M. The cerebellum in cognitive processes: supporting studies in children. Cerebellum. 2007:237–41.

    Google Scholar 

  8. Low AYT, Goldstein N, Gaunt JR, Huang KP, Zainolabidin N, Yip AKK, et al. Reverse-translational identification of a cerebellar satiation network. Nature. 2021;600(7888):269–73.

    Article  CAS  PubMed  Google Scholar 

  9. Tiemeier H, Lenroot RK, Greenstein DK, Tran L, Pierson R, Giedd JN. Cerebellum development during childhood and adolescence: a longitudinal morphometric MRI study. NeuroImage. 2010;49(1):63–70.

    Article  PubMed  Google Scholar 

  10. Deverman BE, Patterson PH. Cytokines and CNS development. Neuron. 2009;64(1):61–78.

    Article  CAS  PubMed  Google Scholar 

  11. Zhu J-N, Zhang Y-P, Song Y-N, Wang J-J. Cerebellar interpositus nuclear and gastric vagal afferent inputs reach and converge onto glycemia-sensitive neurons of the ventromedial hypothalamic nucleus in rats. Neurosci Res. 2004;48(4):405–17.

    Article  PubMed  Google Scholar 

  12. Cavdar S, Şan T, Aker R, Şehirli Ü, Onat F. Cerebellar connections to the dorsomedial and posterior nuclei of the hypothalamus in the rat. J Anat. 2001;198(1):37–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cavdar S, Onat F, Aker R, Şehirli Ü, Şan T, Raci Yananli H. The afferent connections of the posterior hypothalamic nucleus in the rat using horseradish peroxidase. J Anat. 2001;198(4):463–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang J, Pu Y, Wang T. Influences of cerebellar interpositus nucleus and fastigial nucleus on neuronal activity of lateral hypothalamic area. Sci China Ser C Life Sci. 1997;40(2):176–83.

    Article  CAS  Google Scholar 

  15. Soto-Tinoco E, Guerrero-Vargas NN, Buijs RM. Interaction between the hypothalamus and the immune system. Exp Physiol. 2016;101:1463–71.

    Article  CAS  PubMed  Google Scholar 

  16. Haines D, Dietrichs E. An HRP study of hypothalamo-cerebellar and cerebello-hypothalamic connections in squirrel monkey (saimiri sciureus). J Comp Neurol. 1984;229(4):559–75.

    Article  CAS  PubMed  Google Scholar 

  17. King JS, Cummings SL, Bishop GA. Peptides in cerebellar circuits. Prog Neurobiol. 1992;39(4):423–42.

    Article  CAS  PubMed  Google Scholar 

  18. Lind R, Swanson L, Ganten D. Organization of angiotensin II immunoreactive cells and fibers in the rat central nervous system. Neuroendocrinology. 1985;40(1):2–24.

    Article  CAS  PubMed  Google Scholar 

  19. Koibuchi N. The role of thyroid hormone on cerebellar development. Cerebellum. 2008;7(4):530–3.

    Article  CAS  PubMed  Google Scholar 

  20. Koibuchi N, **gu H, Iwasaki T, Chin WW. Current perspectives on the role of thyroid hormone in growth and development of cerebellum. Cerebellum. 2003;2(4):279.

    Article  CAS  PubMed  Google Scholar 

  21. Hajo F, Patel A, Bala R. Effect of thyroid deficiency on the synaptic organization of the rat cerebellar cortex. Brain Res. 1973;50(2):387–401.

    Article  Google Scholar 

  22. De Vito P, Incerpi S, Pedersen JZ, Luly P, Davis FB, Davis PJ. Thyroid hormones as modulators of immune activities at the cellular level. Thyroid. 2011;21(8):879–90.

    Article  PubMed  Google Scholar 

  23. Janeway CA. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today. 1992;13(1):11–6.

    Article  CAS  PubMed  Google Scholar 

  24. Kigerl KA, Lai W, Rivest S, Hart RP, Satoskar AR, Popovich PG. Toll-like receptor (TLR)-2 and TLR-4 regulate inflammation, gliosis, and myelin sparing after spinal cord injury. J Neurochem. 2007;102(1):37–50.

