Reaction Types and Mechanisms

  • Chapter
  • First Online:
Principles of Inorganic Chemistry
  • 200 Accesses

Abstract

The reaction types discussed in this chapter are proton transfer, substitution, oxidation–reduction, oxidative-addition, and isomerization. The development of a theoretical rate law and the effects of temperature and pressure on the rate constant are outlined. For proton transfer reactions, typical rate constants and the Grotthuss mechanism are described. For substitution reactions, the nucleophilic and electrophilic classification is discussed, along with the D, Id, Ia, and I classification system. For oxidation–reduction reactions, topics such as electron versus atom transfer, inner sphere and outer sphere electron transfer, and Marcus theory are covered. Possible oxidative-addition mechanisms are described, with examples involving the metals in Groups 8, 9, and 10. Dissociative and intramolecular mechanisms are described for linkage isomerization, geometrical isomerization, and racemization. The coverage of these topics includes references published through to mid-2021.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Basolo, F.; Pearson, R. G. Mechanisms of Inorganic Reactions, 2nd ed.; J. Wiley & Sons, New York, 1967; Wilkins, R. G. Kinetics and Mechanisms of Reactions of Transition Metal Complexes, 2nd ed.; VCH, New York, 1991; Atwood, J. D. Inorganic and Organometallic Reaction Mechanisms, 2nd ed.; Wiley–VCH, Weinheim, 1997; Tobe, M. L.; Burgess, J. Inorganic Reaction Mechanisms; Longman, Harlow, 1999; Jordan, R. B. Reaction Mechanisms of Inorganic and Organometallic Systems, 3rd ed; Oxford University Press: New York, 2007.

  2. 2.

    Moore, J. W.; Pearson, R. G. Kinetics and Mechanism, 3rd ed.; Wiley-Interscience: New York, 1980; Espenson, J. E. Chemical Kinetics and Mechanism, McGraw-Hill: New York, 1981; Pilling, M. J.; Seakins, P. W. Reaction Kinetics, Oxford University Press: Oxford, 1995.

  3. 3.

    Krise, K. M.; Hwang, A. A.; Milosavljevic, B. H. Phys. Chem. Chem. Phys. 2010, 12, 7695, and references therein.

  4. 4.

    Agmon, N. Chem. Phys. Lett. 1995, 244, 456; Cukierman, S. Biochim. Biophys. Acta 2006, 1757, 876.

  5. 5.

    Hassanali, A.; Prakash, M. K.; Eshet, H.; Parrinello, M. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 20,410; Cuny, J.; Hassanali, A. A. J. Phys. Chem B 2014, 118, 13903; Fischer, S. A.; Gunlycke, D. J. Phys. Chem. B 2019, 123, 5336; Zeng, Y.; Li, A.; Yan, T. Ibid, 2020, 124, 1817.

  6. 6.

    Bernasconi, C. F. Adv. Phys. Org. Chem. 2010, 44, 223, and references therein.

  7. 7.

    Walker, H. W.; Pearson, R. G.; Ford, P. C. J. Am. Chem. Soc. 1983, 105, 1179; Edidin, R. T.; Sullivan, J. M.; Norton, J. R. J. Am. Chem. Soc. 1987, 109, 3945; Weberg, R. T.; Norton, J. R. J. Am. Chem. Soc. 1990, 112, 1105; Hu, Y.; Norton, J. R. J. Am. Chem. Soc. 2014, 136, 5938.

  8. 8.

    Langford, C. H.; Gray, H. B. Ligand Substitution Processes; W. A. Benjamin, Inc., New York, 1965.

  9. 9.

    Richens, D. T. Chem. Rev. 2005, 105, 1961.

  10. 10.

    Corriu, R. J. P. J. Organomet. Chem. 1990, 400, 81; Chuit, C.; Corriu, R. J. P.; Reye, C.; Young, J. C. Chem. Rev. 1993, 93, 1371.

  11. 11.

    Bassindale, A. R.; Lau, J. C.-Y.; Taylor, P. G. J. Organomet. Chem. 1995, 499, 137.

  12. 12.

    Bassindale, A. R.; Parker, D. J.; Taylor, P. G.; Turtle, R. Z. Anorg. Allg. Chem. 2009, 635, 1288, and references therein.

