High Vacuum Solar Thermal Dissociation for Metal and Oxide Extraction

  • Conference paper
  • First Online:
New Directions in Mineral Processing, Extractive Metallurgy, Recycling and Waste Minimization (TMS 2023)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

  • 977 Accesses

Abstract

The current interest in space-based mineral and metal extraction technologies, and the increased likelihood of establishing research facilities on the lunar surface, provides a strong impetus for high vacuum metallurgical research. The current work examines the viability of a thermal dissociation process for metal and metal oxide extraction from beneficiated and un-beneficiated lunar feedstocks. Thermal dissociation experiments using lunar regolith simulants and pure oxide samples were performed using a bespoke apparatus involving a vacuum reactor coupled with a solar simulator heat source. Specific focus was given to sub-liquidus operation and the sublimation of metal oxides under low temperature and low vacuum conditions. The thermodynamic and kinetic considerations, as well as the practical demonstration of such a process, are also discussed. This work demonstrates the potential of utilising the natural high vacuum conditions on the Moon for develo** novel high vacuum extraction processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 232.09
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 232.09
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kroll W (1951) Vacuum metallurgy: its characteristics and its scope. Vacuum 1(3):163–184

    Article  Google Scholar 

  2. Pidgeon L, Alexander W (1944) Thermal production of magnesium-pilot plant studies on the retort ferrosilicon process. Trans AIME 159:315–352

    Google Scholar 

  3. Balomenos E, Panias D, Paspaliaris İ (2012) Exergy analysis of metal oxide carbothemic reduction under vacuum–sustainability prospects. Int J Thermodyn 15(3):141–148

    Article  CAS  Google Scholar 

  4. Li C et al (2019) China’s present and future lunar exploration program. Science 365(6450):238–239

    Article  CAS  Google Scholar 

  5. Sanders G (2019) NASA lunar ISRU strategy, NASA, Editor. Washington, DC, USA

    Google Scholar 

  6. Shaw MG et al (2021) High vacuum metallurgy: opportunities in lunar resource processing. In: 5th international future mining conference, AusIMM: Perth, Western Australia. p 463

    Google Scholar 

  7. Crawford IA (2015) Lunar resources: a review. Prog Phys Geogr 39(2):137–167

    Article  Google Scholar 

  8. Shaw M et al (2021) Mineral processing and metal extraction on the lunar surface—challenges and opportunities. Mineral Processi Extract Metall Rev 1–27

    Google Scholar 

  9. Nakamura T, Senior CL (2005) Solar thermal power system for lunar ISRU processes. In: AIP conference proceedings 746. Albuquerque, New Mexico, USA

    Google Scholar 

  10. Senior C (1992) Lunar oxygen production by pyrolysis. In: Space programs and technologies conference. AIAA, Huntsville, AL, USA

    Google Scholar 

  11. Sauerborn M (2005) Pyrolyse von Metalloxiden und Silikaten unter Vakuum mit konzentrierter Solarstrahlung. Bonn, Germany, Universitäts-und Landesbibliothek Bonn

    Google Scholar 

  12. Sauerborn M et al (2004) Solar heated vacuum pyrolysis of lunar soil. In: 35th COSPAR scientific assembly. Paris, France

    Google Scholar 

  13. Matchett J (2006) Production of lunar oxygen through vacuum pyrolysis. In: School of Engineering and Applied Science. George Washington University Washington, DC, USA

    Google Scholar 

  14. Rosenqvist T (2004) Principles of extractive metallurgy. 2nd edn. Tapir Academic Press, Trondheim, Norway

    Google Scholar 

  15. Stern SA (1999) The lunar atmosphere: history, status, current problems, and context. Rev Geophys 37(4):453–491

    Article  CAS  Google Scholar 

  16. Shaw MG et al (2021) Thermodynamic modelling of ultra-high vacuum thermal decomposition for lunar resource processing. Planet Space Sci 105272

    Google Scholar 

  17. Sossi PA, Fegley B Jr (2018) Thermodynamics of element volatility and its application to planetary processes. Rev Mineral Geochem 84(1):393–459

    Article  CAS  Google Scholar 

  18. Hertz H (1882) Ueber die Verdunstung der Flüssigkeiten, insbesondere des Quecksilbers, im luftleeren Raume. Ann Phys 253(10):177–193

    Article  Google Scholar 

  19. Knudsen M (1909) Die Gesetze der Molekularströmung und der inneren Reibungsströmung der Gase durch Röhren. Ann Phys 333(1):75–130

    Article  Google Scholar 

  20. Langmuir I (1916) The evaporation, condensation and reflection of molecules and the mechanism of adsorption. Phys Rev 8(2):149

    Article  CAS  Google Scholar 

  21. Shaw MG et al (2023) Unpublished thesis - Swinburne University of Technology

    Google Scholar 

  22. Ekman BM, Brooks G, Rhamdhani MA (2015) Development of high flux solar simulators for solar thermal research. In: Energy technology 2015. Springer, pp 149–159

    Google Scholar 

  23. Zhang Y et al (2012) Synthesis, characterization, and applications of ZnO nanowires. J Nanomater 2012:624520

    Google Scholar 

  24. Isachenkov M et al (2022) Characterization of novel lunar highland and mare simulants for ISRU research applications. Icarus 376:114873

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Shaw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shaw, M.G., Brooks, G.A., Rhamdhani, M.A., Duffy, A.R., Pownceby, M.I. (2023). High Vacuum Solar Thermal Dissociation for Metal and Oxide Extraction. In: Reddy, R.G., et al. New Directions in Mineral Processing, Extractive Metallurgy, Recycling and Waste Minimization. TMS 2023. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-22765-3_8

Download citation

Publish with us

Policies and ethics

Navigation