    Article  CAS  PubMed  Google Scholar 

  25. Ransohoff RM, Brown MA. Innate immunity in the central nervous system. J Clin Invest. 2012;122(4):1164–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Colton CA, Wilcock DM. Assessing activation states in microglia. CNS Neurol Disord Drug Target. 2010;9(2):174–91.

    Article  CAS  Google Scholar 

  27. Cardoso FL, Herz J, Fernandes A, Rocha J, Sepodes B, Brito MA, et al. Systemic inflammation in early neonatal mice induces transient and lasting neurodegenerative effects. J Neuroinflammation. 2015;12:82.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol. 2014:1–8.

    Google Scholar 

  29. Hanke ML, Kielian T. Mechanisms and therapeutic potential. Clin Sci (London). 2014:367–87.

    Google Scholar 

  30. Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF. A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci. 1998;95(2):588–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yao L, Kan EM, Lu J, Hao A, Dheen ST, Kaur C, et al. Toll-like receptor 4 mediates microglial activation and production of inflammatory mediators in neonatal rat brain following hypoxia: role of TLR4 in hypoxic microglia. J Neuroinflammation. 2013;10(1):23.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bachiller S, Jiménez-Ferrer I, Paulus A, Yang Y, Swanberg M, Deierborg T, et al. Microglia in neurological diseases: a road map to brain-disease dependent-inflammatory response. Front Cell Neurosci. 2018;12:1–17.

    Article  Google Scholar 

  33. Karikó K, Ni H, Capodici J, Lamphier M, Weissman D. mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem. 2004;279(13):12542–50.

    Article  PubMed  Google Scholar 

  34. DeMarco RA, Fink MP, Lotze MT. Monocytes promote natural killer cell interferon gamma production in response to the endogenous danger signal HMGB1. Mol Immunol. 2005;42(4):433–44.

    Article  CAS  PubMed  Google Scholar 

  35. Yu M, Wang H, Ding A, Golenbock DT, Latz E, Czura CJ, et al. HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock. 2006;26(2):174–9.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464(7285):104–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci. 2005;8(6):752–8.

    Article  CAS  PubMed  Google Scholar 

  38. Brudek T, Winge K, Agander TK, Pakkenberg B. Screening of Toll-like receptors expression in multiple system atrophy brains. Neurochem Res. 2013;38(6):1252–9.

    Article  CAS  PubMed  Google Scholar 

  39. Kigerl KA, de Rivero Vaccari JP, Dietrich WD, Popovich PG, Keane RW. Pattern recognition receptors and central nervous system repair. Exp Neurol. 2014;258:5–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bsibsi M, Ravid R, Gveric D, van Noort JM. Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol. 2002;61(11):1013–21.

    Article  CAS  PubMed  Google Scholar 

  41. Okun E, Griffioen KJ, Lathia JD, Tang S-C, Mattson MP, Arumugam TV. Toll-like receptors in neurodegeneration. Brain Res Rev. 2009;59(2):278–92.

    Article  CAS  PubMed  Google Scholar 

  42. Di Virgilio F. The therapeutic potential of modifying inflammasomes and NOD-like receptors. Pharmacol Rev. 2013;65(3):872–905.

    Article  PubMed  Google Scholar 

  43. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell. 2002;10(2):417–26.

    Article  CAS  PubMed  Google Scholar 

  44. Fernandes-Alnemri T, Wu J, Yu J, Datta P, Miller B, Jankowski W, et al. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 2007;14(9):1590–604.

    Article  CAS  PubMed  Google Scholar 

  45. Abulafia DP, de Rivero Vaccari JP, Lozano JD, Lotocki G, Keane RW, Dietrich WD. Inhibition of the inflammasome complex reduces the inflammatory response after thromboembolic stroke in mice. J Cereb Blood Flow Metab. 2009;29(3):534–44.

    Article  CAS  PubMed  Google Scholar 

  46. Minkiewicz J, Rivero Vaccari JP, Keane RW. Human astrocytes express a novel NLRP2 inflammasome. Glia. 2013;61(7):1113–21.

    Article  PubMed  Google Scholar 

  47. Shi F, Yang Y, Kouadir M, Fu Y, Yang L, Zhou X, et al. Inhibition of phagocytosis and lysosomal acidification suppresses neurotoxic prion peptide-induced NALP3 inflammasome activation in BV2 microglia. J Neuroimmunol. 2013;260(1):121–5.

    Article  CAS  PubMed  Google Scholar 

  48. de Rivero Vaccari JP, Lotocki G, Marcillo AE, Dietrich WD, Keane RW. A molecular platform in neurons regulates inflammation after spinal cord injury. J Neurosci. 2008;28(13):3404–14.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Couturier J, Stancu I-C, Schakman O, Pierrot N, Huaux F, Kienlen-Campard P, et al. Activation of phagocytic activity in astrocytes by reduced expression of the inflammasome component ASC and its implication in a mouse model of Alzheimer disease. J Neuroinflammation. 2016;13(1):1–13.

    Article  Google Scholar 

  50. Gustin A, Kirchmeyer M, Koncina E, Felten P, Losciuto S, Heurtaux T, et al. NLRP3 inflammasome is expressed and functional in mouse brain microglia but not in astrocytes. PLoS One. 2015;10(6):e0130624.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Walsh JG, Muruve DA, Power C. Inflammasomes in the CNS. Nat Rev Neurosci. 2014;15(2):84–97.

    Article  CAS  PubMed  Google Scholar 

  52. Andoh T, Kishi H, Motoki K, Nakanishi K, Kuraishi Y, Muraguchi A. Protective effect of IL-18 on Kainate- and IL-1β-induced cerebellar ataxia in mice. J Immunol. 2008;180(4):2322–8.

    Article  CAS  PubMed  Google Scholar 

  53. Goines PE, Ashwood P. Cytokine dysregulation in autism spectrum disorders (ASD): possible role of the environment. Neurotoxicol Teratol. 2013;36:67–81.

    Article  CAS  PubMed  Google Scholar 

  54. Savarin C, Bergmann CC. Neuroimmunology of central nervous system viral infections: the cells, molecules and mechanisms involved. Curr Opin Pharmacol. 2008;8(4):472–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Szabo A, Bene K, Gogolák P, Réthi B, Lányi Á, Jankovich I, et al. RLR-mediated production of interferon-β by a human dendritic cell subset and its role in virus-specific immunity. J Leukoc Biol. 2012;92(1):159–69.

    Article  CAS  PubMed  Google Scholar 

  56. Duan X, Ponomareva L, Veeranki S, Panchanathan R, Dickerson E, Choubey D. Differential roles for the interferon-inducible IFI16 and AIM2 innate immune sensors for cytosolic DNA in cellular senescence of human fibroblasts. Mol Cancer Res. 2011;9(5):589–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Adamczak SE. Molecular recognition of DNA by the AIM2 inflammasome induces neuronal pyroptosis: implications in infection and host tissue damage. 2012.

    Google Scholar 

  58. Husemann J, Loike JD, Anankov R, Febbraio M, Silverstein SC. Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system. Glia. 2002;40(2):195–205.

    Article  PubMed  Google Scholar 

  59. Morimoto K, Nakajima K. Role of the immune system in the development of the central nervous system. Front Neurosci. 2019;13:916.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Prinz M, Priller J. The role of peripheral immune cells in the CNS in steady state and disease. Nat Neurosci. 2017;20(2):136–44.

    Article  CAS  PubMed  Google Scholar 

  61. Edele F, Molenaar R, Gütle D, Dudda JC, Jakob T, Homey B, et al. Cutting edge: instructive role of peripheral tissue cells in the imprinting of T cell homing receptor patterns. J Immunol. 2008;181(6):3745–9.

    Article  CAS  PubMed  Google Scholar 

  62. Desalvo MK, Mayer N, Mayer F, Bainton RJ. Physiologic and anatomic characterization of the brain surface glia barrier of Drosophila. Glia. 2011;59(9):1322–40.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Banerjee S, Bhat MA. Neuron-glial interactions in blood-brain barrier formation. Annu Rev Neurosci. 2007;30:235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kwidzinski E, Mutlu L, Kovac A, Bunse J, Goldmann J, Mahlo J, et al. Self-tolerance in the immune privileged CNS: lessons from the entorhinal cortex lesion model. Adv Res Neurodegener Springer. 2003:29–49.

    Google Scholar 

  65. Malipiero U, Koedel U, Pfister H-W, Levéen P, Bürki K, Reith W, et al. TGFβ receptor II gene deletion in leucocytes prevents cerebral vasculitis in bacterial meningitis. Brain. 2006;129(9):2404–15.

    Article  PubMed  Google Scholar 

  66. Tremblay M-È, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A. The role of microglia in the healthy brain. J Neurosci. 2011;31(45):16064–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kaur C, Sivakumar V, Zou Z, Ling E-A. Microglia-derived proinflammatory cytokines tumor necrosis factor-alpha and interleukin-1beta induce Purkinje neuronal apoptosis via their receptors in hypoxic neonatal rat brain. Brain Struct Funct. 2014;219(1):151–70.

    Article  CAS  PubMed  Google Scholar 

  68. Lenz KM, Nugent BM, Haliyur R, McCarthy MM. Microglia are essential to masculinization of brain and behavior. J Neurosci. 2013;33(7):2761–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012;74(4):691–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cuadros MA, Rodriguez-Ruiz J, Calvente R, Almendros A, Marin-Teva JL, Navascues J. Microglia development in the quail cerebellum. J Comp Neurol. 1997;389(3):390–401.

    Article  CAS  PubMed  Google Scholar 

  71. Perez-Pouchoulen M, VanRyzin JW, McCarthy MM. Morphological and phagocytic profile of microglia in the develo** rat cerebellum. eNeuro. 2015;2(4):0036–15.2015.

    Article  Google Scholar 

  72. Marın-Teva JL, Dusart I, Colin C, Gervais A, Van Rooijen N, Mallat M. Microglia promote the death of develo** Purkinje cells. Neuron. 2004;41(4):535–47.

    Article  PubMed  Google Scholar 

  73. Streit WJ. Microglia and macrophages in the develo** CNS. Neurotoxicology. 2001;22(5):619–24.

    Article  CAS  PubMed  Google Scholar 

  74. Schwartz M, Kipnis J, Rivest S, Prat A. How do immune cells support and shape the brain in health, disease, and aging? J Neurosci. 2013;33(45):17587–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nathan C. Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol. 2006;6(3):173–82.

    Article  CAS  PubMed  Google Scholar 

  76. Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol. 2011;11(8):519–31.

    Article  CAS  PubMed  Google Scholar 

  77. Morita K, Miura M, Paolone DR, Engeman TM, Kapoor A, Remick DG, et al. Early chemokine cascades in murine cardiac grafts regulate T cell recruitment and progression of acute allograft rejection. J Immunol. 2001;167(5):2979–84.

    Article  CAS  PubMed  Google Scholar 

  78. Halloran P, Fairchild R. The puzzling role of CXCR3 and its ligands in organ allograft rejection. Am J Transplant. 2008;8(8):1578–9.

    Article  CAS  PubMed  Google Scholar 

  79. Klein RS, Rubin JB, Gibson HD, DeHaan EN, Alvarez-Hernandez X, Segal RA, et al. SDF-1α induces chemotaxis and enhances Sonic hedgehog-induced proliferation of cerebellar granule cells. Development. 2001;128(11):1971–81.

    Article  CAS  PubMed  Google Scholar 

  80. Stumm RK, Rummel J, Junker V, Culmsee C, Pfeiffer M, Krieglstein J, et al. A dual role for the SDF-1/CXCR4 chemokine receptor system in adult brain: isoform-selective regulation of SDF-1 expression modulates CXCR4-dependent neuronal plasticity and cerebral leukocyte recruitment after focal ischemia. J Neurosci. 2002;22(14):5865–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rostène W, Dansereau MA, Godefroy D, Van Steenwinckel J, Goazigo ARL, Mélik-Parsadaniantz S, et al. Neurochemokines: a menage a trois providing new insights on the functions of chemokines in the central nervous system. J Neurochem. 2011;118(5):680–94.

    Article  PubMed  Google Scholar 

  82. Wingate RJ. The rhombic lip and early cerebellar development. Curr Opin Neurobiol. 2001;11(1):82–8.

    Article  CAS  PubMed  Google Scholar 

  83. Zhu Y, Yu T, Zhang X-C, Nagasawa T, Wu JY, Rao Y. Role of the chemokine SDF-1 as the meningeal attractant for embryonic cerebellar neurons. Nat Neurosci. 2002;5(8):719–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ozawa PMM, Ariza CB, Ishibashi CM, Fujita TC, Banin-Hirata BK, Oda JMM, et al. Role of CXCL12 and CXCR4 in normal cerebellar development and medulloblastoma. Int J Cancer. 2016;138(1):10–3.

    Article  CAS  PubMed  Google Scholar 

  85. Daré E, Schulte G, Karovic O, Hammarberg C, Fredholm BB. Modulation of glial cell functions by adenosine receptors. Physiol Behav. 2007;92(1):15–20.

    Article  PubMed  Google Scholar 

  86. Lécuyer M-A, Kebir H, Prat A. Glial influences on BBB functions and molecular players in immune cell trafficking. Biochimica et Biophysica Acta (BBA) – Mol Basis Dis. 2016;1862(3):472–82.

    Article  Google Scholar 

  87. Abbott NJ. Astrocyte–endothelial interactions and blood–brain barrier permeability. J Anat. 2002;200(5):523–34.

    Article  Google Scholar 

  88. Wu F, Zou Q, Ding X, Shi D, Zhu X, Hu W, et al. Complement component C3a plays a critical role in endothelial activation and leukocyte recruitment into the brain. J Neuroinflammation. 2016;13(1):1–14.

    Article  CAS  Google Scholar 

  89. Hindinger C, Bergmann CC, Hinton DR, Phares TW, Parra GI, Hussain S, et al. IFN-γ signaling to astrocytes protects from autoimmune mediated neurological disability. PLoS One. 2012;7(7):e42088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jehs T, Faber C, Juel HB, Nissen MH. Astrocytoma cells upregulate expression of pro-inflammatory cytokines after co-culture with activated peripheral blood mononuclear cells. APMIS. 2011;119(8):551–61.

    Article  CAS  PubMed  Google Scholar 

  91. Yang J, Tao H, Liu Y, Zhan X, Liu Y, Wang X, et al. Characterization of the interaction between astrocytes and encephalitogenic lymphocytes during the development of experimental autoimmune encephalitomyelitis (EAE) in mice. Clin Exp Immunol. 2012;170(3):254–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Markiewski MM, Lambris JD. The role of complement in inflammatory diseases from behind the scenes into the spotlight. Am J Pathol. 2007;171(3):715–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Brennan FH, Anderson AJ, Taylor SM, Woodruff TM, Ruitenberg MJ. Complement activation in the injured central nervous system: another dual-edged sword? J Neuroinflammation. 2012;9(1):1.

    Article  Google Scholar 

  94. Veerhuis R, Nielsen HM, Tenner AJ. Complement in the brain. Mol Immunol. 2011;48(14):1592–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Davoust N, Jones J, Stahel PF, Ames RS, Barnum SR. Receptor for the C3a anaphylatoxin is expressed by neurons and glial cells. Glia. 1999;26(3):201–11.

    Article  CAS  PubMed  Google Scholar 

  96. Arumugam TV, Woodruff TM, Lathia JD, Selvaraj PK, Mattson MP, Taylor SM. Neuroprotection in stroke by complement inhibition and immunoglobulin therapy. Neuroscience. 2009;158(3):1074–89.

    Article  CAS  PubMed  Google Scholar 

  97. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, et al. The classical complement cascade mediates CNS synapse elimination. Cell. 2007;131(6):1164–78.