  13. 13.

    Corriu, R. J. P.; Leclercq, D. Angew. Chem., Int. Ed. 1996, 35, 1420, and references therein.

  14. 14.

    Delak, K. M.; Sahai, N. J. Phys. Chem. B 2006, 110, 17819.

  15. 15.

    Westheimer, F. H. Science 1987, 235, 1173; Kamerlin, S. C. L.; Sharma, P. K.; Prasad, R. B.; Warshel, A. Quart. Rev. Biophys. 2013, 46, 1; Mikkola, S.; Lönnberg, T.; Lönnberg, H. Beilstein J. Org. Chem. 2018, 14, 803.

  16. 16.

    Bunton, C. A. J. Chem. Educ. 1968, 45, 21; Ibid, Acc. Chem. Res. 1970, 3, 257; Cleland, W. W.; Hengge, A. C. Chem. Rev. 2006, 106, 3252.

  17. 17.

    Wolfenden, R.; Ridgway, C.; Young, G. J. Am. Chem. Soc. 1998, 120, 833.

  18. 18.

    Bunton, C. A.; Mhala, M. M.; Oldham, K. G.; Vernon, C. A. J. Chem. Soc. 1960, 3293.

  19. 19.

    Westheimer, F. H. Chem. Rev. 1981, 81, 313.

  20. 20.

    Westheimer, F. H. Acc. Chem. Res. 1968, 1, 70, and references therein.

  21. 21.

    Berry, R. S. J. Chem. Phys. 1960, 32, 933.

  22. 22.

    Schmutzler, R. Angew. Chem., Int. Ed. 1965, 4, 496; Cavell, R. G.; Gibson, J. A.; The, K. I. J. Am. Chem. Soc. 1977, 99, 7841.

  23. 23.

    Lönnberg, H., in Chemical Biology of Nucleic Acids: Fundamentals and Clinical Applications; Erdmann, V. A.; Markiewicz, W. T.; Barcisewski, J., Eds.; Springer-Verlag: Berlin, 2014; p 41.

  24. 24.

    Lassila, J. K.; Zalatan, J. G.; Herschlag, D. Ann. Rev. Biochem. 2011, 80, 669; Kolodiazhnyi, O. I.; Kolodiazhna, A. Tetrahedron: Asymmetry 2017, 28, 1651.

  25. 25.

    Yamabe, S.; Zeng, G.; Guan, W.; Sakaki, S, J. Compt. Chem. 2014, 35, 2195; Kirby, A. J.; Nome, F. Acc. Chem. Res. 2015, 48, 1806; Petrovic, D.; Szeler, K.; Kamerlin, S. C. L. Chem. Commun. 2018, 54, 3077, and references therein.

  26. 26.

    Taube, H.; Myers, H.; Rich, R. L. J. Am. Chem. Soc. 1953, 75, 4118; Taube, H.; Myers, H. Ibid 1954, 76, 2103.

  27. 27.

    Haim, A. Acc. Chem. Res. 1975, 8, 264.

  28. 28.

    Balahura, R. J.; Johnson, M.; Black, T. Inorg. Chem. 1989, 28, 3933.

  29. 29.

    Nordmeyer, F.; Taube, H. J. Am. Chem. Soc. 1968, 90, 1162.

  30. 30.

    Marcus, R. A. Annu. Rev. Phys. Chem. 1964, 15, 155; Ibid. J. Chem. Phys. 1965, 43, 679.

  31. 31.

    Reynolds, W. L.; Lumry, R. W. Mechanisms of Electron Transfer, Ronald Press: New York, 1966; Cannon, R. D. Electron Transfer Reactions; Butterworths: London, 1980; Jordan, R. B. Reaction Mechanisms of Inorganic and Organometallic Systems, 3rd ed.; Oxford University Press: New York, 2007.

  32. 32.

    Newton, T. W. J. Chem. Educ. 1968, 45, 571; Brunschwig, B. S.; Sutin, N. Coord. Chem. Rev. 1999, 187, 233; Newton, M. D. Ibid. 2003, 238, 167; Piechota, E. J.; Meyer, G. J. J. Chem. Educ. 2019, 96, 2450.

  33. 33.

    Formosinho, S. J.; Arnaut, L. G.; Fausto, R. Prog. React. Kinet. 1998, 23, 1.

