Physiological Ecology of Medicinal Plants: Implications for Phytochemical Constituents

  • Living reference work entry
  • First Online:
Herbal Medicine Phytochemistry

Abstract

Herbal plants have been valued for their medicinal, flavoring, and aromatic properties for centuries. The global market for medicinal and aromatic plants is estimated to be $62 billion, with demand expected to reach $5 trillion by 2050. Aromatic plants and herbs have been widely cultivated and used for medical purposes not only for humans but for animals as well. According to the World Health Organization, herbal medicines are characterized as substances or products derived from plants that possess therapeutic or other beneficial effects for human health. These herbal remedies can be sourced from one or more plants and may include both raw and processed ingredients (WHO, 2001). This chapter describes the curative values, botanical characteristics, and climatic and cultural requirements of medicinal plants. These include psyllium husk, black cumin or black seed, stevia, fennel, bishop’s weed/carom seeds, sweet basil, holy basil, linseed, and turmeric, all medical plants that are grown worldwide. Despite having a higher market value than major field crops, medicinal plants are not cultivated on the same scale as significant as other crops. One of the major reasons for the globally low production of medicinal plants is the lack of information regarding their suitable cultivable climate and their poor adaptability to growing environments. It is imperative to give careful consideration to the selection of soil and crop** strategies to achieve satisfactory yields of high-quality products while ensuring the preservation of their safety and nutritional value. Physiological ecology is also discussed in this chapter in relation to medicinal plant therapeutic potential and medicinal qualities. It is still necessary to explore and understand the cultural practices necessary to cultivate medicinal plants successfully. This chapter aims to address these gaps by discussing the input requirements, therapeutic value, and suitable cultivation areas for medicinal plants. This chapter aims to fill these knowledge gaps by disseminating insights into cultivation practices and addressing these knowledge gaps. By addressing these gaps and disseminating insights into cultivation techniques, it hopes to develop sustainable and optimized cultivation techniques for medicinal plants. As a result of such advancements, medicinal plants will be available for future generations and will meet the growing demand for them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Violeta N, Trandafir I, Cosmulescu S (2017) Bioactive compounds, antioxidant activity and nutritional quality of different culinary aromatic herbs. Not Bot Horti Agrobot Cluj-Napoca 45:179–184

    Article  Google Scholar 

  2. Giannenas I, Sidiropoulou E, Bonos E, Christaki E, Florou-Paneri P (2020) The history of herbs, medicinal and aromatic plants, and their extracts: past, current situation and future perspectives. In: Feed additives, Elsevier, Cambridge pp 1–18

    Google Scholar 

  3. Giacometti J, Kovačević DB, Putnik P, Gabrić D, Bilušić T, Krešić G, Stulić V, Barba FJ, Chemat F, Barbosa-Cánovas G (2018) Extraction of bioactive compounds and essential oils from mediterranean herbs by conventional and green innovative techniques. Rev Food Res Int 113:245–262

    Article  Google Scholar 

  4. Oliveira AP, Santos AA, Santana AS, Lima APS, Melo CR, Santana ED, Sampaio TS, Blank AF, Araújo APA, Cristaldo PF (2018) Essential oil of Lippia sidoides and its major compound thymol: toxicity and walking response of populations of Sitophilus zeamais (Coleoptera Curculionidae). Crop Prot 112:33–38

    Article  Google Scholar 

  5. Edgar JA, Roeder E, Molyneux RJ (2002) Honey from plants containing pyrrolizidine alkaloids: a potential threat to health. J Agric Food Chem 50:2719–2730

    Article  PubMed  Google Scholar 

  6. Carrubba A, Scalenghe R (2012) The scent of Mare Nostrum: medicinal and aromatic plants in Mediterranean soils. J Sci Food Agric 92:1150–1170

    Article  PubMed  Google Scholar 

  7. Xego S, Kambizi L, Nchu F (2016) Threatened medicinal plants of South Africa: case of the family Hyacinthaceae. Afr J Tradit Complement Altern Med 13:169–180

    Article  Google Scholar 

  8. Mofokeng MM, Prinsloo G, Araya HT, Du Plooy CP, Sathekge NR, Amoo SO, Steyn JM (2020) Yield and metabolite production of pelargonium sidoides DC, in response to irrigation and nitrogen management. Meta 10:219

    Google Scholar 

  9. Verma A, Mogra R (2013) Psyllium (Plantago ovata) husk: a wonder food for good health. Int J Sci Res 4:1581–1585

    Google Scholar 

  10. Dhar M, Kaul S, Sareen S, Koul A (2005) Plantago ovata: genetic diversity, cultivation, utilization and chemistry. Plant Genet Resour 3:252–263

    Article  Google Scholar 

  11. Masood R, Miraftab M (2010) Psyllium: current and future applications. In: Medical and healthcare textiles. Elsevier, Woodhead Publishing Series in Textiles, Cambridge pp 244–253

    Google Scholar 

  12. Spices Statistics (2019) Spice Board, Ministry of Commerce and Industry, Govt of India, Cochin Available via http://www.indianspices.com/. Accessed 20 July 2019

  13. Rehana K, Ovidiu T, Mihaela A, Cameli S (2015) Industrial application of psyllium: an overview. Acta Univ Cibin Technol Ser 67:210–214

    Google Scholar 

  14. Shahriari Z, Heidari B, Dadkhodaie A (2018) Dissection of genotype× environment interactions for mucilage and seed yield in Plantago species: application of AMMI and GGE biplot analyses. PLoS One 13:e0196095

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gupta R (2017) Agrotechnology of medicinal plants. In: The medicinal plant industry. Routledge, New York pp 43–58

    Google Scholar 

  16. Yu L, Yakubov GE, Zeng W, **ng X, Stenson J, Bulone V, Stokes JR (2017) Multi-layer mucilage of Plantago ovata seeds: rheological differences arise from variations in arabinoxylan side chains. Carbohydr Polym 165:132–141

    Article  PubMed  Google Scholar 

  17. Theuwissen E, Mensink RP (2008) Water-soluble dietary fibers and cardiovascular disease. Physiol Behav 94:285–292

    Article  PubMed  Google Scholar 

  18. Romero-Baranzini A, Rodriguez O, Yanez-Farias G, Barron-Hoyos J, Rayas-Duarte P (2006) Chemical, physicochemical, and nutritional evaluation of Plantago (Plantago ovata). Cereal Chem 83:358–362

    Article  Google Scholar 

  19. Ghaderi FF, Alimagham S, Kameli A, Jamali M (2012) Isabgol (Plantago Ovata) seed germination and emergence as affected by environmental factors and planting 6(2):185–194

    Google Scholar 

  20. Roumani A, Biabani A, Karizaki A, Alamdari E, Gholizadeh A (2019) Effects of salicylic acid and spermine foliar application on some morphological and physiological characteristics of isabgol (Plantago ovata) under water stress 17(4):1735–1749

    Google Scholar 

  21. Khaliq R, Athar H, Zafar ZU, Zahoor M (2011) Growth responses of Plantago ovata L. to varying levels of NaCl 1(3):157–167

    Google Scholar 

  22. Van Zelm E, Zhang Y, Testerink C (2020) Salt tolerance mechanisms of plants. Annu Rev Plant Biol 71:403–433

    Article  PubMed  Google Scholar 

  23. Bannayan M, Nadjafi F, Azizi M, Tabrizi L, Rastgoo M (2008) Yield and seed quality of Plantago ovata and Nigella sativa under different irrigation treatments. Ind Crop Prod 27:11–16

    Article  Google Scholar 

  24. Tomar O, Dagar J, Minhas P (2010) Evaluation of sowing methods, irrigation schedules, chemical fertilizer doses and varieties of Plantago ovata Forsk. To rehabilitate degraded calcareous lands irrigated with saline water in dry regions of northwestern India. Arid Land Res Manag 24:133–151

    Article  Google Scholar 

  25. Gahukar RT (2018) Management of pests and diseases of important tropical/subtropical medicinal and aromatic plants: a review. J Appl Res Med Aromat Plants 9:1–18

    Google Scholar 

  26. Ranasinghe S, Armson A, Lymbery AJ, Zahedi A, Ash A (2023) Medicinal plants as a source of antiparasitics: an overview of experimental studies. Pathog Glob Health 117:535–553

    Article  PubMed  Google Scholar 

  27. Madgulkar AR, Rao MR, Warrier D (2015) Characterization of psyllium (Plantago ovata) polysaccharide and its uses. Polysaccharides 871–890, Available via 10.1007/978-3-319-03751-6_49-1

    Google Scholar 

  28. Golkar P, Amooshahi F, Arzani A (2017) The effects of salt stress on physio-biochemical traits, total phenolic and mucilage content of Plantago ovata Forsk under in vitro conditions. J Appl Bot Food Qual 90:224–231

    Google Scholar 

  29. Liao C-R, Kuo Y-H, Ho Y-L, Wang C-Y, Yang C-S, Lin C-W, Chang Y-S (2014) Studies on cytotoxic constituents from the leaves of Elaeagnus oldhamii maxim. In non-small cell lung cancer A549 cells. Mol 19:9515–9534

    Article  Google Scholar 

  30. Sciubba F, Di Cocco ME, Gianferri R, Impellizzeri D, Mannina L, De Salvador FR, Venditti A, Delfini M (2014) Metabolic profile of different Italian cultivars of hazelnut (Corylus avellana) by nuclear magnetic resonance spectroscopy. Nat Prod Res 28:1075–1081

    Article  PubMed  Google Scholar 

  31. Sutradhar K, Tahsin MR, Ashrafi S, Ferdousy S, Akter T, Aktar F, Chowdhury JA, Chowdhury AA, Kabir S, Amran MS (2022) Phytochemical, biochemical and pharmacological properties of Plantago ovata (Ispaghula husk)-a review. Dhaka University J Pharm Sci 21:231–243

    Article  Google Scholar 

  32. Mamedov N, Gardner Z, Craker LE (2005) Medicinal plants used in Russia and Central Asia for the treatment of selected skin conditions. J Herbs Spices Med Plant 11:191–222

    Article  Google Scholar 

  33. Omidbaigi R (2005) Production and processing of medical plants. Behnashr Press (in Persian), Mashhad

    Google Scholar 

  34. Hammond E (2012) Food giant Nestlé claims to have invented stomach soothing use of habbat al-barakah (Nigella sativa). Nagoya Protocol ICNP-2 2:6

    Google Scholar 

  35. Heiss AG, Oeggl K (2005) The oldest evidence of Nigella damascena and its possible introduction to Central Europe. Veg Hist Archaeobotany 14:562–570

    Google Scholar 

  36. Wako FL (2020) Black cumin (Nigella sativa L.) production: a mini review. Available via https://www.researchgate.net/publication/357323781

    Google Scholar 

  37. Aftab A, Zubaida Y, Arshad J, Ashiq R, Shakeel A, Farah K (2018) Nigella sativa L. from traditional to contemporary medicine: a review. Ind J Biochem Biophys 15:237–254

    Google Scholar 

  38. Diwakar Y, Harisha C, Singh B, Kakani R, Saxena S (2018) Floral biology and reproductive behaviour of Nigella sativa L. var. Ajmer Nigella-1. J pharmacogn phytochem 7:53–58

    Google Scholar 

  39. Dubey P, Singh B, Mishra B, Kant K, Solanki R (2016) Nigella (Nigella sativa): a high value seed spice with immense medicinal potential. Ind J Agric Sci 86:967–979

    Google Scholar 

  40. Datta AK, Saha A, Bhattacharya A, Mandal A, Paul R, Sengupta S (2012) Black cumin (Nigella sativa L.)-a review. J Plant Dev Sci 4:1–43

    Google Scholar 

  41. Girma H, Habtewold K, Haimanot M (2016) Spices research achievements, challenges and future prospects in Ethiopia. Acad Res J Agric Sci Res 4:9–17

    Google Scholar 

  42. Shariq I, Israil A, Iqbal A, Brijesh P (2015) Morpho-physiological characterization of seeds and seedlings of Nigella sativa. Study on Indian germplasm. Int Res J Biol Sci 4:38–42

    Google Scholar 

  43. Perveen A, Qaiser M (2006) Pollen flora of Pakistan-LI-Caryophyllaceae. Pak J Bot 38:901

    Google Scholar 

  44. Mukherjee S, Datta AK (2013) Induced genetic male sterility in Nigella sativa L.(black cumin). Cytologia 78:105–111

    Article  Google Scholar 

  45. Margout D, Kelly MT, Meunier S, Auinger D, Pelissier Y, Larroque M (2013) Morphological, microscopic and chemical comparison between Nigella sativa L. cv (black cumin) and Nigella damascena L. cv. J Food Agric Environ 11:165–171

    Google Scholar 

  46. Rahim MA, Shoukat A, Khalid W, Ejaz A, Itrat N, Majeed I, Koraqi H, Imran M, Nisa MU, Nazir A (2022) A narrative review on various oil extraction methods, encapsulation processes, fatty acid profiles, oxidative stability, and medicinal properties of black seed (Nigella sativa). Food Rev 11:2826

    Google Scholar 

  47. Thilakarathne R, Madushanka G, Navaratne S (2018) Determination of composition of fatty acid profile of Ethiopian and Indian black cumin oil (Nigella sativa) Int J Food Sci Nutr 3(3):1–3

    Google Scholar 

  48. Balyan P, Shinde S, Ali A (2021) Potential activities of nanoparticles synthesized from Nigella sativa L. and its phytoconstituents: an overview. J Pharm Pharm Sci 1:1–9

    Google Scholar 

  49. Hossain MS, Sharfaraz A, Dutta A, Ahsan A, Masud MA, Ahmed IA, Goh BH, Urbi Z, Sarker MMR, Ming LC (2021) A review of ethnobotany, phytochemistry, antimicrobial pharmacology and toxicology of Nigella sativa L. Biomed Pharmacother 143:112182

    Article  PubMed  Google Scholar 

  50. Melkie Y, Yeshanew A, Wosen T (2008) Effect of seed rate and time of sowing on grain yield of black cumin (Nigella sativa L) in Takusa Woreda, North Gondar zone. In: Proceedings of the third annual regional conference on completed crop research activities. ARARI, p 32–34

    Google Scholar 

  51. Mahmood T, Idress M, Muhammad N, Aslam M, Akram HM, Sattar A, Ghaffar A (2012) Effect of sowing dates and method of sowing on the yield of black cumin (Nigella sativa L.). In: National seminar on role of agronomy in national food security. Conference paper. Pak Soc Agron str, pp 76–79

    Google Scholar 

  52. Hadi MY, Mohammed GJ, Hameed IH (2016) Analysis of bioactive chemical compounds of Nigella sativa using gas chromatography-mass spectrometry. J Pharmacognosy Phytother 8:8–24

    Article  Google Scholar 

  53. Ariafar S, Forouzandeh M (2017) Evaluation of humic acid application on biochemical composition and yield of black cumin under limited irigation condition. Bull Soc R Sci Liege 86:13–24

    Article  Google Scholar 

  54. Ali M, Hasan M, Islam M (2015) Influence of fertilizer levels on the growth and yield of black cumin (Nigella sativa L.). Agric 13:97–104

    Google Scholar 

  55. Habtewold K, Demes F, Tewodros L, Dejene B, Haimanot M, Wakjira G (2017) Seed spices production guideline: Ethiopian institute of agricultural research, Addis Ababa, Ethiopia, Available via http://publication.eiar.gov.et:8080/xmlui/bitstream/handle/123456789/1659/Seed%20Spices%20Manual%20English.pdf

    Google Scholar 

  56. Nadeem M, Tanveer A, Naqqash T, Jhala A, Mubeen K (2013) Determining critical weed competition periods for black seed. J Anim Plant Sci 23:216–221

    Google Scholar 

  57. Kifelew H, Getachew W, Luleseged T, Mitiku H, Bekele D, Fikere D (2017) Seed spices production guideline, Ethiopian institute of agricultural research, Available via http://publication.eiar.gov.et:8080/xmlui/handle/123456789/1659

    Google Scholar 

  58. Asefa G, Beriso M (2020) Evaluation of black cumin genotypes for yield and yield related parameters in bale mid altitude, southeastern Ethiopia. Int J Agric Res Innov Technol 10:35–37

    Article  Google Scholar 

  59. Mariod AA, Ibrahim RM, Ismail M, Ismail N (2009) Antioxidant activity and phenolic content of phenolic rich fractions obtained from black cumin (Nigella sativa) seedcake. Food Chem 116:306–312

    Article  Google Scholar 

  60. Tembhurne S, Feroz S, More B, Sakarkar D (2014) A review on therapeutic potential of Nigella sativa (kalonji) seeds. J Med Plant Res 8:167–177

    Article  Google Scholar 

  61. Tavakkoli A, Mahdian V, Razavi BM, Hosseinzadeh H (2017) Review on clinical trials of black seed (Nigella sativa) and its active constituent, thymoquinone. J Pharmacopunct 20:179

    Article  Google Scholar 

  62. Paseban M, Niazmand S, Soukhtanloo M, Meibodi NT, Abbasnezhad A, Mousavi SM, Niazmand MJ (2020) The therapeutic effect of Nigella sativa seed on indomethacin-induced gastric ulcer in rats. Cur Nutr Food Sci 16:276–283

    Article  Google Scholar 

  63. Mozaffari F, Ghorbanli M, Babai A, Sepehr MF (2000) The effect of water stress on the seed oil of Nigella sativa L. J Essent Oil Res 12:36–38

    Article  Google Scholar 

  64. Naz H (2011) Nigella sativa: the miraculous herb. Pak J Biochem Mol Biol 44:44–48

    Google Scholar 

  65. Konoshima T, Takasaki M (2002) Cancer-chemopreventive effects of natural sweeteners and related compounds. Pure Appl Chem 74:1309–1316

    Article  Google Scholar 

  66. Lewis WH (1992) Early uses of Stevia rebaudiana (Asteraceae) leaves as a sweetener in Paraguay. Econ Bot 46:336–337

    Google Scholar 

  67. Kinghorn AD, Soejarto DD (1985) Current status of stevioside as a sweetening agent for human use. Available via https://www.semanticscholar.org/paper/Current-status-of-stevioside-as-a-sweetening-agent-Kinghorn-Soejarto/a82b6042c245236507fa2eff8f13310364d6e8b6

    Google Scholar 

  68. Rajasekaran T, Giridhar P, Ravishankar G (2007) Production of steviosides in ex vitro and in vitro grown Stevia rebaudiana Bertoni. J Sci Food Agric 87:420–424

    Article  Google Scholar 

  69. Jayaraman S, Manoharan MS, Illanchezian S (2008) In-vitro antimicrobial and antitumor activities of Stevia rebaudiana (Asteraceae) leaf extracts. Trop J Pharm Res 7:1143–1149

    Article  Google Scholar 

  70. Skaria BP, Joseph R, Mathew G, Malhew S, Joy P (2004) Stevia: a sweet herb. Ind J Arecanut Spice Med Plant 6:24–27

    Google Scholar 

  71. Zaidan LB, Dietrich SM, Felippe G (1980) Effect of photoperiod on flowering and stevioside content in plants of Stevia rebaudiana Bertoni. Jpn J Crop Sci 49:569–574

    Article  Google Scholar 

  72. Yadav AK, Singh S, Dhyani D, Ahuja PS (2011) A review on the improvement of stevia (Stevia rebaudiana). Can J Plant Sci 91:1–27

    Article  Google Scholar 

  73. Das A, Saha B, Maji A, Kumar S, Kumar M, Mandal N (2015) Reproductive phenology and factors affecting reproductive success in stevia (Stevia rebaudiana). New Agric 26:247–255

    Google Scholar 

  74. Khiraoui A, Bakha M, Amchra F, Ourouadi S, Boulli A, Al-Faiz C, Hasib A (2017) Nutritional and biochemical properties of natural sweeteners of six cultivars of Stevia rebaudiana Bertoni leaves grown in Morocco. J Mater Environ Sci 8:1015–1022

    Google Scholar 

  75. Gantait S, Das A, Mandal N (2015) Stevia: a comprehensive review on ethnopharmacological properties and in vitro regeneration. Sugar Tech 17:95–106

    Article  Google Scholar 

  76. Cantabella D, Piqueras A, Acosta-Motos JR, Bernal-Vicente A, Hernández JA, Díaz-Vivancos P (2017) Salt-tolerance mechanisms induced in Stevia rebaudiana Bertoni: effects on mineral nutrition, antioxidative metabolism and steviol glycoside content. Plant Physiol Biochem 115:484–496

    Article  PubMed  Google Scholar 

  77. Pandey M, Chikara SK (2014) In vitro regeneration and effect of abiotic stress on physiology and biochemical content of Stevia rebaudiana ‘Bertoni’. J Plant Sci Res 1:113

    Google Scholar 

  78. Ranjan R, Jaiswal J, Jena J (2011) Stevia as a natural sweetener. Int J Res Pharm Chem 1:1199–1202

    Google Scholar 

  79. Brandle J, Rosa N (1992) Heritability for yield, leaf: stem ratio and stevioside content estimated from a landrace cultivar of Stevia rebaudiana. Can J Plant Sci 72:1263–1266

    Article  Google Scholar 

  80. Langston R, Leopold A (1954) Photoperiodic responses of peppermint. J Am Soc Hortic Sci 63:347–352

    Google Scholar 

  81. Allam A, Nassar A, Besheit S (2001) Itrogen fertilizer requirements of Stevia rebaudiana bertoni, under Egyptian conditions. Egypt J Agric Res (Egypt) 79(3):1005–1018

    Google Scholar 

  82. Randi ÁM (1980) Germinação de Stevia rebaudiana Bert. Available via https://repositorio.ufsc.br/handle/123456789/76708

    Google Scholar 

  83. Saqib M, Ijaz M, Latif M, Mahmood K, Yasir TA (2015) Domestication of non-conventional crops to combat human health diseases: a review on crop stevia Rebaudianain view of Pakistan as an example. Am Res J Agric 1:16–34