    Article  CAS  PubMed  Google Scholar 

  98. Perry VH, O’connor V. C1q: the perfect complement for a synaptic feast? Nat Rev Neurosci. 2008;9(11):807–11.

    Article  CAS  PubMed  Google Scholar 

  99. Shatz CJ. MHC class I: an unexpected role in neuronal plasticity. Neuron. 2009;64(1):40–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hua Y, ** G, Keep RF, Hoff JT. Complement activation in the brain after experimental intracerebral hemorrhage. J Neurosurg. 2000;92(6):1016–22.

    Article  CAS  PubMed  Google Scholar 

  101. Ghoshal D, Sinha S, Sinha A, Bhattacharyya P. Immunosuppressive effect of vestibulo-cerebellar lesion in rats. Neurosci Lett. 1998;257(2):89–92.

    Article  CAS  PubMed  Google Scholar 

  102. Peng Y-P, Qiu Y-H, Chao B-B, Wang J-J. Effect of lesions of cerebellar fastigial nuclei on lymphocyte functions of rats. Neurosci Res. 2005;51(3):275–84.

    Article  CAS  PubMed  Google Scholar 

  103. Ellwardt E, Walsh JT, Kipnis J, Zipp F. Understanding the role of T cells in CNS homeostasis. Trends Immunol. 2016;37(2):154–65.

    Article  CAS  PubMed  Google Scholar 

  104. Kipnis J, Yoles E, Porat Z, Cohen A, Mor F, Sela M, et al. T cell immunity to copolymer 1 confers neuroprotection on the damaged optic nerve: possible therapy for optic neuropathies. Proc Natl Acad Sci. 2000;97(13):7446–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. **e L, Choudhury GR, Winters A, Yang SH, ** K. Cerebral regulatory T cells restrain microglia/macrophage-mediated inflammatory responses via IL-10. Eur J Immunol. 2015;45(1):180–91.

    Article  CAS  PubMed  Google Scholar 

  106. Luchtman DW, Ellwardt E, Larochelle C, Zipp F. IL-17 and related cytokines involved in the pathology and immunotherapy of multiple sclerosis: current and future developments. Cytokine Growth Factor Rev. 2014;25(4):403–13.

    Article  CAS  PubMed  Google Scholar 

  107. Liblau RS, Gonzalez-Dunia D, Wiendl H, Zipp F. Neurons as targets for T cells in the nervous system. Trends Neurosci. 2013;36(6):315–24.

    Article  CAS  PubMed  Google Scholar 

  108. Ahmad SF, Zoheir KM, Ansari MA, Nadeem A, Bakheet SA, AL-Ayadhi LY, et al. Dysregulation of Th1, Th2, Th17, and T regulatory cell-related transcription factor signaling in children with autism. Mol Neurobiol. 2016:1–11.

    Google Scholar 

  109. Campbell SJ, Wilcockson DC, Butchart AG, Perry VH, Anthony DC. Altered chemokine expression in the spinal cord and brain contributes to differential interleukin-1beta-induced neutrophil recruitment. J Neurochem. 2002;83:432–41.

    Article  CAS  PubMed  Google Scholar 

  110. Estes ML, McAllister AK. Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nat Rev Neurosci. 2015;16(8):469–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hill KE, Clawson SA, Rose JW, Carlson NG, Greenlee JE. Cerebellar Purkinje cells incorporate immunoglobulins and immunotoxins in vitro: implications for human neurological disease and immunotherapeutics. J Neuroinflammation. 2009;6(1):1–12.

    Article  Google Scholar 

  112. Dalmau J, Rosenfeld MR. Paraneoplastic syndromes of the CNS. Lancet Neurol. 2008;7(4):327–40.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Chen S, Su H-S. Selective labeling by propidium iodide injected into the lateral cerebral ventricle of the rat. Brain Res. 1989;483(2):379–83.

