Evolutionary-Based Co-optimization of DNN and Hardware Configurations on Edge GPU

  • Conference paper
  • First Online:
Optimization and Learning (OLA 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1684))

Included in the following conference series:

  • 376 Accesses

Abstract

The ever-increasing complexity of both Deep Neural Networks (DNN) and hardware accelerators has made the co-optimization of these domains extremely complex. Previous works typically focus on optimizing DNNs given a fixed hardware configuration or optimizing a specific hardware architecture given a fixed DNN model. Recently, the importance of the joint exploration of the two spaces draw more and more attention. Our work targets the co-optimization of DNN and hardware configurations on edge GPU accelerator. We investigate the importance of the joint exploration of DNN and edge GPU configurations. We propose an evolutionary-based co-optimization strategy for DNN by considering three metrics: DNN accuracy, execution latency, and power consumption. By combining the two search spaces, we have observed that we can explore more solutions and obtain a better tradeoff between DNN accuracy and hardware efficiency. Experimental results show that the co-optimization outperforms the optimization of DNN for fixed hardware configuration with up to 53% hardware efficiency gains for the same accuracy and latency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Benmeziane, H., El Maghraoui, K., Ouarnoughi, H., Niar, S., Wistuba, M., Wang, N.: A comprehensive survey on hardware-aware neural architecture search. CoRR, abs/2101.09336 (2021)

    Google Scholar 

  2. Hao, C., et al.: FPGA/DNN co-design: an efficient design methodology for 1ot intelligence on the edge. In: 2019 56th ACM/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE (2019)

    Google Scholar 

  3. Nabavinejad, S.M., Reda, S., Ebrahimi, M.: Coordinated batching and DVFS for DNN inference on GPU accelerators. IEEE Trans. Parallel Distrib. Syst. (2022)

    Google Scholar 

  4. Yang, L., et al.: Co-exploration of neural architectures and heterogeneous ASIC accelerator designs targeting multiple tasks. In: 2020 57th ACM/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE (2020)

    Google Scholar 

  5. Jiang, W., et al.: Hardware/software co-exploration of neural architectures. IEEE Trans. Comput.-Aided Design Integr. Circ. Syst. 39(12), 4805–4815 (2020)

    Article  Google Scholar 

  6. Lin, Y., Hafdi, D., Wang, K., Liu, Z., Han, S.: Neural-hardware architecture search. In: NeurIPS WS (2019)

    Google Scholar 

  7. Li, Y., et al.: EDD: efficient differentiable DNN architecture and implementation co-search for embedded AI solutions. In: 2020 57th ACM/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE (2020)

    Google Scholar 

  8. Jiang, W., Yang, L., Dasgupta, S., **gtong, H., Shi, Y.: Standing on the shoulders of giants: hardware and neural architecture co-search with hot start. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 39(11), 4154–4165 (2020)

    Article  Google Scholar 

  9. Chen, W., Wang, Y., Yang, S., Liu, C., Zhang, L.: You only search once: a fast automation framework for single-stage DNN/accelerator co-design. In: 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1283–1286. IEEE (2020)

    Google Scholar 

  10. Choi, K., Hong, D., Yoon, H., Yu, J., Kim, Y., Lee, J.: DANCE: differentiable accelerator/network co-exploration. In: 2021 58th ACM/IEEE Design Automation Conference (DAC), pp. 337–342. IEEE (2021)

    Google Scholar 

  11. Liang, Y., et al.: An efficient hardware design for accelerating sparse CNNs with NAS-based models. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 41, 597–613 (2021)

    Article  Google Scholar 

  12. Zhou, Y., et al.: Rethinking co-design of neural architectures and hardware accelerators. ar**v preprint ar**v:2102.08619 (2021)

  13. Pinos, M., Mrazek, V., Sekanina, L.: Evolutionary neural architecture search supporting approximate multipliers. In: Hu, T., Lourenço, N., Medvet, E. (eds.) EuroGP 2021. LNCS, vol. 12691, pp. 82–97. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72812-0_6

    Chapter  Google Scholar 

  14. Sekanina, L.: Neural architecture search and hardware accelerator co-search: a survey. IEEE Access 9, 151337–151362 (2021)

    Article  Google Scholar 

  15. Lu, Q., Jiang, W., Xu, X., Shi, Y., Hu, J.: On neural architecture search for resource-constrained hardware platforms. ar**v preprint ar**v:1911.00105 (2019)

  16. Abdelfattah, M.S., Dudziak, Ł., Chau, T., Lee, R., Kim, H., Lane, N.D.: Best of both worlds: AutoML codesign of a CNN and its hardware accelerator. In: 2020 57th ACM/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE (2020)

    Google Scholar 

  17. Cai, H., Gan, C., Wang, T., Zhang, Z., Han, S.: Once-for-all: train one network and specialize it for efficient deployment. ar**v preprint ar**v:1908.09791 (2019)

  18. Spantidi, O., Galanis, I., Anagnostopoulos, I.: Frequency-based power efficiency improvement of CNNs on heterogeneous IoT computing systems. In: 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), pp. 1–6. IEEE (2020)

    Google Scholar 

  19. Liu, S., Karanth, A.: Dynamic voltage and frequency scaling to improve energy-efficiency of hardware accelerators. In: 2021 IEEE 28th International Conference on High Performance Computing, Data, and Analytics (HiPC), pp. 232–241. IEEE (2021)

    Google Scholar 

  20. Wang, D., Li, M., Gong, C., Chandra, V.: AttentiveNAS: improving neural architecture search via attentive sampling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6418–6427 (2021)

    Google Scholar 

  21. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  22. Jetson developer kits and modules. https://docs.nvidia.com/jetson/l4t/. Accessed 01 May 2021

  23. Bianco, S., Cadene, R., Celona, L., Napoletano, P.: Benchmark analysis of representative deep neural network architectures. IEEE Access 6, 64270–64277 (2018)

    Article  Google Scholar 

  24. Tang, Z., Wang, Y., Wang, Q., Chu, X.: The impact of GPU DVFs on the energy and performance of deep learning: an empirical study. In: 10th ACM International Conference on Future Energy Systems, pp. 315–325 (2019)

    Google Scholar 

  25. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer, M., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45356-3_83

    Chapter  Google Scholar 

  26. Liu, Y., Sun, Y., Xue, B., Zhang, M., Yen, G.G., Tan, K.C.: A survey on evolutionary neural architecture search. IEEE Trans. Neural Netw. Learn. Syst. (2021)

    Google Scholar 

  27. Wang, D., Gong, C., Li, M., Liu, Q., Chandra, V.: AlphaNet: improved training of supernets with alpha-divergence. In: International Conference on Machine Learning, pages 10760–10771. PMLR (2021)

    Google Scholar 

  28. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25. Curran Associates Inc. (2012)

    Google Scholar 

  29. Jetson AGX Xavier developer kit. https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit. Accessed 01 Feb 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halima Bouzidi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bouzidi, H., Ouarnoughi, H., Talbi, EG., El Cadi, A.A., Niar, S. (2022). Evolutionary-Based Co-optimization of DNN and Hardware Configurations on Edge GPU. In: Dorronsoro, B., Pavone, M., Nakib, A., Talbi, EG. (eds) Optimization and Learning. OLA 2022. Communications in Computer and Information Science, vol 1684. Springer, Cham. https://doi.org/10.1007/978-3-031-22039-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22039-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22038-8

  • Online ISBN: 978-3-031-22039-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation