Flexibilities of Wavelets as a Computational Basis Set for Large-Scale Electronic Structure Calculations

  • Chapter
  • First Online:
Density Functional Theory

Part of the book series: Mathematics and Molecular Modeling ((MAMOMO))

  • 986 Accesses

Abstract

The BigDFT project started in 2005 with the aim of testing the advantages of using a Daubechies wavelet basis set for Kohn–Sham density functional theory with pseudopotentials. This project led to the creation of the BigDFT code, which employs a computational approach with optimal features for flexibility, performance and precision of the results. In particular, the employed formalism has enabled the implementation of an algorithm able to tackle DFT calculations of large systems, up to many thousands of atoms, with a computational effort which scales linearly with the number of atoms. In this work we show how the localised description of the Kohn–Sham problem, emerging from the features of the basis set, are helpful in providing a simplified description of large-scale electronic structure calculations. We recall some of the features that have been made possible by the peculiar mathematical properties of Daubechies wavelets and also interpolating scaling functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O. Andreussi, I. Dabo and N. Marzari. Revised self-consistent continuum solvation in electronic-structure calculations. J. Chem. Phys.136(6), 064102 (2012). URL https://doi.org/10.1063/1.3676407.

  2. O. Andreussi and G. Fisicaro. Continuum embeddings in condensed-matter simulations. Int. J. Quantum Chem.119, e25725 (2019). URL https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.25725.

  3. R. Baer and M. Head-Gordon. Sparsity of the Density Matrix in Kohn–Sham Density Functional Theory and an Assessment of Linear System-Size Scaling Methods. Phys. Rev. Lett.79, 3962–3965 (1997).

    Article  Google Scholar 

  4. C. Bernard. Wavelets and ill posed problems: optic flow and scattered data interpolation. PhD thesis, École Polytechnique (1999).

    Google Scholar 

  5. BigDFT documentation. URL http://bigdft-suite.readthedocs.io/en/latest.

  6. BigDFT website (2020). URL http://www.bigdft.org.

  7. BigDFT GitLab URL http://gitlab.com/l_sim/bigdft-suite.

  8. P.E. Blöchl. Projector augmented-wave method. Phys. Rev. B50, 17953–17979 (1994). URL http://link.aps.org/doi/10.1103/PhysRevB.50.17953.

  9. D.R. Bowler and T. Miyazaki. Calculations for millions of atoms with density functional theory: linear scaling shows its potential. J. Phys.: Condens. Matter22(7), 074207 (2010).

    Google Scholar 

  10. A. Cerioni, L. Genovese, A. Mirone and V. Armando Sole. Efficient and accurate solver of the three-dimensional screened and unscreened Poisson’s equation with generic boundary conditions. J. Chem. Phys.137(13), 134108 (2012).

    Google Scholar 

  11. J. Des Cloizeaux. Analytical Properties of n-Dimensional Energy Bands and Wannier Functions. Phys. Rev. A135, 698–707 (1964).

    Article  MathSciNet  Google Scholar 

  12. J. Des Cloizeaux. Energy Bands and Projection Operators in a Crystal: Analytic and Asymptotic Properties. Phys. Rev. A135, 685–697 (1964).

    Article  MathSciNet  Google Scholar 

  13. I. Dabo, Y. Li, N. Bonnet and N. Marzari. Ab Initio Electrochemical Properties of Electrode Surfaces. In: Fuel Cell Science: THeory, Fundamentals, and Biocatalysis, edited by A. Wieckowski and J.K. Nørskov, pp. 415–431, John Wiley & Sons, Inc. (2010). ISBN 9780470630693. URL https://doi.org/10.1002/9780470630693.ch13.

  14. A.D. Daniels and G.E. Scuseria. What is the best alternative to diagonalization of the Hamiltonian in large scale semiempirical calculations? J. Chem. Phys.110(3), 1321–1328 (1999).

    Article  Google Scholar 

  15. I. Daubechies. Orthonormal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics41(7), 909–996 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  16. I. Daubechies. Ten Lectures on Wavelets. SIAM (1992).

    Google Scholar 

  17. I. Daubechies. Ten lectures on wavelets, volume 61 of CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1992).

    Google Scholar 

  18. W. Dawson and T. Nakajima. Massively parallel sparse matrix function calculations with NTPoly. Comput. Phys. Commun.225, 154–165 (2018).

    Article  MATH  Google Scholar 

  19. G. Fisicaro, S. Filice, S. Scalese, G. Compagnini, R. Reitano, L. Genovese, S. Goedecker, I. Deretzis and A. La Magna. Wet environment effects for ethanol and water adsorption on anatase tio2 (101) surfaces. J. Phys. Chem. C124(4), 2406–2419 (2020). URL https://doi.org/10.1021/acs.jpcc.9b05400.

  20. G. Fisicaro, L. Genovese, O. Andreussi, S. Mandal, N.N. Nair, N. Marzari and S. Goedecker. Soft-sphere continuum solvation in electronic-structure calculations. J. Chem. Theory Comput.13(8), 3829–3845 (2017). URL https://doi.org/10.1021/acs.jctc.7b00375.

  21. G. Fisicaro, L. Genovese, O. Andreussi, N. Marzari and S. Goedecker. A generalized poisson and Poisson-Boltzmann solver for electrostatic environments. J. Chem. Phys.144(1), 014103 (2016). URL https://doi.org/10.1063/1.4939125.

  22. G. Fisicaro, M. Sicher, M. Amsler, S. Saha, L. Genovese and S. Goedecker. Surface reconstruction of fluorites in vacuum and aqueous environment. Phys. Rev. Materials1, 033609 (2017). URL https://link.aps.org/doi/10.1103/PhysRevMaterials.1.033609.

  23. L. Genovese and T. Deutsch. Multipole-preserving quadratures for the discretization of functions in real-space electronic structure calculations. Phys. Chem. Chem. Phys.17, 31582–31591 (2015). URL https://doi.org/10.1039/C5CP01236H.

  24. L. Genovese, T. Deutsch and S. Goedecker. Efficient and accurate three-dimensional poisson solver for surface problems. J. Chem. Phys.127(5), 054704 (2017).

    Google Scholar 

  25. L. Genovese, T. Deutsch, A. Neelov, S. Goedecker and G. Beylkin. Efficient solution of Poisson’s equation with free boundary conditions. J. Chem. Phys.125(7), 074105 (2006).

    Google Scholar 

  26. S. Goedecker. Decay properties of the finite-temperature density matrix in metals. Phys. Rev. B58, 3501–3502 (1998).

    Article  Google Scholar 

  27. S. Goedecker and L. Colombo. Efficient Linear Scaling Algorithm for Tight-Binding Molecular Dynamics. Phys. Rev. Lett. 73, 122–125 (1994).

    Article  Google Scholar 

  28. S. Goedecker and M. Teter. Tight-binding electronic-structure calculations and tight-binding molecular dynamics with localized orbitals. Phys. Rev. B51, 9455–9464 (1995).

    Article  Google Scholar 

  29. S. Goedecker, M. Teter and J. Hutter. Separable dual-space gaussian pseudopotentials. Phys. Rev. B54, 1703–1710 (1996). URL https://link.aps.org/doi/10.1103/PhysRevB.54.1703.

  30. S. Goedecker. Wavelets and Their Application: For the Solution of Partial Differential Equations in Physics. Presses polytechniques et universitaires romandes (1998).

    Google Scholar 

  31. S. Goedecker. Wavelets and their application for the solution of partial differential equations in physics. Presses polytechniques et universitaires romandes, Lausanne (2009).

    MATH  Google Scholar 

  32. R.J. Harrison, G. Beylkin, F.A. Bischoff, J.A. Calvin, G.I. Fann, J. Fosso-Tande, D. Galindo, J.R. Hammond, R. Hartman-Baker, J.C. Hill, J. Jia, J.S. Kottmann, M-J. Yvonne Ou, J. Pei, L.E. Ratcliff, M.G. Reuter, A.C. Richie-Halford, N.A. Romero, H. Sekino, W.A. Shelton, B.E. Sundahl, W. Scott Thornton, E.F. Valeev, Á. Vázquez-Mayagoitia, N. Vence, T. Yanai and Y. Yokoi. Madness: A multiresolution, adaptive numerical environment for scientific simulation. SIAM J. Sci. Comput.38(5), S123–S142 (2016).

    Google Scholar 

  33. R.J. Harrison, G.I. Fann, T. Yanai, Z. Gan and G. Beylkin. Multiresolution quantum chemistry: Basic theory and initial applications. J. Chem. Physics121(23), 11587–11598 (2004).

    Article  Google Scholar 

  34. R. Harrison, G.I. Fann, T. Yanai and G. Beylkin. Multiresolution quantum chemistry in multiwavelet bases. In: Computational Science-ICCS 2003, edited by P M A Sloot et al., pp. 103–110, volume 2660 of Lecture Notes in Computer Science, Springer-Verlag (2003).

    Google Scholar 

  35. C. Hartwigsen, S. Goedecker and J. Hutter. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B58, 3641–3662 (1998).

    Article  Google Scholar 

  36. L. He and D. Vanderbilt. Exponential decay properties of Wannier functions and related quantities. Phys. Rev. Lett.86, 5341–5344 (2001).

    Article  Google Scholar 

  37. E. Hernández and M.J. Gillan. Self-consistent first-principles technique with linear scaling. Phys. Rev. B51(15), 10157–10160 (1995).

    Article  Google Scholar 

  38. P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev. B136(3), 864–871 (1964).

    Article  MathSciNet  Google Scholar 

  39. S. Ismail-Beigi and T.A. Arias. Locality of the Density Matrix in Metals, Semiconductors and Insulators. Phys. Rev. Lett.82, 2127–2130 (1999).

    Article  Google Scholar 

  40. S.R. Jensen, T. Fla, D. Jonsson, R.S. Monstad, K. Ruud and L. Frediani. Magnetic properties with multiwavelets and DFT: the complete basis set limit achieved. Phys. Chem. Chem. Phys.18, 21145–21161 (2016). URL https://doi.org/10.1039/C6CP01294A.

  41. B.R. Johnson, J.P. Modisette, P.J. Norlander and J.K. Kinsey. Quadrature integration for orthogonal wavelet systems, J. Chem. Phys.110(17), 8309–8317 (1999).

    Article  Google Scholar 

  42. W. Kohn. Analytic Properties of Bloch Waves and Wannier Functions. Phys. Rev.115, 809–821 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  43. W. Kohn and L.J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev. A140(4), 1133–1138 (1965).

    Article  MathSciNet  Google Scholar 

  44. M. Krack. Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals. Theor. Chem. Acc.114, 145–152 (2005).

    Article  Google Scholar 

  45. K. Lejaeghere, G. Bihlmayer, T. Björkman, P. Blaha, S. Blügel, V. Blum, D. Caliste, I.E. Castelli, S.J. Clark, A. Dal Corso, S. de Gironcoli, T. Deutsch, J.K. Dewhurst, I. Di Marco, C. Draxl, M. Dułak, O. Eriksson, J.A. Flores-Livas, K.F. Garrity, L. Genovese, P. Giannozzi, M. Giantomassi, S. Goedecker, X. Gonze, O. Grånäs, E.K.U. Gross, A. Gulans, F. Gygi, D.R. Hamann, P.J. Hasnip, N.A.W. Holzwarth, D. Iuc san, D.B. Jochym, F. Jollet, D. Jones, G. Kresse, K. Koepernik, E. Küc cükbenli, Y.O. Kvashnin, I.L.M. Locht, S. Lubeck, M. Marsman, N. Marzari, U. Nitzsche, L. Nordström, T. Ozaki, L. Paulatto, C.J. Pickard, W. Poelmans, M.I.J. Probert, K. Refson, M. Richter, G.-M. Rignanese, S. Saha, M. Scheffler, M. Schlipf, K. Schwarz, S. Sharma, F. Tavazza, P. Thunström, A. Tkatchenko, M. Torrent, D. Vanderbilt, M.J. van Setten, V. Van Speybroeck, J.M. Wills, J.R. Yates, G.-X. Zhang and S. Cottenier. Reproducibility in density functional theory calculations of solids. Science351(6280), (2016). ISSN 0036-8075.

    Google Scholar 

  46. S.G. Mallat. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence11(7), 674–693 (1989).

    Article  MATH  Google Scholar 

  47. N.H. March, W.H. Young and S. Sampanthar. The Many-body Problem in Quantum Mechanics. Dover books on physics. Dover Publications, Incorporated (1967). ISBN 9780486687544.

    Google Scholar 

  48. N. Marzari and D. Vanderbilt. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B56, 12847–12865 (1997).

    Article  Google Scholar 

  49. S. Mohr, M. Eixarch, M. Amsler, M.J. Mantsinen and L. Genovese. Linear scaling DFT calculations for large tungsten systems using an optimized local basis. J. Nucl. Mater.15, 64–70 (2018). ISSN 2352-1791.

    Google Scholar 

  50. S. Mohr, W. Dawson, M. Wagner, D. Caliste, T. Nakajima and L. Genovese. Efficient computation of sparse matrix functions for large-scale electronic structure calculations: The chess library. J. Chem. Theory Comput.13(10), 4684–4698 (2017).

    Article  Google Scholar 

  51. S. Mohr, L.E. Ratcliff, P. Boulanger, L. Genovese, D. Caliste, T. Deutsch and S. Goedecker. Daubechies wavelets for linear scaling density functional theory. J. Chem. Phys.140(20), 204110 (2014).

    Google Scholar 

  52. S. Mohr, L.E. Ratcliff, L. Genovese, D. Caliste, P. Boulanger, S. Goedecker and T. Deutsch. Accurate and efficient linear scaling DFT calculations with universal applicability. Phys. Chem. Chem. Phys.17, 31360–31370 (2015).

    Article  Google Scholar 

  53. 2020. MultiResolution Chemistry (MRChem) program package, https://mrchem.readthedocs.io/en/latest/.

  54. B. Natarajan, L. Genovese, M.E. Casida, T. Deutsch, O.N. Burchak, C. Philouze and M.Y. Balakirev. Wavelet-based linear-response time-dependent density-functional theory. Chem. Phys.402, 29–40 (2012). ISSN 0301-0104. URL http://www.sciencedirect.com/science/article/pii/S0301010412001437.

  55. A.I. Neelov and S. Goedecker. An efficient numerical quadrature for the calculation of the potential energy of wavefunctions expressed in the Daubechies wavelet basis. J. Comp. Phys.217(2), 312–339 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  56. J.W. Neidigh, R.M. Fesinmeyer and N.H. Andersen. Designing a 20-residue protein. Nat. Struct. Mol. Biol.9(6), 425 (2002).

    Google Scholar 

  57. R.A. Puglisi, S. Caccamo, C. Bongiorno, G. Fisicaro, L. Genovese, S. Goedecker, G. Mannino and A. La Magna. Direct observation of single organic molecules grafted on the surface of a silicon nanowire. Sci. Rep.9, 5647 (2019). URL https://doi.org/10.1038/s41598-019-42073-5.

  58. L.E. Ratcliff, A. Degomme, J.A. Flores-Livas, S. Goedecker and L. Genovese. Affordable and accurate large-scale hybrid-functional calculations on GPU-accelerated supercomputers. J. Phys.: Condens. Matter30(9), 095901 (2018).

    Google Scholar 

  59. L.E. Ratcliff and L. Genovese. Pseudo-fragment approach for extended systems derived from linear-scaling DFT. J. Phys.: Condens. Matter31(28), 285901 (2019).

    Google Scholar 

  60. L.E. Ratcliff, S. Mohr, G. Huhs, T. Deutsch, M. Masella and L. Genovese. Challenges in large scale quantum mechanical calculations. WIREs Comput. Mol. Sci.7(1), e1290 (2017).

    Google Scholar 

  61. C.-K. Skylaris, P.D. Haynes, A.A. Mostofi and M.C. Payne. Introducing ONETEP: linear-scaling density functional simulations on parallel computers. J. Chem. Phys.122(8), 84119 (2005).

    Google Scholar 

  62. M.M. Teeter. Water structure of a hydrophobic protein at atomic resolution: Pentagon rings of water molecules in crystals of crambin. Proc. Natl. Acad. Sci. U.S.A.81(19), 6014 (1984).

    Google Scholar 

  63. J. Tomasi, B. Mennucci and R. Cammi. Quantum mechanical continuum solvation models. Chem. Rev.105(8), 2999–3094 (2005). URL https://doi.org/10.1021/cr9904009.

  64. A. Willand, Y.O. Kvashnin, L. Genovese, Á. Vázquez-Mayagoitia, A.K. Deb, A. Sadeghi, T. Deutsch and S, Goedecker. Norm-conserving pseudopotentials with chemical accuracy compared to all-electron calculations. J. Chem. Phys.138(10), 104109 (2013).

    Google Scholar 

  65. M. Zaccaria, W. Dawson, V. Cristiglio, M. Reverberi, L.E. Ratcliff, T. Nakajima, L. Genovese and B. Momeni. Designing a bioremediator: mechanistic models guide cellular and molecular specialization. Curr. Opin. Biotech.62, 98–105 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Deutsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Genovese, L., Deutsch, T. (2023). Flexibilities of Wavelets as a Computational Basis Set for Large-Scale Electronic Structure Calculations. In: Cancès, E., Friesecke, G. (eds) Density Functional Theory. Mathematics and Molecular Modeling. Springer, Cham. https://doi.org/10.1007/978-3-031-22340-2_11

Download citation

Publish with us

Policies and ethics

Navigation