    Google Scholar 

  84. Hossain M, Islam M, Islam M, Akhtar S (2017) Cultivation and uses of stevia (Stevia rebaudiana): a review. Afr J Food Agric Nutr Dev 17:12745–12757

    Google Scholar 

  85. Goenadi D (1983) Water tension and fertilization of Stevia rebaudiana on oxic tropudalf soil. Men Perk 51:85–90

    Google Scholar 

  86. Bondarev N, Reshetnyak O, Nosov A (2003) Effects of nutrient medium composition on development of Stevia rebaudiana shoots cultivated in the roller bioreactor and their production of steviol glycosides. Plant Sci 165:845–850

    Article  Google Scholar 

  87. Chopra M, Koul B (2020) Comparative assessment of different types of mulching in various crops: a review. Plant Arch 20:1620–1626

    Google Scholar 

  88. Gahukar R (2012) Evaluation of plant-derived products against pests and diseases of medicinal plants: a review. Crop Prot 42:202–209

    Article  Google Scholar 

  89. Gurudevan T, Seethapathy P, Narayanan S (2022) Major diseases of cultivated Indian medicinal plants: overview and management strategies. Int J Med Aromat Plants 1:291–322

    Google Scholar 

  90. Megeji N, Kumar J, Singh V, Kaul V, Ahuja PS (2005) Introducing Stevia rebaudiana, a natural zero-calorie sweetener. Curr Sci 88(5):801–804

    Google Scholar 

  91. Sumida T (1980) Studies on Stevia rebaudiana (Bertoni): introduced from Brazil as a new sweetness resource in Japan. J Cent Agric Exp Stn 31:1–71

    Google Scholar 

  92. Mathur S, Bulchandani N, Parihar S, Shekhawat GS (2017) Critical review on steviol glycosides: pharmacological, toxicological and therapeutic aspects of high potency zero caloric sweetener. Int J Pharm 13:916–928

    Article  Google Scholar 

  93. Lemus-Mondaca R, Vega-Gálvez A, Zura-Bravo L, Ah-Hen K (2012) Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: a comprehensive review on the biochemical, nutritional and functional aspects. Food Chem 132:1121–1132

    Article  PubMed  Google Scholar 

  94. Gasmalla MAA, Yang R, Hua X (2014) Stevia rebaudiana Bertoni: an alternative sugar replacer and its application in food industry. Food Eng Rev 6:150–162

    Article  Google Scholar 

  95. Prakash I, Markosyan A, Bunders C (2014) Development of next generation stevia sweetener: Reb M. Food 3:162–175

    Article  Google Scholar 

  96. Basharat S, Huang Z, Gong M, Lv X, Ahmed A, Hussain I, Li J, Du G, Liu L (2021) A review on current conventional and biotechnical approaches to enhance biosynthesis of steviol glycosides in Stevia rebaudiana. Chin J Chem Eng 30:92–104

    Article  Google Scholar 

  97. Grover S, Malik C, Hora A, Kushwaha HB (2013) Botany, cultivation, chemical constituents and genetic diversity in fennel (Foeniculum vulgare): a review Int J Life Sci 2(2):128–139

    Google Scholar 

  98. Klinger R (2000) Foeniculum vulgare. Invasive plants of California’s wildlands. University of California Press, Berkeley, pp 198–202

    Google Scholar 

  99. Askari E, Ehsanzadeh P (2015) Drought stress mitigation by foliar application of salicylic acid and their interactive effects on physiological characteristics of fennel (Foeniculum vulgare) genotypes. Acta Physiol Plant 37:1–14

    Article  Google Scholar 

  100. Bowes KM, Zheljazkov VD (2004) Essential oil yields and quality of fennel grown in Nova Scotia. Hort Sci 39:1640–1643

    Google Scholar 

  101. Boroumand RZ, Kouchaki A (2006) Evaluation of cardinal temperature for three species of medicinal plants, Ajowan (Trachyspermum ammi), fennel (Foeniculum vulgare) and dill (Anethum graveolens). Biaban (Desert J) 11(2):11–16

    Google Scholar 

  102. Bahmani K, Izadi DA, Alfekaiki DF, Sticklen M (2016) Phytochemical diversity of fennel landraces from various growth types and origins. Agron Res 14:1530–1547

    Google Scholar 

  103. Mehta R, Malhotra S, Vashishtha B (2007) Seed spices based crop** system. Ed Malhotra SK and Vashishtha BB production, dev, quality and export of seed spices. NRCSS, Ajmer, pp 181–189

    Google Scholar 

  104. Menaria B, Maliwal P (2007) Maximization of seed yield in transplanted fennel (Foeniculum vulgare). J Spice Aromat Crop 16:46–49

    Google Scholar 

  105. Shivran A, Jat N (2015) Integrated nutrient management influenced growth, yield and economics of fennel (Foeniculum vulgare) under semi arid conditions. Ind J Agron 60:318–323

    Google Scholar 

  106. Mubeen H, Naeem I, Taskeen A, Saddiqe Z (2009) Investigations of heavy metals in commercial spices brands. N Y Sci J 2:20–26

    Google Scholar 

  107. Koocheki A, Nassiri Mahallati M, Azizi G (2006) The effect of different irrigation intervals and plant densities on yield and yield components of two fennel (Foenicolum vulgare) landraces. Iran J Field Crops Res 4:131–140

    Google Scholar 

  108. Khare M, Tiwari S, Sharma Y (2014) Disease problems in fennel (Foeniculum vulgare) and fenugreek (Trigonella foenum) cultivation and their management for production of quality pathogen free seeds. Int J Seed Spice 4:11–17

    Google Scholar 

  109. Bhati D (1990) Effect of stage of umbel picking and nitrogen fertilization on fennel (Foeniculum vulgare). Ind J Agron 35:375–379

    Google Scholar 

  110. Díaz-Maroto MC, Pérez-Coello MS, Esteban J, Sanz J (2006) Comparison of the volatile composition of wild fennel samples (Foeniculum vulgare) from Central Spain. J Agric Food Chem 54(18):6814–6818

    Google Scholar 

  111. Madhuri S, Pandey G (2009) Some anticancer medicinal plants of foreign origin. Curr Sci 96(6):779–783

    Google Scholar 

  112. Volák J, Stodola J (1998) The illustrated book of herbs. Caxton 2nd Ed. London pp 12–24 

    Google Scholar 

  113. Piccaglia R, Marotti M (2001) Characterization of some Italian types of wild fennel (Foeniculum vulgare). J Agric Food Chem 49:239–244

    Article  PubMed  Google Scholar 

  114. Moura LS, Carvalho RN Jr, Stefanini MB, Ming LC, Meireles MAA (2005) Supercritical fluid extraction from fennel (Foeniculum vulgare): global yield, composition and kinetic data. J Supercrit Fluids 35:212–219

    Article  Google Scholar 

  115. Moein MR, Zomorodian K, Pakshir K, Yavari F, Motamedi M, Zarshenas MM (2015) Trachyspermum ammi Sprague: chemical composition of essential oil and antimicrobial activities of respective fractions. J Evid Based Complementary Altern Med 20:50–56

    Article  PubMed  Google Scholar 

  116. Krist S (2020) Vegetable fats and oils. Springer Nature, Gewerbestrasse Cham, Switzerland, Available via 978-3-030-30314-3