  34. 34.

    Ratner, M. A.; Levine, R. D. J. Am. Chem. Soc. 1980, 102, 4898.

  35. 35.

    Bernhard, P.; Sargeson, A. M. Inorg. Chem. 1987, 26, 4122, and references therein.

  36. 36.

    Chock, P. B.; Halpern, J. J. Am. Chem. Soc. 1969, 91, 582.

  37. 37.

    Huber, T. A.; Macartney, D. H.; Baird, M. C. Organometallics, 1995, 14, 592, and references therein; Zhu, D.; Korobkov, I.; Budzelaar, P. H. M. Ibid., 2012, 31, 3958, and references therein.

  38. 38.

    Labinger, J. A. Organometallics 2015, 34, 4784.

  39. 39.

    Jutand, A. Chem. Rev. 2008, 108, 2300, and references therein.

  40. 40.

    Casado, A. L.; Espiney, P. Organometallics 1998, 17, 954; Guilera, G.; Newton, M. A.; Polli, C.; Pascarelli, S.; GuinĂł, M.; Hii, K. K. Chem. Commun. 2006, 4306.

  41. 41.

    Besora, M.; Maseras, F. Dalton Trans. 2019, 48, 16242.

  42. 42.

    Barrios-Landeros, F.; Carrow, B. P.; Hartwig, J. F. J. Am. Chem. Soc. 2009, 131, 8141.

  43. 43.

    Christmann, U.; Vilar, R. Angew. Chem., Int. Ed. 2005, 44, 366; Shaughnessy, K. H. Isr. J. Chem. 2020, 60, 180.

  44. 44.

    Kurbangalieva, A.; Carmichael, D.; Hii, K. K.; Jutand, A.; Brown, J. M Chem. Eur. J. 2014, 20, 1116.

  45. 45.

    Balahura, R. J.; Lewis, N. A. Coord. Chem. Rev. 1976, 20, 109; Burmeister, J. L. Ibid., 1990, 105, 77; Toma, H. E.; Rocha, R. C. Croat. Chim. Acta 2001, 74, 499.

  46. 46.

    Buckingham. D. A.; Creaser, I. I.; Sargeson, A. M. Inorg. Chem. 1970, 9, 655.

  47. 47.

    Buckingham, D. A. Coord. Chem. Rev. 1994, 135, 587.

  48. 48.

    Schmidtke, H.-H. Z. Physik. Chem. (Frankfurt) 1965, 45, 305; Ibid. Inorg. Chem. 1966, 10, 1682.

  49. 49.

    Pearson, R. G.; Henry, P. M.; Bergman, J. G.; Basolo, F. J. Am. Chem. Soc. 1954, 76, 5920.

  50. 50.

    Hitchman, M. A.; Rowbottom, G. L. Coord. Chem. Rev. 1982, 42, 55.

  51. 51.

    Warren, M. R.; Easun, T. L.; Brayshaw, S. K.; Deeth, R. J.; George, M. W.; Johnson, A. L.; Schiffers, S.; Teat, S. J.; Warren, A. J.; Warren, J. E.; Wilson, C. C.; Woodall, C. H.; Raithby, P. R. Chem. Eur. J. 2014, 20, 5468.

  52. 52.

    Kishi, S.; Kato, M. Inorg. Chem. 2003, 42, 8728.

  53. 53.

    Shea, C. J.; Haim, A. Inorg. Chem. 1973, 12, 3013.

  54. 54.

    Birk, J. P.; Espenson, J. H. J. Am. Chem. Soc. 1968, 90, 1153.

  55. 55.

    De CastellĂł, R. A.; Mac-Coll, C. P.; Egen, N. B.; Haim, A. Inorg. Chem. 1969, 8, 699; De CastellĂł, R. A.; Mac-Coll, C. P.; Haim, A. Ibid., 1971, 10, 203.

  56. 56.

    Wang, B.-C.; Schaefer, W. P.; Marsh, R. E. Inorg. Chem. 1971, 10, 1492; Fronczek, F. R.; Schaefer, W. P. Ibid., 1974, 13, 727.

  57. 57.

    Yeh, A.; Scott, N.; Taube, H. Inorg. Chem. 1982, 21, 2542; Tomita, A.; Sano, M. Ibid. 1994, 33, 5825.

