Modelling of Hydraulic Fracturing in Rocks in Non-isothermal Conditions Using Coupled DEM/CFD Approach with Two-Phase Fluid Flow Model

  • Conference paper
  • First Online:
Multiscale Processes of Instability, Deformation and Fracturing in Geomaterials (IWBDG 2022)

Part of the book series: Springer Series in Geomechanics and Geoengineering ((SSGG))

Included in the following conference series:

  • 344 Accesses

Abstract

Shale rock is a strongly heterogeneous, discontinuous, and porous material. Under non-isothermal conditions, the movement of fluid in the pore and capillary system is strongly coupled with heat transfer. The process of the hydraulic fracture strongly depends on the rock saturation degree. An innovative DEM-based thermo-hydro-mechanical model was developed to track in detail the liquid/gas fractions in pores and cracks with respect to their different geometry, size, location, and temperature. A coarse 2D mesh was generated to create a fluid flow network and to solve the energy conservation equation. Finally, the importance of a fully coupled thermo-hydromechanical model is illustrated by the simulation of cold fluid injection during hydraulic fracturing in a rock matrix with different degrees of water saturation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Olivella, S., Gens, A., Carrera, J., Alonso, E.: Numerical formulation for a simulator (code bright) for the coupled analysis of saline media. Eng. Comput. 13(7), 87–112 (1996)

    Article  MATH  Google Scholar 

  2. Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J.O., Fischer, T., Görke, U.J., Kalbacher, T., Kosakowski, G., McDermott, C.I., Park, C.H., Radu, F., Rink, K., Shao, H., Shao, H.B., Sun, F., Sun, Y.Y., Singh, A.K., Taron, J., Walther, M., Wang, W., Watanabe, N., Wu, Y., **e, M., Xu, W., Zehner, B.: Opengeosys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (thm/c) processes in porous media. Environ. Earth Sci. 67(2), 589–599 (2012)

    Google Scholar 

  3. Zareidarmiyan, A., Salarirad, H., Vilarrasa, V., Kim, K.-I., Lee, J., Min, K.-B.: Comparison of numerical codes for coupled thermo-hydro-mechanical simulations of fractured media. J. Rock Mech. Geotech. Eng. 12, 850–865 (2020)

    Article  Google Scholar 

  4. Rühaak, W., Sass, I.: Applied thermo-hydro-mechanical coupled modeling of geothermal prospection in the Northern Upper Rhine Graben. In: Proceedings, Thirty-Eighth Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California (2013)

    Google Scholar 

  5. Selvadurai, A.P.S., Suvorov, A.P., Selvadurai, P.A.: Thermo-hydro-mechanical processes in fractured rock formations during a glacial advance. Geosci. Model Dev. 8, 2167–2185 (2015)

    Article  Google Scholar 

  6. Yan, C., **e, X., Ren, Y., Ke, W., Wang, G.: A FDEM-based 2D coupled thermal-hydro-mechanical model for multiphysical simulation of rock fracturing. Int. J. Rock Mech. Min. Sci. 149, 104964 (2022)

    Article  Google Scholar 

  7. Abdi, R., Krzaczek, M., Tejchman, J.: Comparative study of high-pressure fluid flow in densely packed granules using a 3D CFD model in a continuous medium and a simplified 2D DEM-CFD approach. Granular Matter 24(1), 1–25 (2021). https://doi.org/10.1007/s10035-021-01179-2

    Article  Google Scholar 

  8. Cundall, P., Strack, O.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  9. Yan, C., Zheng, H.: A coupled thermo-mechanical model based on the combined finite-discrete element method for simulating thermal cracking of rock. Int. J. Rock Mech. Min. Sci. 91, 170–178 (2017)

    Article  Google Scholar 

  10. Li, T., Tang, C., Rutqvist, J., Hu, M.: TOUGH-RFPA: Coupled thermal-hydraulic-mechanical rock failure process analysis with application to deep geothermal wells. Int. J. Rock Mech. Min. Sci. 142, 104726 (2021)

    Article  Google Scholar 

  11. Deen, N.G., Kriebitzsch, S.H., van der Hoef, M.A., Kuipers, J.: Direct numerical simulation of flow and heat transfer in dense fluid–particle systems. Chem. Eng. Sci. 81, 329–344 (2012)

    Article  Google Scholar 

  12. Chen, Z., **, X., Wang, M.: A new thermo-mechanical coupled DEM model with non-spherical grains for thermally induced damage of rocks. J. Mech. Phys. Solids 116, 54–69 (2018)

    Article  MathSciNet  Google Scholar 

  13. Yang, B., Chen, S., Liu, K.: Direct numerical simulations of particle sedimentation with heat transfer using the lattice boltzmann method. Int. J. Heat Mass Transf. 104, 419–437 (2017)

    Article  Google Scholar 

  14. Cundall, P.: Fluid Formulation for PFC2D. Itasca Consulting Group, Minneapolis, Minnesota (2000)

    Google Scholar 

  15. Hazzard, J.F., Young, R.P., Oates, S.J.: Numerical modeling of seismicity induced by fluid injection in a fractured reservoir. In: Proceedings of the 5th North American Rock Mechanics Symposium, Miningand Tunnel Innovation and Opportunity, pp. 1023–1030. Toronto, Canada, 7–10 July 2002

    Google Scholar 

  16. Al-Busaidi, A., Hazzard, J.F., Young, R.P.: Distinct element modeling of hydraulically fractured Lac du Bonnet granite. J. Geophys. Res. 110, B06302. https://doi.org/10.1029/2004JB003297

  17. Catalano, E., Chareyre, B., Barthélémy, E.: Pore-scale modeling of fluid-particles interaction and emerging poromechanical effects. Int. J. Numer. Anal. Meth. Geomech. 38, 51–71 (2014)

    Google Scholar 

  18. Papachristos, E., Scholtès, L., Donzé, F.V., Chareyre, B.: Intensity and volumetric characterizations of hydraulically driven fractures by hydro-mechanical simulations. Int. J. Rock Mech. Min. Sci. 93, 163–178 (2017)

    Article  Google Scholar 

  19. Tomac, I., Gutierrez, M.: Coupled hydro-thermo-mechanical modeling of hydraulic fracturing in quasi-brittle rocks using BPM-DEM. J. Rock Mech. Geotech. Eng. 9, 92–104 (2017)

    Article  Google Scholar 

  20. Caulk, R., Sholtès, L., Krzaczek, M., Chareyre, B.: A pore-scale thermo–hydro-mechanical model for particulate systems. Comput. Methods Appl. Mech. Eng. 372, 113292 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chareyre, B., Cortis, A., Catalano, E., Barthélemy, E.: Pore-scale modeling of viscous flow and induced forces in dense sphere packings. Transp. Porous Media 94(2), 595–615 (2012)

    Article  MathSciNet  Google Scholar 

  22. Scholtès, L., Chareyre, B., Michallet, H., Catalano, E., Marzougui, D.: Modeling wave-induced pore pressure and effective stress in a granular seabed. Continuum Mech. Thermodyn. 27(1–2), 305–323 (2014). https://doi.org/10.1007/s00161-014-0377-2

    Article  Google Scholar 

  23. Krzaczek, M., Nitka, M., Kozicki, J., Tejchman, J.: Simulations of hydro-fracking in rock mass at meso-scale using fully coupled DEM/CFD approach. Acta Geotech. 15(2), 297–324 (2019). https://doi.org/10.1007/s11440-019-00799-6

    Article  Google Scholar 

  24. Krzaczek, M., Nitka, M., Tejchman, J.: Effect of gas content in macro-pores on hydraulic fracturing in rocks using a fully coupled DEM/CFD approach. Int. J. Numer. Anal. Meth. Geomech. 45(2), 234–264 (2021)

    Article  Google Scholar 

  25. Kozicki, J., Donzé, F.V.: A new open-source software developer for numerical simulations using discrete modeling methods. Comput. Methods Appl. Mech. Eng. 197, 4429–4443 (2008)

    Article  MATH  Google Scholar 

  26. Suchorzewski, J., Tejchman, J., Nitka, M.: Discrete element method simulations of fracture in concrete under uniaxial compression based on its real internal structure. Int. J. Damage Mech 27(4), 578–607 (2018)

    Article  Google Scholar 

  27. Nitka, M., Tejchman, J.: Modelling of concrete behaviour in uniaxial compression and tension with DEM. Granular Matter 17(1), 145–164 (2015)

    Google Scholar 

Download references

Acknowledgements

The present study was supported by the research project “Fracture propagation in rocks during hydro-fracking—experiments and discrete element method coupled with fluid flow and heat transport” (years 2019–2022) financed by the National Science Centre (NCN) (UMO-2018/29/B/ST8/00255).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Krzaczek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krzaczek, M., Nitka, M., Tejchman, J. (2023). Modelling of Hydraulic Fracturing in Rocks in Non-isothermal Conditions Using Coupled DEM/CFD Approach with Two-Phase Fluid Flow Model. In: Pasternak, E., Dyskin, A. (eds) Multiscale Processes of Instability, Deformation and Fracturing in Geomaterials. IWBDG 2022. Springer Series in Geomechanics and Geoengineering. Springer, Cham. https://doi.org/10.1007/978-3-031-22213-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22213-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22212-2

  • Online ISBN: 978-3-031-22213-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation