On Connecting Density Functional Approximations to Theory

  • Chapter
  • First Online:
Density Functional Theory

Part of the book series: Mathematics and Molecular Modeling ((MAMOMO))

  • 999 Accesses

Abstract

Usually, density functional models are considered approximations to density functional theory, However, there is no systematic connection between the two, and this can make us doubt about a linkage. This attitude can be further enforced by the vagueness of the argumentation for using spin densities. Questioning the foundations of density functional models leads to a search for alternative explanations. Seeing them as using models for pair densities is one of them. Another is considering density functional approximations as a way to extrapolate results obtained in a model system to those of a corresponding physical one.

Dedicated to Jean-Paul Malrieu on his 80th birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the standard Kohn–Sham model, \(\mathcal {E}(w=0)\) is a sum of orbital energies.

References

  1. A.D. Becke. Hartree–Fock exchange energy of an inhomogeneous electron gas. Int. J. Quantum. Chem.23(6), 1915–1922 (1983).

    Article  Google Scholar 

  2. A.D. Becke, A. Savin, and H. Stoll. Extension of the local-spin-density exchange-correlation approximation to multiplet states. Theoret. Chim. Acta91, 147–156 (1995).

    Article  Google Scholar 

  3. E.R. Davidson. Natural expansions of exact wavefuncions. III. The Helium-atom ground state. J. Chem. Phys.39, 875 (1963).

    Google Scholar 

  4. S.T. Epstein, A.C. Hurley, R.E. Wyatt and R.G. Parr. Integrated and integral Hellmann–Feynman formulas. J. Chem. Phys.47, 1275 (1967).

    Article  Google Scholar 

  5. H. Eshuis, J. Bates, and F. Furche. Electron correlation methods based on the random phase approximation. Theor. Chem. Acc.131, 1084 (2012).

    Article  Google Scholar 

  6. S. Fournais, M. Hoffmann-Ostenof, T. Hoffmann-Ostenhof, and T.Ø. Sørensen. Analytic structure of many-body coulombic wave functions. Commun. Math. Phys.289, 291–310 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  7. P.M.W. Gill, R.D. Adamson and J.A. Pople. Coulomb-attenuated exchange energy density functionals. Mol. Phys.88, 1005–1009 (1996).

    Article  Google Scholar 

  8. P. Gori-Giorgi and A. Savin. Properties of short-range and long-range correlation energy density functionals from electron-electron coalescence. Phys. Rev. A 73, 032506 (2006).

    Article  Google Scholar 

  9. O. Gunnarsson and B.I. Lundqvist. Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism. Phys. Rev. B13, 4274 (1976).

    Article  Google Scholar 

  10. C. Gutlé and A. Savin. Orbital spaces and density-functional theory. Phys. Rev. A 75, 032519, 2007.

    Article  Google Scholar 

  11. J. Harris and R.O. Jones. The surface energy of a bounded electron gas-solid. J. Phys. F4, 1170–1186 (1974).

    Article  Google Scholar 

  12. P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev. B136, 864 (1964).

    Article  MathSciNet  Google Scholar 

  13. B. Huron, J.-P. Malrieu, and P. Rancurel. Iterative perturbation calculations of ground and excited state energies from multiconfigurational zeroth-order wavefunctions. J. Chem. Phys.58, 5745 (1973).

    Article  Google Scholar 

  14. J. Karwowski and L. Cyrnek. Harmonium. Ann. Phys. (Leipzig)13(4), 181–193 (2004).

    Article  MATH  Google Scholar 

  15. D.C. Langreth and J.P. Perdew. The exchange-correlation energy of a metallic surface. Solid State Commun.17(11), 1425–1429 (1975).

    Article  Google Scholar 

  16. M. Levy. Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proc. Natl. Acad. Sci. U.S.A.76(12), 6062–6065 (1979).

    Article  MathSciNet  Google Scholar 

  17. M. Levy, J.P. Perdew and V. Sahni. Exact differential equation for the density and ionization energy of a many-particle system. Phys. Rev. A30, 2745 (1984).

    Article  Google Scholar 

  18. E. H. Lieb. Density functionals for coulomb systems. Int. J. Quantum. Chem.24(3), 243–277 (1983).

    Article  Google Scholar 

  19. Simone Paziani, Saverio Moroni, Paola Gori-Giorgi, and Giovanni B. Bachelet. Local-spin-density functional for multideterminant density functional theory. Phys. Rev. B73, 155111–15519 (2006).

    Article  Google Scholar 

  20. J. Percus. The role of model systems in the few-body reduction of the N-fermion problem. Int. J. Quantum Chem.13, 89–124 (1978).

    Article  Google Scholar 

  21. J.P. Perdew. What do the Kohn–Sham orbital energies mean? How do atoms dissociate? In: Density Functional Methods in Physics, edited by R.M. Dreizler and J. da Providencia, pp. 265–308, Plenum, New York (1985).

    Google Scholar 

  22. J.P. Perdew and M. Levy. Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities. Phys. Rev. Lett.51, 1884–1887 (1983).

    Article  Google Scholar 

  23. J.P. Perdew, A. Savin and K. Burke. Esca** the symmetry dilemma through a pair-density interpretation of spin-density functional theory. Phys. Rev. A51, 4531 (1995).

    Article  Google Scholar 

  24. F. Rellich. Perturbation Theory of Eigenvalue Problems. Gordon and Breach, New York (1969).

    MATH  Google Scholar 

  25. A. Savin. Expression of the exact electron-correlation-energy density functional in terms of first-order density matrices. Phys. Rev. A52, R1805–R1807 (1995).

    Article  Google Scholar 

  26. A. Savin. On degeneracy, near degeneracy and density functional theory. In: Recent Developments of Modern Density Functional Theory, edited by J.M. Seminario, pp. 327–357, Elsevier, Amsterdam (1996).

    Google Scholar 

  27. A. Savin. Is size-consistency possible with density functional approximations? Chem. Phys.356, 91 (2009).

    Article  Google Scholar 

  28. A. Savin. Absence of proof for the Hohenberg–Kohn theorem for a Hamiltonian linear in the magnetic field. Mol. Phys.115, 13 (2017).

    Article  Google Scholar 

  29. A. Savin and F. Colonna. Local exchange-correlation energy density functional for monotonically decaying densities. J. Mol. Struct. (Theochem)39, 501–502 (2000).

    Google Scholar 

  30. A. Savin and F. Colonna. A spectral analysis of the correlation energy. J. Mol. Struct. (Theochem)527, 121 (2000).

    Article  Google Scholar 

  31. A. Savin, F. Colonna, and M. Allavena. Analysis of the linear response function along the adiabatic connection from the Kohn–Sham to the correlated system. J. Chem. Phys.115, 6827 (2001).

    Article  Google Scholar 

  32. A. Savin, F. Colonna, and R. Pollet. Adiabatic connection approach to density functional theory of electronic systems. Int. J. Quantum. Chem.93, 166–190 (2003).

    Article  Google Scholar 

  33. A. Savin, C.J. Umrigar, and X. Gonze. Relationship of Kohn–Sham eigenvalues to excitation energies. Chem. Phys. Lett.288, 391 (1998).

    Article  Google Scholar 

  34. L.J. Sham and M. Schlüter. Density-functional theory of the energy gap. Phys. Rev. Letters51, 1888 (1983).

    Article  Google Scholar 

  35. V.N. Staroverov and E.R. Davidson. Distribution of effectively unpaired electrons. Chem. Phys. Lett.330, 161 (2000).

    Article  Google Scholar 

  36. K. Takatsuka, T. Fueno, and K. Yamaguchi. Distribution of odd electrons in ground-state molecules. Theor. Chim. Acta48, 175–183 (1978).

    Article  Google Scholar 

  37. L. Wilbraham, P. Verma, D.G. Truhlar, L. Gagliardi, and I. Ciofini. Multiconfiguration pair-density functional theory predicts spin-state ordering in iron complexes with the same accuracy as complete active space second-order perturbation theory at a significantly reduced computational cost. J. Phys. Chem. Lett.8, 2026–2030 (2017).

    Article  Google Scholar 

  38. K. Yamaguchi and T. Fueno. Correlation effects in singlet biradical species. Chem. Phys.19, 35–42 (1977).

    Article  Google Scholar 

  39. W. Yang. Generalized adiabatic connection in density functional theory. J. Chem. Phys.109, 10107 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

Eric Cancès’ comments on the first draft on the manuscript are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Savin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Savin, A. (2023). On Connecting Density Functional Approximations to Theory. In: Cancès, E., Friesecke, G. (eds) Density Functional Theory. Mathematics and Molecular Modeling. Springer, Cham. https://doi.org/10.1007/978-3-031-22340-2_2

Download citation

Publish with us

Policies and ethics

Navigation