    Article  CAS  PubMed  Google Scholar 

  114. Saini V, Weisz A, Hoffman J. Paraneoplastic cerebellar degeneration (PCD) syndrome in diffuse large B-cell Lymphoma (DLBCL): expanding the spectrum of malignancies associated with cerebellar degeneration (P5. 260). Neurology. 2016;86(16 Supplement):P5. 260.

    Google Scholar 

  115. Mitoma H, Hadjivassiliou M, Honnorat J. Guidelines for treatment of immune-mediated cerebellar ataxias. Cerebellum Ataxias. 2015;2:14.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Jarius S, Wildemann B. ‘Medusa head ataxia’: the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 1: anti-mGluR1, anti-Homer-3, anti-Sj/ITPR1 and anti-CARP VIII. J Neuroinflammation. 2015;12(1):1.

    Google Scholar 

  117. Hadjivassiliou M. Chapter 11 – Immune-mediated acquired ataxias. In: Sankara HS, Alexandra D, editors. Handbook of clinical neurology, vol. 103. Elsevier; 2012. p. 189–99.

    Google Scholar 

  118. Cooke W, Smith WT. Neurological disorders associated with adult celiac disease. Brain. 1966;89(4):683–722.

    Article  CAS  PubMed  Google Scholar 

  119. Wiendl H, Mehling M, Dichgans J, Melms A, Bürk K. The humoral response in the pathogenesis of gluten ataxia. Neurology. 2003;60(8):1397–9.

    Article  CAS  PubMed  Google Scholar 

  120. Vojdani A, O’Bryan T, Green J, McCandless J, Woeller K, Vojdani E, et al. Immune response to dietary proteins, gliadin and cerebellar peptides in children with autism. Nutr Neurosci. 2004;7(3):151–61.

    Article  CAS  PubMed  Google Scholar 

  121. Boscolo S, Sarich A, Lorenzon A, Passoni M, Rui V, Stebel M, et al. Gluten ataxia. Ann N Y Acad Sci. 2007;1107(1):319–28.

    Article  CAS  PubMed  Google Scholar 

  122. Sanger GJ, Lee K. Hormones of the gut–brain axis as targets for the treatment of upper gastrointestinal disorders. Nat Rev Drug Discov. 2008;7(3):241–54.

    Article  CAS  PubMed  Google Scholar 

  123. Heijtz RD, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci. 2011;108(7):3047–52.

    Article  CAS  PubMed Central  Google Scholar 

  124. Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489(7415):231–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Li Q, Zhou J-M. The microbiota–gut–brain axis and its potential therapeutic role in autism spectrum disorder. Neuroscience. 2016;324:131–9.

    Article  CAS  PubMed  Google Scholar 

  126. Korponay-Szabó IR, Halttunen T, Szalai Z, Laurila K, Kiraly R, Kovacs J, et al. In vivo targeting of intestinal and extraintestinal transglutaminase 2 by coeliac autoantibodies. Gut. 2004;53(5):641–8.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Hadjivassiliou M, Mäki M, Sanders D, Williamson C, Grünewald R, Woodroofe N, et al. Autoantibody targeting of brain and intestinal transglutaminase in gluten ataxia. Neurology. 2006;66(3):373–7.

    Article  CAS  PubMed  Google Scholar 

  128. van den Pol AN. Viral infection leading to brain dysfunction: more prevalent than appreciated? Neuron. 2009;64(1):17–20.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Wouk J, Rechenchoski DZ, Rodrigues BCD, Ribelato EV, Faccin-Galhardi LC. Viral infections and their relationship to neurological disorders. Arch Virol. 2021;166(3):733–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rezai-Zadeh K, Gate D, Town T. CNS infiltration of peripheral immune cells: D-Day for neurodegenerative disease? J Neuroimmune Pharmacol. 2009:462–75.

    Google Scholar 

  131. de Erausquin GA, Snyder H, Carrillo M, Hosseini AA, Brugha TS, Seshadri S, et al. The chronic neuropsychiatric sequelae of COVID-19: the need for a prospective study of viral impact on brain functioning. Alzheimers Dement. 2021;17(6):1056–65.

    Article  PubMed  Google Scholar 

  132. Mao L, ** H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan. China JAMA Neurol. 2020;77(6):683–90.

    Article  PubMed  Google Scholar 

  133. Varatharaj A, Thomas N, Ellul MA, Davies NWS, Pollak TA, Tenorio EL, et al. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study. Lancet Psychiatry. 2020;7(10):875–82.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Balcom EF, Nath A, Power C. Acute and chronic neurological disorders in COVID-19: potential mechanisms of disease. Brain. 2021;144(12):3576–88.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Reza-Zaldivar EE, Hernandez-Sapiens MA, Minjarez B, Gomez-Pinedo U, Marquez-Aguirre AL, Mateos-Diaz JC, et al. Infection mechanism of SARS-COV-2 and its implication on the nervous system. Front Immunol. 2020;11:621735.

    Article  CAS  PubMed  Google Scholar 

  136. Abdelaziz OS, Waffa Z. Neuropathogenic human coronaviruses: a review. Rev Med Virol. 2020;30(5):e2118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Goshua G, Pine AB, Meizlish ML, Chang CH, Zhang H, Bahel P, et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol. 2020;7(8):e575–e82.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Mitoma H, Adhikari K, Aeschlimann D, Chattopadhyay P, Hadjivassiliou M, Hampe CS, et al. Consensus paper: neuroimmune mechanisms of cerebellar ataxias. Cerebellum. 2016:213–32.

    Google Scholar 

  139. Zesiewicz TA, Wilmot G, Han Kuo S, Perlman S, Greenstein PE, Sarah Y, et al. Comprehensive systematic review summary: treatment of cerebellar motor dysfunction and ataxia. Neurology. 2018:464–71.

    Google Scholar 

  140. Subramony SH. Approach to ataxic diseases. Handb Clin Neurol. 2012;103:127–34.

    Article  CAS  PubMed  Google Scholar 

  141. Fogel BL, Perlman S. An approach to the patient with late-onset cerebellar ataxia. Nat Clin Pract Neurol. 2006;2(11):629–35; quiz 1 p following 35

    Article  PubMed  Google Scholar 

  142. Fogel BL, Perlman S. Clinical features and molecular genetics of autosomal recessive cerebellar ataxias. Lancet Neurol. 2007;6(3):245–57.

    Article  CAS  PubMed  Google Scholar 

  143. Manto M, Marmolino D. Cerebellar ataxias. Curr Opin Neurol. 2009;22(4):419–29.

    Article  PubMed  Google Scholar 

  144. Schols L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol. 2004;3(5):291–304.

    Article  PubMed  Google Scholar 

  145. van Gaalen J, van de Warrenburg BP. A practical approach to late-onset cerebellar ataxia: putting the disorder with lack of order into order. Pract Neurol. 2012;12(1):14–24.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This book chapter is an updated version of the initial chapter entitled “Neuroimmune mechanisms of cerebellar development and its developmental disorders: Bidirectional link between the immune system and nervous system. Development of the Cerebellum – From Molecular Aspects to Diseases” and authored by Eissa N, Kermarrec L, and Ghia JE in the first edition of this book. We would like to thank the initial contributors. Figures, created with BioRender.com.

Authors’ Contributions

Conceived the outlines: NE, JEG. Authored the book chapter: DT, FH, NE, LK, JEG. Conceived the figures: FH, DT, JEG.

Funding

This was supported by grants from Canadian Foundation for Innovation, Crohn’s and Colitis Canada, Research Manitoba, Children’s Hospital Research Institute of Manitoba, the Canadian Institutes of Health Research to JEG and University of Manitoba, Research Manitoba, and Health Sciences Foundation – Mindel and Tom Olenick Research Award in Immunology to NE and DT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Eric Ghia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eissa, N., Kermarrec, L., Tshikudi, D., Hesampour, F., Ghia, JE. (2023). Interrelation Between the Immune and the Nervous Systems in the Context of Cerebellar Development and Developmental Disorders. In: Marzban, H. (eds) Development of the Cerebellum from Molecular Aspects to Diseases. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-031-23104-9_16

Download citation

Publish with us

Policies and ethics

Navigation