Software Quality Attributes Assessment and Prioritization Using Evidential Reasoning (ER) Approach*

  • Conference paper
  • First Online:
International Conference on Cyber Security, Privacy and Networking (ICSPN 2022) (ICSPN 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 599))

Included in the following conference series:

  • 352 Accesses

Abstract

Requirement assessment and prioritization are the crucial requirement engineering processes in the software development domain. However, software developers face challenges with various types and categories of requirements due to generality, time, and cost. However, Various techniques are proposed for requirement prioritization, such as hierarchical analytic process (AHP), MOSCOW, cumulative voting (CV), bubble sort, and binary search tree (BST). These techniques are still unreliable for prioritizing a considerable number of requirements which takes a long time. Therefore, there is a crucial need for a reliable and consistent approach that helps deal with functional and non-functional requirements assessment and prioritization, such as the Evidential Reasoning (ER) approach. The study findings showed how the requirements assessment and prioritization process improved according to their weights, evaluation grades, and belief degrees. In addition to the decision matrices that lead to high-quality decisions.

*Supported by Zarqa University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abayomi-Alli, A.A., Misra, S., Akala, M.O., Ikotun, A.M., Ojokoh, B.A., et al.: An ontology-based information extraction system for organic farming. Int. J. Semant. Web Inf. Syst. (IJSWIS) 17(2), 79–99 (2021)

    Article  Google Scholar 

  2. Akhoundi, A., Nazif, S.: Sustainability assessment of wastewater reuse alternatives using the evidential reasoning approach. J. Clean. Prod. 195, 1350–1376 (2018)

    Article  Google Scholar 

  3. Chin, K.S., Yang, J.B., Guo, M., Lam, J.P.K.: An evidential-reasoning-interval-based method for new product design assessment. IEEE Trans. Eng. Manag. 56(1), 142–156 (2009)

    Article  Google Scholar 

  4. Do, P., et al.: Develo** a Vietnamese tourism question answering system using knowledge graph and deep learning. Trans. Asian Low-Resource Lang. Inf. Process. 20(5), 1–18 (2021)

    Article  Google Scholar 

  5. Dong, Y., Zhang, J., Li, Z., Hu, Y., Deng, Y.: Combination of evidential sensor reports with distance function and belief entropy in fault diagnosis. Int. J. Comput. Commun. Control 14(3), 329–343 (2019)

    Article  Google Scholar 

  6. Fu, C., Xue, M., Chang, W., Xu, D., Yang, S.: An evidential reasoning approach based on risk attitude and criterion reliability. Knowl.-Based Syst. 199, 105947 (2020)

    Google Scholar 

  7. Huynh, V.N., Nakamori, Y., Ho, T.B., Murai, T.: Multiple-attribute decision making under uncertainty: the evidential reasoning approach revisited. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 36(4), 804–822 (2006)

    Google Scholar 

  8. Lv, L., et al.: An edge-Ai based forecasting approach for improving smart microgrid efficiency. IEEE Trans. Ind. Inform. (2022)

    Google Scholar 

  9. Ng, C., Law, K.M.: Investigating consumer preferences on product designs by analyzing opinions from social networks using evidential reasoning. Comput. Ind. Eng. 139, 106180 (2020)

    Article  Google Scholar 

  10. Pashchenko, D.: Fully remote software development due to covid factor: results of industry research (2020). Int. J. Softw. Sci. Comput. Intell. (IJSSCI) 13(3), 64–70 (2021)

    Article  Google Scholar 

  11. Shafer, G.: A Mathematical Theory of Evidence, vol. 42. Princeton University Press (1976)

    Google Scholar 

  12. Tian, Z.P., Nie, R.X., Wang, J.Q.: Probabilistic linguistic multi-criteria decision-making based on evidential reasoning and combined ranking methods considering decision-makers’ psychological preferences. J. Oper. Res. Soc. 71(5), 700–717 (2020)

    Article  Google Scholar 

  13. Voola, P., Babu, V.: Study of aggregation algorithms for aggregating imprecise software requirements’ priorities. Eur. J. Oper. Res. 259(3), 1191–1199 (2017)

    Article  MATH  Google Scholar 

  14. Wang, J., Yang, J., Sen, P.: Safety analysis and synthesis using fuzzy sets and evidential reasoning. Reliab. Eng. Syst. Saf. 47(2), 103–118 (1995)

    Article  Google Scholar 

  15. Wang, Y.M., Yang, J.B., Xu, D.L.: Environmental impact assessment using the evidential reasoning approach. Eur. J. Oper. Res. 174(3), 1885–1913 (2006)

    Article  MATH  Google Scholar 

  16. Xu, D.L., Yang, J.B.: Intelligent decision system based on the evidential reasoning approach and its applications. J. Telecommun. Inf. Technol. 73–80 (2005)

    Google Scholar 

  17. Xu, L., Yang, J.B.: Introduction to Multi-criteria Decision Making and the Evidential Reasoning Approach, vol. 106. Manchester School of Management Manchester (2001)

    Google Scholar 

  18. Yang, J., Xu, D.: Knowledge based executive car evaluation using the evidential reasoning approach (1998)

    Google Scholar 

  19. Yang, J.B.: Rule and utility based evidential reasoning approach for multiattribute decision analysis under uncertainties. Eur. J. Oper. Res. 131(1), 31–61 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yang, J.B., Liu, J., Wang, J., Sii, H.S., Wang, H.W.: Belief rule-base inference methodology using the evidential reasoning approach-RIMER. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 36(2), 266–285 (2006)

    Google Scholar 

  21. Yang, J.B., Singh, M.G.: An evidential reasoning approach for multiple-attribute decision making with uncertainty. IEEE Trans. Syst. Man Cybern. 24(1), 1–18 (1994)

    Article  Google Scholar 

  22. Yang, J.B., Xu, D.L.: Nonlinear information aggregation via evidential reasoning in multiattribute decision analysis under uncertainty. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 32(3), 376–393 (2002)

    Google Scholar 

  23. Yang, J.B., Xu, D.L.: On the evidential reasoning algorithm for multiple attribute decision analysis under uncertainty. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 32(3), 289–304 (2002)

    Google Scholar 

  24. Yen, J.: Generalizing the Dempster-Schafer theory to fuzzy sets. IEEE Trans. Syst. Man Cybern. 20(3), 559–570 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, H., Deng, Y.: Engine fault diagnosis based on sensor data fusion considering information quality and evidence theory. Adv. Mech. Eng. 10(11), 1687814018809184 (2018)

    Article  Google Scholar 

  26. Zhang, X.X., Wang, Y.M., Chen, S.Q., Chen, L.: An evidential reasoning based approach for GDM with uncertain preference ordinals. J. Intell. Fuzzy Syst. 37(6), 8357–8369 (2019)

    Article  Google Scholar 

  27. Zhang, Z.J., Yang, J.B., Xu, D.L.: A hierarchical analysis model for multiobjective decisionmaking. IFAC Proc. 22(12), 13–18 (1989)

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by the Deanship of Research and Graduate Studies at Zarqa University /Jordan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Nabot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nabot, A., Aljawawdeh, H., Al-Qerem, A., Al-Qerem, M. (2023). Software Quality Attributes Assessment and Prioritization Using Evidential Reasoning (ER) Approach*. In: Nedjah, N., Martínez Pérez, G., Gupta, B.B. (eds) International Conference on Cyber Security, Privacy and Networking (ICSPN 2022). ICSPN 2021. Lecture Notes in Networks and Systems, vol 599. Springer, Cham. https://doi.org/10.1007/978-3-031-22018-0_17

Download citation

Publish with us

Policies and ethics

Navigation