CFD Modelling of Solidification and Melting of Bath During Raft Formation

  • Conference paper
  • First Online:
Light Metals 2023 (TMS 2023)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

  • 2272 Accesses

Abstract

The dissolution of alumina in cryolite is a complex process, and better understanding is needed to ensure stable cell conditions and high energy efficiency. Additions of cold powder result in freezing of bath that hinders dissolution, and creation of rafts. The current work aims to develop and demonstrate a CFD framework in OpenFOAM for freezing of bath on a fed dose of alumina, based on the volume of fluid (VOF) method, where appropriate source- and sink terms are applied. Essential features have been verified by comparison with a Stefan problem, while simulating the dose as a floating rigid object demonstrate that a larger layer of freeze increase the dam** of its movement. When simulating the dose as an immiscible fluid, spreading will hinder enough freeze to be formed around the dose. Hence, the added source terms behave as intended, but improvements on the alumina-bath interactions are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 319.93
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 395.19
Price includes VAT (Spain)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 395.19
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lavoie, P., Taylor, M.P., Metson, J.B.: A Review of Alumina Feeding and Dissolution Factors in Aluminum Reduction Cells. Metall Mater Trans B 47(4), 2690–2696 (2016). https://doi.org/10.1007/s11663-016-0680-3.

    Article  CAS  Google Scholar 

  2. Gylver, S.E., Omdahl, N.H., Rørvik, S., Hansen, I., Nautnes, A., Neverdal, S.N., Einarsrud, K.E.: The Micro- and Macrostructure of Alumina Rafts. In: Chesonis, C. (ed.) Light Metals 2019. The Minerals, Metals & Materials Series, pp. 689–696. Springer, Cham (2019).

    Google Scholar 

  3. Kovacs, A.: “Modelling the feeding process for aluminium production”. PhD Thesis, University of Oxford, Oxford (2021).

    Google Scholar 

  4. Solheim, A., Skybakmoen, E.: Mass- and Heat Transfer During Dissolution of Alumina. In: Tomsett, A. (ed.) Light Metals 2020. The Minerals, Metals & Materials Series, pp. 664–671. Springer, Cham (2020).

    Google Scholar 

  5. Bardet, B., Foetisch, T., Renaudier, S., Rappaz, J., Flueck, M., Picasso, M.: Alumina Dissolution Modeling in Aluminium Electrolysis Cell Considering MHD Driven Convection and Thermal Impact. In: Williams, E. (ed.) Light Metals 2016, pp. 315–319 (2016).

    Google Scholar 

  6. Walker, D.: Alumina in aluminum smelting and its behaviour after addition to cryolite-based electrolytes, Phd thesis, University of Toronto, Toronto, 1993.

    Google Scholar 

  7. Dassylva-Raymond, V., Kiss, L.I., Poncsak, S., Chartrand, P., Bilodeau, J.-F., Guérard, S.: Modeling the behavior of alumina agglomerate in the Hall-Héroult process. In: Grandfield, J. (ed.) Light Metals 2014, pp. 603–608. Wiley, Hoboken, (2014).

    Google Scholar 

  8. Roger, T., Kiss, L., Dion, L., Guérard, S., Bilodeau, J.F., Bonneau, G., Santerre, R., Fraser, K.: Modeling of the Heat Exchange, the Phase Change, and Dissolution of Alumina Injected in Electrolysis Cells. In: Eskin, D. (ed.) Light Metals 2022. The Minerals, Metals & Materials Series, pp. 363–370. Springer, Cham (2022).

    Google Scholar 

  9. Voller, V.R., Prakash, C.: A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. International Journal of Heat and Mass Transfer 30(8), 1709–1719 (1987). https://doi.org/10.1016/0017-9310(87)90317-6.

    Article  CAS  Google Scholar 

  10. Swaminathan, C.R., Voller, V.R.: A general enthalpy method for modeling solidification processes. MTB 23(5), 651–664 (1992). https://doi.org/10.1007/BF02649725.

  11. Voller, V.R., Cross, M., Markatos, N.C.: An enthalpy method for convection/diffusion phase change. International Journal for Numerical Methods in Engineering 24(1), 271–284 (1987). https://doi.org/10.1002/nme.1620240119.

    Article  Google Scholar 

  12. Torabi Rad, M.: solidificationMeltingSource: A Built-in fvOption in OpenFOAM®for Simulating Isothermal Solidification. In: Nóbrega, J.M., Jasak, H. (eds.) OpenFOAM®: Selected Papers of the 11th Workshop, pp. 455–464. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-60846-4_32.

  13. Muhammad, M.D., Badr, O., Yeung, H.: Validation of a CFD Melting and Solidification Model for Phase Change in Vertical Cylinders. Numerical Heat Transfer, Part A: Applications 68(5), 501–511. Taylor & Francis, (2015). https://doi.org/10.1080/10407782.2014.994432.

  14. OpenCFD: OpenFOAM®- Official home of The Open Source Computational Fluid Dynamics (CFD) Toolbox. http://www.openfoam.com Accessed 2019-05-06.

  15. Bird, R.B.: Transport Phenomena, 2nd ed. edn. Wiley, New York (2002).

    Google Scholar 

  16. Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 39(1), 201–225 (1981).

    Article  Google Scholar 

  17. Grjotheim, K., Kvande, H. (eds.): Introduction to Aluminium Electrolysis-Understanding the Hall-Heroult Process. Aluminium-Verlag, Düsseldorf (1993).

    Google Scholar 

  18. Greenshields, C., Weller, H.: Notes on Computational Fluid Dynamics: General Principles. CFD Direct Ltd, Reading, UK (2022). https://doc.cfd.direct/notes/cfd-general-principles/.

  19. Alexiades, V., Solomon, A.D.: Mathematical Modeling of Melting and Freezing Processes, 1st edn. CRC Press, Washington, DC (1993).

    Google Scholar 

  20. Poncsák, S., Rakotondramanana, L., Kiss, L.I., Roger, T., Guérard, S., Bilodeau, J.-F.: Evolution of Mechanical Resistance of Alumina Raft Exposed to the Bath in Hall-Héroult Cells. In: Chesonis, C. (ed.) Light Metals 2019. The Minerals, Metals & Materials Series, pp. 667–673. Springer, Cham (2019).

    Google Scholar 

Download references

Acknowledgements

The current work  has been funded by SFI Metal Production (Centre for Research-based Innovation, 237738). The authors gratefully acknowledge the financial support from the Research Council of Norway and partners of the center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sindre Engzelius Gylver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gylver, S.E., Einarsrud, K.E. (2023). CFD Modelling of Solidification and Melting of Bath During Raft Formation. In: Broek, S. (eds) Light Metals 2023. TMS 2023. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-22532-1_92

Download citation

Publish with us

Policies and ethics

Navigation