  58. 58.

    Harman, W. D.; Fairlie, D. P.; Taube, H. J. Am. Chem. Soc. 1986, 108, 8223.

  59. 59.

    Harman, W. D.; Sekine, M.; Taube, H. J. Am. Chem. Soc. 1988, 110, 2439.

  60. 60.

    Powell, D. W.; Lay, P. A. Inorg. Chem. 1992, 31, 3542.

  61. 61.

    Jackson, W. G.; Lawrence, G. A.; Lay, P. A.; Sargeson, A. M. J. Chem. Soc., Chem. Commun. 1982, 70.

  62. 62.

    Hatcher, L. E.; Raithby, P. R. Coord. Chem. Rev. 2014, 277–278, 69; Hatcher, L. E.; Skelton, J. M.; Warren, M. R.; Raithby, P. R. Acc. Chem. Res. 2019, 52, 1079.

  63. 63.

    Coppens, P.; Novozhilova, I.; Kovalevsky, A. Chem. Rev. 2002, 102, 861; Bitterwolf, T. E. Coord. Chem. Rev. 2006, 250, 1196.

  64. 64.

    Rack, J. J. Coord. Chem. Rev. 2009, 253, 78; King, A. W.; Wang, L.; Rack, J. J. Acc. Chem. Res. 2015, 48, 1115.

  65. 65.

    Carducci, M. D.; Pressprich, M. R.; Coppens, P. J. Am. Chem. Soc. 1997, 119, 2669; Schaniel, D.; Woike, Th.; Schefer, J.; Petricek, V. Phys. Rev. B 2005, 71, #174112; Schaniel, D.; Woike, Th.; Schefer, J.; Petricek, V.; Krämer, K. W.; Güdel, H. U. Ibid. 2006, 73, #174108; Gallé, G.; Nicoul, M.; Woike, Th.; Schaniel, D.; Freysz, E. Chem. Phys. Lett. 2012, 552, 64.

  66. 66.

    Mikhailov, A. A.; Wenger, E.; Kostin, G. A.; Schaniel, D. Chem. Eur. J. 2019, 25, 7569.

  67. 67.

    Lynch, M. S.; Cheng, M.; Van Kuiken, B. E.; Khalil, M. J. Am. Chem. Soc. 2011, 133, 5255.

  68. 68.

    Dixon, D. A.; Arduengo, A. J., III J. Am. Chem. Soc. 1987, 109, 338, and references therein; Xu, L. T.; Takeshita, T. Y.; Dunning, T. H., Jr. Theor. Chem. Acc. 2014, 133, 1493.

  69. 69.

    Varga, Z.; Verma, P.; Truhlar, D. G. J. Phys. Chem. A 2019, 123, 301.

  70. 70.

    Rerao, A.; Alcaraz, A. G. New J. Chem. 2020, 44, 8763.

  71. 71.

    Rzepa, H. S.; Cass, M. E. Inorg. Chem. 2007, 46, 8024; Amati, M.; Lelj, F. Theor. Chem Acc. 2008, 120, 447.

  72. 72.

    Sargeson, A. M. Aust. J. Chem. 1964, 17, 385; Jordan, R. B.; Sargeson, A. M. Inorg. Chem. 1965, 4, 433; Nordmeyer, F. R. Inorg. Chem. 1969, 8, 2780; Baraclough, C. G.; Boschen, R. W.; Fee, W. W.; Jackson, W. G.; McTigue, P. T. Inorg. Chem. 1971, 10, 1994; Kane-Maguire, L. A. P. Inorg. Chem. 1972, 11, 2281; Vanquickenborne, L. G.; Pierloot, K. Inorg. Chem. 1984, 23, 1471.

  73. 73.

    Riblet, F.; Novitchi, G.; Scopelliti, R.; Helm. L.; Gulea, A.; Merbach, A. E. Inorg. Chem. 2010, 49, 4194.

  74. 74.

    Gellene, G. I. J. Chem. Educ. 1995, 72, 196.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Jordan .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jordan, R.B. (2024). Reaction Types and Mechanisms. In: Principles of Inorganic Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-22926-8_6

Download citation

Publish with us

Policies and ethics

Navigation