    Google Scholar 

  117. Hashemi M, Behboodian B, Karimi E, Oskoueian E (2022) Azotobacter chroococcum inoculation under low drought stress condition improves Trachyspermum ammi seeds’ essential oil bioactivity. Biochem System Ecol 105:104537

    Article  Google Scholar 

  118. Nalini N, Srinivas A, Ramprakash T, Rao VP (2017) Growth, yield attributes and yield of Ajwain (Trachyspermumammi) influenced by integrated Weed Management. Int J Pure App Biosci 5:925–931

    Article  Google Scholar 

  119. Spice Statistics (2020) Spice board of India: major state wise area and production. Available via http://www.indianspices.com/sites/default/files/majorspic ewise2022.pdf

  120. Srivastava A, Srivastava J, Godin DJ, Srivastava AK, Srivastava AK (2022) Analysis of common culinary spices to observe multiclass pesticides residue levels 13(3):557–561

    Google Scholar 

  121. Jain A, Sengupta S, De S (2018) Effect of process parameters on aqueous extraction of thymol and other phytonutrients from herbal seed Ajwain (Trachyspermum ammi L.). J Appl Res Med Aromat Plant 11:27–36

    Google Scholar 

  122. Dutta P, Sarma N, Saikia S, Gogoi R, Begum T, Lal M (2021) Pharmacological activity of Trachyspermum ammi L. seeds essential oil grown from Northeast India. J Essent Oil-Bear Plant 24:1373–1388

    Article  Google Scholar 

  123. Singh R, Choudhary S, Mehta R, Aishwath O, Lal G (2021) Weed competition affecting growth and yield in ajwain (Trachyspermum ammi). Ind J Agric Sci 91:12

    Google Scholar 

  124. Mohagheghzadeh A, Faridi P, Ghasemi Y (2007) Carum copticum Benth and Hook., essential oil chemotypes. Food Chem 100:1217–1219

    Article  Google Scholar 

  125. Ishikawa T, Sega Y, Kitajima J (2001) Water-soluble constituents of ajowan. Chem Pharm Bull 49:840–844

    Article  Google Scholar 

  126. Kaur GJ, Arora DS (2009) Antibacterial and phytochemical screening of Anethum graveolens, Foeniculum vulgare and Trachyspermum ammi. BMC Complement Altern Med 9:1–10

    Article  Google Scholar 

  127. Kumar A, Singh AK (2021) Trachyspermum Ammi (Ajwain): a comprehensive review. World J Pharm Res 10:724–736

    Google Scholar 

  128. Kaya I, Yigit N, Benli M (2008) Antimicrobial activity of various extracts of Ocimum basilicum L. and observation of the inhibition effect on bacterial cells by use of scanning electron microscopy. Afr J Tradit Complement Altern Med 5:363–369

    Article  PubMed  PubMed Central  Google Scholar 

  129. Hossain MA, Kabir M, Salehuddin S, Rahman SM, Das A, Singha SK, Alam MK, Rahman A (2010) Antibacterial properties of essential oils and methanol extracts of sweet basil Ocimum basilicum occurring in Bangladesh. Pharm Biol 48:504–511

    Article  PubMed  Google Scholar 

  130. Yaldiz G, Camlica M, Pradhan Y, Ali A (2022) Chemical characterization, biological activities, and some medicinal uses of different sweet basil (Ocimum basilicum L.) genotypes. In: Natural product experiments in drug discovery. Springer US, New york pp 41–61

    Google Scholar 

  131. Valsan A, Athulya Bose GK, Amrutha C, Anil Kumar A, Jayamol K, Kumar S (2022) Preliminary phytochemical screening of indigenous medicinal plants Ocimum tenuiflorum, Ocimum basilicum and Ocimum gratissimum. Drug Invitation Today 13(4):925–930

    Google Scholar 

  132. Pripdeevech P, Chumpolsri W, Suttiarporn P, Wongpornchai S (2010) The chemical composition and antioxidant activities of basil from Thailand using retention indices and comprehensive two-dimensional gas chromatography. J Serb Chem Soc 75:1503–1513

    Article  Google Scholar 

  133. Gohari G, Alavi Z, Esfandiari E, Panahirad S, Hajihoseinlou S, Fotopoulos V (2020) Interaction between hydrogen peroxide and sodium nitroprusside following chemical priming of Ocimum basilicum L. against salt stress. Physiol Plant 168:361–373

    Article  PubMed  Google Scholar 

  134. Copolovici L, Lupitu A, Moisa C, Taschina M, Copolovici DM (2021) The effect of antagonist abiotic stress on bioactive compounds from basil (Ocimum basilicum). Applied Sci 11:9282

    Article  Google Scholar 

  135. Al-Huqail A, El-Dakak RM, Sanad MN, Badr RH, Ibrahim MM, Soliman D, Khan F (2020) Effects of climate temperature and water stress on plant growth and accumulation of antioxidant compounds in sweet basil (Ocimum basilicum L.) leafy vegetable. Hindawi Scientifica, Available via https://doi.org/10.1155/2020/3808909

    Google Scholar 

  136. DMAPR (2014) Annual report, p 26. ICAR Directorate of Medicinal and Aromatic plants Research. Department of Agriculture, Forestry and Fisheries., 2012. Basil production. Available via http://www.dmapr.org.in/Publications/AnnualReport/E%20Annual%20Report%2013-14.pdf

  137. Maisuria H, Dhaduk H, Kumar S, Sakure A, Thounaojam A (2022) Teak Seedlings’ physiological and gene expression responses to salt and osmotic stress. Res 50(1):4875–4886

    Google Scholar 

  138. Zamfirache M-M, Padurariu C, Burzo I, Olteanu Z, Boz I, Lamban C (2011) Research regarding the chemical composition of the volatile oil of some taxa belonging to the genus Ocimum. Analele Stiintifice ale Universitatii “Al I Cuza” din Iasi 57:31

    Google Scholar 

  139. Ahmed D, Aujla MI (2012) Ocimum basilicum: a review on phytochemical and pharmacological studies. Pak J Chem 2:78–85

    Article  Google Scholar 

  140. Marwat SK, Khan MS, Ghulam S, Anwar N, Mustafa G, Usman K (2011) Phytochemical constituents and pharmacological activities of sweet basil-Ocimum basilicum L. Asian J Chem 23:3773

    Google Scholar 

  141. Muralidharan A, Dhananjayan R (2004) Cardiac stimulant activity of Ocimum basilicum Linn. Extracts. Int J Pharmacol 36:163

    Google Scholar 

  142. Prinsloo G, Nogemane N, Street R (2018) The use of plants containing genotoxic carcinogens as foods and medicine. Food Chem Toxicol 116:27–39

    Article  PubMed  Google Scholar 

  143. Prakash P, Gupta N (2005) Therapeutic uses of Ocimum sanctum Linn (Tulsi) with a note on eugenol and its pharmacological actions: a short review. Ind J physiol pharmacol 49:125

    Google Scholar 

  144. Purushothaman B, PrasannaSrinivasan R, Suganthi P, Ranganathan B, Gimbun J, Shanmugam K (2018) A comprehensive review on Ocimum basilicum. J Nat Remedies 18(3):71–85

    Google Scholar 

  145. Hepzibah C, Raj VDA (2022) Ocimum sanctum linn: an ethnomedicinal herb as a potential source of anti-carcinogen against various cancer diseases and effective ways to include the basil in everyday diet. Int J Health Sci 6:4774–4781

    Google Scholar 

  146. Mandal AK, Poudel M, Neupane NP, Verma A (2022) Phytochemistry, pharmacology, and applications of Ocimum sanctum (Tulsi). In: Edible plants in health and diseases: volume II: phytochemical and pharmacological properties. Springer, Singapore pp 135–174

    Google Scholar 

  147. Mohamed Y, Zewail R, Ghatas Y (2016) The role of boron and some growth substances on growth, oil productivity and chemical characterization of volatile oils in basil (Ocimum basilicum L.) cv. Genovese. J Hortic Sci Ornam Plant 8:108–118

    Google Scholar 

  148. Naji-Tabasi S, Razavi SMA (2017) Functional properties and applications of basil seed gum: an overview. Food Hydrocol 73:313–325

    Article  Google Scholar 

  149. Nguyen CTT, Nguyen NH, Choi WS, Lee JH, Cheong J-J (2022) Biosynthesis of essential oil compounds in Ocimum tenuiflorum is induced by abiotic stresses. Plant Biosyst Int J Deal Aspect Plant Biol 156:353–357

    Google Scholar 

  150. Barnawal D, Bharti N, Maji D, Chanotiya CS, Kalra A (2012) 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation. Plant Physiol Biochem 58:227–235

    Article  PubMed  Google Scholar 

  151. Makri O, Kintzios S (2008) Ocimum sp.(basil): botany, cultivation, pharmaceutical properties, and biotechnology. J Herb Spice Med plant 13:123–150

    Article  Google Scholar 

  152. Singh D, Chaudhuri PK (2018) A review on phytochemical and pharmacological properties of Holy basil (Ocimum sanctum L.). Ind Crop Prod 118:367–382

    Article  Google Scholar 

  153. Ali A, Ali M (2012) New fatty acid derivatives from Ocimum sanctum L. Leaves. Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi

    Google Scholar 

  154. Pattanayak P, Behera P, Das D, Panda SK (2010) Ocimum sanctum Linn. A reservoir plant for therapeutic applications: an overview. Pharmacogn Rev 4:95

    Article  PubMed  PubMed Central  Google Scholar 

  155. Bhattacharyya P, Bishayee A (2013) Ocimum sanctum Linn.(Tulsi): an ethnomedicinal plant for the prevention and treatment of cancer. Anti-Cancer Drugs 24:659–666

    Article  PubMed  Google Scholar 

  156. Krishnaswamy K (2006) Turmeric: the salt of the orient is the spice of life. Allied Publishers, New Delhi, pp 175-178

    Google Scholar 

  157. D’souza PM, Aalam RN, Moses SC, Patel NK (2022) Development and ergonomic assessment of manually operated modified linseed crop thresher for studying the physical properties of the linseed seed. Int J Env Clim Chang 12:3026–3033

    Google Scholar 

  158. FAOSTAT (2020) Available via at https://fenix.fao.org/faostat/internal/en/#data/QCL

  159. Diederichsen A, Richards K (2003) Cultivated flax and the genus Linum L.: taxonomy and germplasm conservation. In: Flax. CRC Press, pp 34–66

    Google Scholar 

  160. Khan ML, Sharif M, Sarwar M, Ameen M (2010) Chemical composition of different varieties of linseed. Pak Vet J 30(2):79–82

    Google Scholar 

  161. Dash PK, Cao Y, Jailani AK, Gupta P, Venglat P, **ang D, Rai R, Sharma R, Thirunavukkarasu N, Abdin MZ (2014) Genome-wide analysis of drought induced gene expression changes in flax (Linum usitatissimum). G M Crop Food 5:106–119

    Article  Google Scholar 

  162. Cross R, Mckay S, Mchughen AG, Bonham-Smith P (2003) Heat-stress effects on reproduction and seed set in Linum usitatissimum L.(flax). Plant Cell Environ 26:1013–1020

    Article  Google Scholar 

  163. Worku N, Heslop-Harrison J, Adugna W (2015) Diversity in 198 Ethiopian linseed (Linum usitatissimum) accessions based on morphological characterization and seed oil characteristics. Genet Resour Crop Evol 62:1037–1053

    Article  Google Scholar 

  164. Delesa A, Choferie A (2015) Response of linseed (Linum usitatissimum L.) to seed rates and seeding methods in South-Eastern highlands of Ethiopia. J Biol Agric Health Sci 5:2018–2223

    Google Scholar 

  165. Bhavana KB, Babu AN, Lakshmi J, Deepthi B, Kavya G (2021) A review on pharmacological properties and laboratory outcomes of flaxseed diet (Linum usitatissimum). Int J Pharm Sci Rev Res 70:100–105

    Article  Google Scholar 

  166. Mpofu S, Rashid K (2001) Vegetative compatibility groups within Fusarium oxysporum f. sp. lini from Linum usitatissimum (flax) wilt nurseries in western Canada. Canad J Bot 79:836–843

    Article  Google Scholar 

  167. Dhivahar SA, Grace VMB, Wilson DD (2023) The phytochemicals of Linum usitatissimum seed essential oil extracted by Hydrodistillation induced apoptosis and suppressed cell migration in A549 lung cancer cells. J Herbs Spices Med Plant 29:39–51

    Article  Google Scholar 

  168. Kajla P, Sharma A, Sood DR (2015) Flaxseed-a potential functional food source. J Food Sci Tech 52:1857–1871

    Article  Google Scholar 

  169. Alachaher F, Dali S, Dida N, Krouf D (2018) Comparison of phytochemical and antioxidant properties of extracts from flaxseed (Linum usitatissimum) using different solvents. Int Food Res J 25:75–82

    Google Scholar 

  170. Fuloria S, Mehta J, Chandel A, Sekar M, Rani NNIM, Begum MY, Subramaniyan V, Chidambaram K, Thangavelu L, Nordin R (2022) A comprehensive review on the therapeutic potential of Curcuma longa Linn. In relation to its major active constituent curcumin. Front Pharmacol 13:806–820

    Article  Google Scholar 

  171. Nasri H, Sahinfard N, Rafieian M, Rafieian S, Shirzad M, Rafieian-Kopaei M (2014) Turmeric: a spice with multifunctional medicinal properties. J Herb Med Pharmacol 3:5–8

    Google Scholar 

  172. Thiripurasundari K, Selvarani K (2014) Production of turmeric in India: an analysis. Int J Bus Manag 2:229

    Google Scholar 

  173. Anonymous (2021). https://pjtsau.edu.in/files/AgriMkt/2021/june/Turmeric-june-2021.pdf. Accessed 9 May 2020

  174. Pellicer J, Leitch IJ (2019) The plant DNA C-values database (release 7.1): an updated online repository of plant genome size data for comparative studies. [New Phytol]

    Google Scholar 

  175. Angles S, Sundar A, Chinnadurai M (2011) Impact of globalization on production and export of turmeric in India-an economic analysis. Agric Econ Res Rev 24:301–308

    Google Scholar 

  176. Nair RR, Shiva KN, Anchu S, Zachariah TJ (2010) Characterization of open-pollinated seedling progenies of turmeric (Curcuma longa L.) based on chromosome number, plant morphology, rhizome yield and rhizome quality. Cytologia 75:443–449

    Article  Google Scholar 

  177. Kandiannan K, Anandaraj M, Prasath D, Zachariah TJ, Krishnamurthy K, Srinivasan V (2015) Evaluation of short and tall true turmeric (Curcuma longa) varieties for growth, yield and stability. Ind J Agric Sci 85:718–720

    Article  Google Scholar 

  178. Ody P (2018) Turmeric: nature’s miracle healer: fact or fiction. Souvenir Press, London

    Google Scholar 

  179. Chintakovid N, Tisarum R, Samphumphuang T, Sotesaritkul T, Cha-Um S (2022) Evaluation of curcuminoids, physiological adaptation, and growth of Curcuma longa under water deficit and controlled temperature. Protoplasma 259:301–315

    Article  PubMed  Google Scholar 

  180. Bonacina C, da Cruz RMS, Nascimento AB, Barbosa LN, Gonçalves JE, Gazim ZC, Magalhães HM, de Souza SGH (2022) Salinity modulates growth, oxidative metabolism, and essential oil profile in Curcuma longa rhizomes. S Afr J Bot 146:1–11

    Article  Google Scholar 

  181. Bhadouria RS, Singh T, Haldar A (2014) Effect of interaction on various planting methods and spacing on growth and yield of turmeric (Curcuma longa L.). Plant Arch 14:1047–1049

    Google Scholar 

  182. Mirjanaik RH, Vishwanath Y (2020) Advances in production technology of turmeric. J Pharmacogn Phytochem 9:1198–1203

    Google Scholar 

  183. Arutselvia R, Balasaravanan T, Ponmurugan P, Joel AA (2012) Effect of various biopesticides and biocides on the leaf pest, Udaspes folus of turmeric plants. J Biopest 5:51–56

    Google Scholar 

  184. Chavan P, Apet K, Borade R (2017) Efficacy of fungicides and bioagents against Pythium aphanidermatum causing rhizome rot of turmeric. Int J Curr Microbiol App Sci 6:4312–4320

    Article  Google Scholar 

  185. Li W, Feng J-T, **ao Y-S, Wang Y-Q, Xue X-Y, Liang X-M (2009) Three novel terpenoids from the rhizomes of Curcuma longa. J Asian Nat Prod Res 11:569–575

    Article  PubMed  Google Scholar 

  186. Sandeep IS, Kuanar A, Akbar A, Kar B, Das S, Mishra A, Sial P, Naik PK, Nayak S, Mohanty S (2016) Agroclimatic zone based metabolic profiling of turmeric (Curcuma Longa L.) for phytochemical yield optimization. Ind Crop Prod 85:229–240

    Article  Google Scholar 

  187. Swadhini S, Santosh R, Uma C, Mythili S, Sathiavelu A (2011) Phytochemical screening and antimicrobial activity of five medicinal plants against Myrothecium sp. Int J Pharma Bio Sci 2:272–279

    Google Scholar 

  188. Sahu R, Saxena J (2013) Screening of total phenolic and flavonoid content in conventional and non-conventional species of curcuma. J Pharmacogn Phytochem 2:176–179

    Google Scholar 

  189. Hussain Z, Thu HE, Amjad MW, Hussain F, Ahmed TA, Khan S (2017) Exploring recent developments to improve antioxidant, anti-inflammatory and antimicrobial efficacy of curcumin: a review of new trends and future perspectives. Mater Sci Eng 77:1316–1326

    Article  Google Scholar 

  190. Nouzarian R, Tabeidian S, Toghyani M, Ghalamkari G, Toghyani M (2011) Effect of turmeric powder on performance, carcass traits, humoral immune responses, and serum metabolites in broiler chickens. J Anim Feed Sci 20:389–400

    Article  Google Scholar 

  191. Sindhu RK, Goyal A, Algın Yapar E, Cavalu S (2021) Bioactive compounds and nanodelivery perspectives for treatment of cardiovascular diseases. Appl Sci 11:11031

    Article  Google Scholar 

  192. Yu LL, Lutterodt H, Cheng Z (2008) Beneficial health properties of psyllium and approaches to improve its functionalities. Adv Food Nutr Res 55:193–220

    Article  Google Scholar 

  193. Qaisrani TB, Butt MS, Hussain S, Ibrahim M (2014) Characterization and utilization of psyllium husk for the preparation of dietetic cookies. Int J Mod Agric 3:81–91

    Google Scholar 

  194. Yar T, El-Hariri M, El-Bahai M, Bamosa A (2008) Effects of Nigella sativa supplementation for one month on cardiac reserve in rats. Ind J Physiol Pharmacol 52:141–148

    Google Scholar 

  195. El-Said S, Alamri M, El-Barak A-BS, Alsogair O (2009) Adsorptive removal of arsenite as (III) and arsenate as (V) heavy metals from waste water using Nigella sativa L. Asian J Sci Res 2:96–104

    Article  Google Scholar 

  196. Arayne MS, Sultana N, Mirza AZ, Zuberi MH, Siddiqui FA (2007) In vitro hypoglycemic activity of methanolic extract of some indigenous plants. Pak J Pharm Sci 20:268–273

    PubMed  Google Scholar 

  197. Tariq M (2008) Nigella sativa seeds: folklore treatment in modern day medicine. Saudi J Gastroenterol 14:105

    Article  PubMed  PubMed Central  Google Scholar 

  198. Hosseinzadeh H, Fazly Bazzaz B, Haghi MM (2007) Antibacterial activity of total extracts and essential oil of Nigella sativa L. seeds in mice. Pharmacologyonline 2:429–435

    Google Scholar 

  199. Atteh J, Onagbesan O, Tona K, Decuypere E, Geuns J, Buyse J (2008) Evaluation of supplementary stevia (Stevia rebaudiana) leaves and stevioside in broiler diets: effects on feed intake, nutrient metabolism, blood parameters and growth performance. J Anim Physiol Anim Nutr 92:640–649

    Article  Google Scholar 

  200. Barriocanal LA, Palacios M, Benitez G, Benitez S, Jimenez JT, Jimenez N, Rojas V (2008) Apparent lack of pharmacological effect of steviol glycosides used as sweeteners in humans. A pilot study of repeated exposures in some normotensive and hypotensive individuals and in type 1 and type 2 diabetics. Regul Toxicol Pharmacol 51:37–41

    Article  PubMed  Google Scholar 

  201. Elkins R (1997) Stevia: nature’s sweetner. Houghton Mifflin Harcourt

    Google Scholar 

  202. Anton SD, Martin CK, Han H, Coulon S, Cefalu WT, Geiselman P, Williamson DA (2010) Effects of stevia, aspartame, and sucrose on food intake, satiety, and postprandial glucose and insulin levels. Appetite 55:37–43

    Article  PubMed  PubMed Central  Google Scholar 

  203. Chen T-H, Chen S-C, Chan P, Chu Y-L, Yang H-Y, Cheng J-T (2005) Mechanism of the hypoglycemic effect of stevioside, a glycoside of Stevia rebaudiana. Planta Med 71:108–113

    Article  PubMed  Google Scholar 

  204. Maki K, Curry L, Reeves M, Toth P, McKenney J, Farmer M, Schwartz S, Lubin B, Boileau A, Dicklin M (2008) Chronic consumption of rebaudioside a, a steviol glycoside, in men and women with type 2 diabetes mellitus. Food Chem Toxicol 46:S47–S53

    Article  PubMed  Google Scholar 

  205. Mohamad RH, El-Bastawesy AM, Abdel-Monem MG, Noor AM, Al-Mehdar HAR, Sharawy SM, El-Merzabani MM (2011) Antioxidant and anticarcinogenic effects of methanolic extract and volatile oil of fennel seeds (Foeniculum vulgare). J Med Food 14:986–1001

    Article  PubMed  Google Scholar 

  206. Zahid N, Abbasi N, Hafiz I, Ahmad Z (2009) Genetic diversity of Indigenose fennel (Foeniculum vulgare) germplasm in Pakistan an assessed by RAPD markers. Pak J Bot 41:1759–1767

    Google Scholar 

  207. Chatzopoulou PS, Koutsos TV, Katsiotis ST (2006) Study of nitrogen fertilization rate on fennel cultivars for essential oil yield and composition. J Veg Sci 12:85–93

    Google Scholar 

  208. Agarwal R, Gupta SK, Agrawal SS, Srivastava S, Saxena R (2008) Oculohypotensive effects of Foeniculum vulgare in experimental models of glaucoma. Ind J Physiol Pharmacol 52:77–83

    Google Scholar 

  209. Siyadatpanah A, Norouzi R, Mirzaei F, Haghirosadat BF, Nissapatorn V, Mitsuwan W, Nawaz M, Pereira ML, Hosseini SA, Montazeri M (2023) Green synthesis of nano-liposomes containing Bunium persicum and Trachyspermum ammi essential oils against trichomonas vaginalis. J Microbiol Immunol Infect 56:150–162

    Article  PubMed  Google Scholar 

  210. Choudhary S, Zehra A, Mukarram M, Naeem M, Khan MMA, Hakeem KR, Aftab T (2021) An insight into the role of plant growth regulators in stimulating abiotic stress tolerance in some medicinally important plants, signalling under stress conditions. Plant Growth Regul 75–100

    Google Scholar 

  211. Suleman M, Khan A, Baqi A, Kakar MS, Ayub M (2019) Antioxidants, its role in preventing free radicals and infectious diseases in human body. Pure Appl Biol 8(1):380-388

    Google Scholar 

  212. Han HJ (2018) Development of an effective formulation for an acne treatment cream with Ocimum basilicum using invasomes. J Cosmet Med 2:69–75

    Article  Google Scholar 

  213. Mounira GM, Ahlem Z, Abdallah Mariem B, Romdhane MK, Okla M, Al-Hashimi A, Alwase YA, Madnay MM, AbdElgayed G, Asard H (2022) Essential oil composition and antioxidant and antifungal activities of two varieties of Ocimum basilicum L.(Lamiaceae) at two phenological stages. Agron 12:825

    Article  Google Scholar 

  214. Michalak M (2018) Aromatherapy and methods of applying essential oils. Arch Physiother Glob Res 22:25–31

    Google Scholar 

  215. Aćimović M (2021) Essential oils: inhalation aromatherapy-a comprehensive review. J Agron Technol Eng Manag 4:547–557

    Google Scholar 

  216. Shahrajabian MH, Sun W, Cheng Q (2020) Chemical components and pharmacological benefits of basil (Ocimum basilicum): a review. Int J Food Prop 23:1961–1970

    Article  Google Scholar 

  217. Seyed MA, Ayesha S, Azmi N, Al-Rabae FM, Al-Alawy AI, Al-Zahrani OR, Hawsawi Y (2021) The neuroprotective attribution of Ocimum basilicum: a review on the prevention and management of neurodegenerative disorders. Future J Pharm Sci 7:1–14

    Google Scholar 

  218. Fedoul FF, Meddah B, Larouci M, Tir Touil A, Merazi Y, Bekhti N, Piras A, Falconieri D, Cakmak YS (2022) Medicinal applications, chemical compositions, and biological effects of Algerian Ocimum basilicum L. var Genovese with the conversion of experimental doses to humans. J Appl Biotechnol Rep 9:671–683

    Google Scholar 

  219. Srichok J, Yingbun N, Kowawisetsut T, Kornmatitsuk S, Suttisansanee U, Temviriyanukul P, Chantong B (2022) Synergistic antibacterial and anti-inflammatory activities of Ocimum tenuiflorum Ethanolic extract against major bacterial mastitis pathogens. Antibiot 11:510

    Article  Google Scholar 

  220. Joseph B, Nair V (2013) Ocimum sanctum. (Holy basil): behind its anti-cancerous effect. J Pharmacogn Phytochem 2:235–240

    Google Scholar 

  221. Thompson LU, Chen JM, Li T, Strasser-Weippl K, Goss PE (2005) Dietary flaxseed alters tumor biological markers in postmenopausal breast cancer. Clin Cancer Res 11:3828–3835

    Article  PubMed  Google Scholar 

  222. Chen J, Wang L, Thompson LU (2006) Flaxseed and its components reduce metastasis after surgical excision of solid human breast tumor in nude mice. Cancer Lett 234:168–175

    Article  PubMed  Google Scholar 

  223. Singh S, Manibhushan M, Kumar A (2018) Organic linseed (Tisi) farming: a step towards doubling farmers’ income. Ind Farm 68(1):55-58

    Google Scholar 

  224. Ghotaslou R, Leylabadlo HE, Akhi MT, Sadeghi J, Yousefi L, Bialvaei AZ, Somi MH (2017) The importance of helicobacter pylori tnpA, tnpB, and cagA genes in various gastrointestinal diseases. Mol Genet Microbiol Virol 32:62–65

    Article  Google Scholar 

  225. Prasad S, Gupta SC, Tyagi AK, Aggarwal BB (2014) Curcumin, a component of golden spice: from bedside to bench and back. Biotechnol Adv 32(6):1053-1064

    Google Scholar 

  226. Chattopadhyay I, Biswas K, Bandyopadhyay U, Banerjee RK (2004) Turmeric and curcumin: biological actions and medicinal applications. Curr Sci 44–53

    Google Scholar 

  227. Ahmad W, Hasan A, Ansari A, Tarannum T (2010) Curcuma longa, Linn–a review. Hippocratic J Unani Med 5:179–190

    Google Scholar 

  228. Nair KP (2019) Turmeric (Curcuma Longa L.) and ginger (Zingiber Officinale)-World’s invaluable medicinal spices: the agronomy and economy of turmeric and ginger. Springer Int Pub, Cham, pp 271–283, Available via https://doi.org/10.1007/978-3-030-29189-1

    Google Scholar 

  229. Poudel DK, Ojha PK, Rokaya A, Satyal R, Satyal P, Setzer WN (2022) Analysis of volatile constituents in Curcuma species, viz. C. aeruginosa, C. zedoaria, and C. longa, from Nepal. Plant 11:1932

    Article  Google Scholar 

  230. Chanda S, Ramachandra T (2019) Phytochemical and pharmacological importance of turmeric (Curcuma longa): a review. Res Rev J Pharmacol 9:16–23

    Google Scholar 

  231. Yadav RP, Tarun G (2017) Versatility of turmeric: a review the golden spice of life. J pharmacogn phytochem 6:41–46

    Google Scholar 

  232. Shah M, Murad W, Mubin S, Ullah O, Rehman NU, Rahman MH (2022) Multiple health benefits of curcumin and its therapeutic potential. Environ Sci Pollut Res 29:43732–43744

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najeeb Ullah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sarwar, M., Saleem, M.F., Ullah, N., Maqsood, H., Ahmad, H. (2023). Physiological Ecology of Medicinal Plants: Implications for Phytochemical Constituents. In: Izah, S.C., Ogwu, M.C., Akram, M. (eds) Herbal Medicine Phytochemistry. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-21973-3_35-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21973-3_35-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21973-3

  • Online ISBN: 978-3-031-21973-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation