Abstract

Gravitational self-force techniques will be shortly reviewed along the lines of the two lectures presented by D. Bini at the 2019 edition of the “Domoschool.” The most important application of gravitational self-force concerns metric and curvature perturbations in black hole spacetimes due to moving particles or evolving fields. However, from a practical point of view (and for teaching purposes) we have chosen to perform the whole discussion at the level of a (massless) scalar field. In fact, in this simple case one can look at the various steps implicit in any self-force computation without facing with the additional difficulties of implementing them in a more involved tensorial background.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 90.94
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 128.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that PN solutions “do not know” the horizon at r = 2M, but they are sensitive to the origin r = 0 only. The horizon, in fact, will be a regular singular point of the radial equation only when all PN terms will be summed. Practically, we may say that high-PN orders already start “seeing” the horizon, marked by the presence of successive l − n diverging coefficients at various PN n orders.

References

  1. L. Barack, A. Pound, Self-force and radiation reaction in general relativity. Rept. Prog. Phys. 82(1), 016904 (2019). https://doi.org/10.1088/1361-6633/aae552, ar**v:1805.10385 [gr-qc]

  2. D. Bini, T. Damour, Analytical determination of the two-body gravitational interaction potential at the fourth post-Newtonian approximation. Phys. Rev. D 87(12), 121501 (2013). https://doi.org/10.1103/PhysRevD.87.121501, ar**v:1305.4884 [gr-qc]

  3. E. Poisson, The Motion of point particles in curved space-time. Living Rev. Rel. 7, 6 (2004). https://doi.org/10.12942/lrr-2004-6, gr-qc/0306052

  4. M. Sasaki, H. Tagoshi, Analytic black hole perturbation approach to gravitational radiation. Living Rev. Rel. 6, 6 (2003). https://doi.org/10.12942/lrr-2003-6, gr-qc/0306120

  5. L. Barack, Gravitational self force in extreme mass-ratio inspirals. Class. Quant. Grav. 26, 213001 (2009). https://doi.org/10.1088/0264-9381/26/21/213001, ar**v:0908.1664 [gr-qc]

  6. S.L. Detweiler, B.F. Whiting, Self-force via a Green’s function decomposition. Phys. Rev. D 67, 024025 (2003). https://doi.org/10.1103/PhysRevD.67.024025, gr-qc/0202086

  7. T. Regge, J.A. Wheeler, Stability of a Schwarzschild singularity. Phys. Rev. 108, 1063 (1957). https://doi.org/10.1103/PhysRev.108.1063

    Article  MathSciNet  MATH  Google Scholar 

  8. F.J. Zerilli, Gravitational field of a particle falling in a Schwarzschild geometry analyzed in tensor harmonics. Phys. Rev. D 2, 2141 (1970). https://doi.org/10.1103/PhysRevD.2.2141

    Article  MathSciNet  MATH  Google Scholar 

  9. S.A. Teukolsky, Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations. Astrophys. J. 185, 635 (1973). https://doi.org/10.1086/152444

  10. W.H. Press, S.A. Teukolsky, Perturbations of a Rotating Black Hole. II. Dynamical Stability of the Kerr Metric. Astrophys. J. 185, 649 (1973). https://doi.org/10.1086/152445

    Article  Google Scholar 

  11. S.A. Teukolsky, W.H. Press, Perturbations of a rotating black hole. III - Interaction of the hole with gravitational and electromagnetic radiation. Astrophys. J. 193, 443 (1974). https://doi.org/10.1086/153180

    Google Scholar 

  12. S. Mano, H. Suzuki, E. Takasugi, Analytic solutions of the Regge-Wheeler equation and the post-Minkowskian expansion. Prog. Theor. Phys. 96, 549 (1996). gr-qc/9605057

    Google Scholar 

  13. S. Mano, H. Suzuki, E. Takasugi, Analytic solutions of the Teukolsky equation and their low frequency expansions. Prog. Theor. Phys. 95, 1079 (1996). gr-qc/9603020

    Google Scholar 

  14. J.M. Cohen, L.S. Kegeles, Electromagnetic fields in curved spaces - a constructive procedure. Phys. Rev. D 10, 1070 (1974). https://doi.org/10.1103/PhysRevD.10.1070

    Article  MathSciNet  Google Scholar 

  15. P.L. Chrzanowski, Vector Potential and metric perturbations of a rotating black hole. Phys. Rev. D 11, 2042 (1975). https://doi.org/10.1103/PhysRevD.11.2042

    Article  Google Scholar 

  16. L.S. Kegeles, J.M. Cohen, Constructive procedure for perturbations of space-times. Phys. Rev. D 19, 1641 (1979). https://doi.org/10.1103/PhysRevD.19.1641

    Article  Google Scholar 

  17. T.S. Keidl, A.G. Shah, J.L. Friedman, D.H. Kim, L.R. Price, Gravitational self-force in a radiation gauge. Phys. Rev. D 82(12), 124012 (2010). Erratum: Phys. Rev. D 90(10), 109902 (2014). https://doi.org/10.1103/PhysRevD.82.124012, https://doi.org/10.1103/PhysRevD.90.109902, ar**v:1004.2276 [gr-qc]

  18. A.G. Shah, T.S. Keidl, J.L. Friedman, D.H. Kim, L.R. Price, Conservative, gravitational self-force for a particle in circular orbit around a Schwarzschild black hole in a Radiation Gauge. Phys. Rev. D 83, 064018 (2011). https://doi.org/10.1103/PhysRevD.83.064018, ar**v:1009.4876 [gr-qc]

  19. A.G. Shah, J.L. Friedman, T.S. Keidl, EMRI corrections to the angular velocity and redshift factor of a mass in circular orbit about a Kerr black hole. Phys. Rev. D 86, 084059 (2012). https://doi.org/10.1103/PhysRevD.86.084059, ar**v:1207.5595 [gr-qc]

  20. M. van de Meent, A.G. Shah, Metric perturbations produced by eccentric equatorial orbits around a Kerr black hole. Phys. Rev. D 92(6), 064025 (2015). https://doi.org/10.1103/PhysRevD.92.064025, ar**v:1506.04755 [gr-qc]

  21. D. Bini, A. Geralico, Gauge-fixing for the completion problem of reconstructed metric perturbations of a Kerr spacetime. ar**v:1908.03191 [gr-qc]

    Google Scholar 

  22. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover Publications Inc., New York, 1970)

    MATH  Google Scholar 

  23. S.L. Detweiler, E. Messaritaki, B.F. Whiting, Self-force of a scalar field for circular orbits about a Schwarzschild black hole. Phys. Rev. D 67, 104016 (2003). https://doi.org/10.1103/PhysRevD.67.104016, gr-qc/0205079

  24. N. Sago, H. Nakano, M. Sasaki, Gauge problem in the gravitational self-force. 1. Harmonic gauge approach in the Schwarzschild background. Phys. Rev. D 67, 104017 (2003). https://doi.org/10.1103/PhysRevD.67.104017, gr-qc/0208060

  25. H. Nakano, N. Sago, M. Sasaki, Gauge problem in the gravitational self-force. 2. First post-Newtonian force under Regge-Wheeler gauge. Phys. Rev. D 68, 124003 (2003). https://doi.org/10.1103/PhysRevD.68.124003, gr-qc/0308027

  26. W. Hikida, H. Nakano, M. Sasaki, Self-force regularization in the Schwarzschild spacetime. Class. Quant. Grav. 22(15), S753 (2005). https://doi.org/10.1088/0264-9381/22/15/009, gr-qc/0411150

  27. D. Bini, G. Carvalho, A. Geralico, Scalar field self-force effects on a particle orbiting a Reissner-Nordström black hole. Phys. Rev. D 94(12), 124028 (2016). https://doi.org/10.1103/PhysRevD.94.124028, ar**v:1610.02235 [gr-qc]

  28. T. Damour, B.R. Iyer, A. Nagar, Improved resummation of post-Newtonian multipolar waveforms from circularized compact binaries. Phys. Rev. D 79, 064004 (2009), ar**v:0811.2069 [gr-qc]

    Google Scholar 

  29. L.M. Diaz-Rivera, E. Messaritaki, B.F. Whiting, S.L. Detweiler, Scalar field self-force effects on orbits about a Schwarzschild black hole. Phys. Rev. D 70, 124018 (2004), gr-qc/0410011

    Google Scholar 

  30. S. Akcay, L. Barack, T. Damour, N. Sago, Gravitational self-force and the effective-one-body formalism between the innermost stable circular orbit and the light ring. Phys. Rev. D 86, 104041 (2012). ar**v:1209.0964 [gr-qc]

    Google Scholar 

  31. S.L. Detweiler, A Consequence of the gravitational self-force for circular orbits of the Schwarzschild geometry. Phys. Rev. D 77, 124026 (2008). https://doi.org/10.1103/PhysRevD.77.124026, ar**v:0804.3529 [gr-qc] s

  32. D. Bini, T. Damour, High-order post-Newtonian contributions to the two-body gravitational interaction potential from analytical gravitational self-force calculations. Phys. Rev. D 89(6), 064063 (2014). https://doi.org/10.1103/PhysRevD.89.064063, ar**v:1312.2503 [gr-qc]

  33. D. Bini, T. Damour, Analytic determination of the eight-and-a-half post-Newtonian self-force contributions to the two-body gravitational interaction potential. Phys. Rev. D 89(10), 104047 (2014). https://doi.org/10.1103/PhysRevD.89.104047, ar**v:1403.2366 [gr-qc]

  34. D. Bini, T. Damour, Detweiler’s gauge-invariant redshift variable: Analytic determination of the nine and nine-and-a-half post-Newtonian self-force contributions. Phys. Rev. D 91, 064050 (2015). https://doi.org/10.1103/PhysRevD.91.064050, ar**v:1502.02450 [gr-qc]

  35. C. Kavanagh, A.C. Ottewill, B. Wardell, Analytical high-order post-Newtonian expansions for extreme mass ratio binaries. Phys. Rev. D 92(8), 084025 (2015). https://doi.org/10.1103/PhysRevD.92.084025, ar**v:1503.02334 [gr-qc]

  36. D. Bini, T. Damour, A. Geralico, Confirming and improving post-Newtonian and effective-one-body results from self-force computations along eccentric orbits around a Schwarzschild black hole. Phys. Rev. D 93(6), 064023 (2016). https://doi.org/10.1103/PhysRevD.93.064023, ar**v:1511.04533 [gr-qc]

  37. D. Bini, T. Damour, A. Geralico, New gravitational self-force analytical results for eccentric orbits around a Schwarzschild black hole. Phys. Rev. D 93(10), 104017 (2016). https://doi.org/10.1103/PhysRevD.93.104017 ar**v:1601.02988 [gr-qc]

  38. D. Bini, T. Damour, A. Geralico, Novel approach to binary dynamics: application to the fifth post-Newtonian level. Phys. Rev. Lett. 123(23), 231104 (2019). https://doi.org/10.1103/PhysRevLett.123.231104, ar**v:1909.02375 [gr-qc]

  39. D. Bini, T. Damour, Two-body gravitational spin-orbit interaction at linear order in the mass ratio. Phys. Rev. D 90(2), 024039 (2014). https://doi.org/10.1103/PhysRevD.90.024039, ar**v:1404.2747 [gr-qc]

  40. D. Bini, T. Damour, Analytic determination of high-order post-Newtonian self-force contributions to gravitational spin precession. Phys. Rev. D 91(6), 064064 (2015). https://doi.org/10.1103/PhysRevD.91.064064, ar**v:1503.01272 [gr-qc]

  41. C. Kavanagh, D. Bini, T. Damour, S. Hopper, A.C. Ottewill, B. Wardell, Spin-orbit precession along eccentric orbits for extreme mass ratio black hole binaries and its effective-one-body transcription. Phys. Rev. D 96(6), 064012 (2017). https://doi.org/10.1103/PhysRevD.96.064012, ar**v:1706.00459 [gr-qc]

  42. D. Bini, T. Damour, A. Geralico, Spin-orbit precession along eccentric orbits: improving the knowledge of self-force corrections and of their effective-one-body counterparts. Phys. Rev. D 97(10), 104046 (2018). https://doi.org/10.1103/PhysRevD.97.104046, ar**v:1801.03704 [gr-qc]

  43. T. Damour, Gravitational self-force in a Schwarzschild background and the effective one body formalism. Phys. Rev. D 81, 024017 (2010). https://doi.org/10.1103/PhysRevD.81.024017, ar**v:0910.5533 [gr-qc]

  44. D. Bini, T. Damour, Gravitational self-force corrections to two-body tidal interactions and the effective one-body formalism. Phys. Rev. D 90, 124037 (2014). https://doi.org/10.1103/PhysRevD.90.124037, ar**v:1409.6933 [gr-qc]

  45. S.R. Dolan, P. Nolan, A.C. Ottewill, N. Warburton, B. Wardell, Tidal invariants for compact binaries on quasicircular orbits. Phys. Rev. D 91, 023009 (2015). https://doi.org/10.1103/PhysRevD.91.023009, ar**v:1406.4890 [gr-qc]

  46. P. Nolan, C. Kavanagh, S.R. Dolan, A.C. Ottewill, N. Warburton, B. Wardell, Octupolar invariants for compact binaries on quasicircular orbits. Phys. Rev. D 92, 123008 (2015). https://doi.org/10.1103/PhysRevD.92.123008, ar**v:1505.04447 [gr-qc]

  47. A.G. Shah, A. Pound, Linear-in-mass-ratio contribution to spin precession and tidal invariants in Schwarzschild spacetime at very high post-Newtonian order. Phys. Rev. D 91(12), 124022 (2015). https://doi.org/10.1103/PhysRevD.91.124022, ar**v:1503.02414 [gr-qc]

  48. D. Bini, A. Geralico, Gravitational self-force corrections to tidal invariants for particles on eccentric orbits in a Schwarzschild spacetime. Phys. Rev. D 98(6), 064026 (2018). https://doi.org/10.1103/PhysRevD.98.064026, ar**v:1806.06635 [gr-qc]

  49. A.G. Shah, Talk delivered at the XIV Marcel Grossmann meeting, Rome (2015)

    Google Scholar 

  50. D. Bini, T. Damour, A. Geralico, Spin-dependent two-body interactions from gravitational self-force computations. Phys. Rev. D 92(12), 124058 (2015). Erratum: Phys. Rev. D 93(10), 109902 (2016). https://doi.org/10.1103/PhysRevD.93.109902, https://doi.org/10.1103/PhysRevD.92.124058, ar**v:1510.06230 [gr-qc]

  51. C. Kavanagh, A.C. Ottewill, B. Wardell, Analytical high-order post-Newtonian expansions for spinning extreme mass ratio binaries. Phys. Rev. D 93(12), 124038 (2016). https://doi.org/10.1103/PhysRevD.93.124038, ar**v:1601.03394 [gr-qc]

  52. D. Bini, T. Damour, A. Geralico, High post-Newtonian order gravitational self-force analytical results for eccentric equatorial orbits around a Kerr black hole. Phys. Rev. D 93(12), 124058 (2016). https://doi.org/10.1103/PhysRevD.93.124058, ar**v:1602.08282 [gr-qc]

  53. D. Bini, A. Geralico, New gravitational self-force analytical results for eccentric equatorial orbits around a Kerr black hole: redshift invariant. Phys. Rev. D 100(10), 104002 (2019). https://doi.org/10.1103/PhysRevD.100.104002, ar**v:1907.11080 [gr-qc]

  54. D. Bini, T. Damour, A. Geralico, C. Kavanagh, M. van de Meent, Gravitational self-force corrections to gyroscope precession along circular orbits in the Kerr spacetime. Phys. Rev. D 98(10), 104062 (2018). https://doi.org/10.1103/PhysRevD.98.104062, ar**v:1809.02516 [gr-qc]

  55. D. Bini, A. Geralico, New gravitational self-force analytical results for eccentric equatorial orbits around a Kerr black hole: gyroscope precession. Phys. Rev. D 100(10), 104003 (2019). https://doi.org/10.1103/PhysRevD.100.104003, ar**v:1907.11082 [gr-qc]

  56. M. van de Meent, Self-force corrections to the periapsis advance around a spinning black hole. Phys. Rev. Lett. 118(1), 011101 (2017). https://doi.org/10.1103/PhysRevLett.118.011101, ar**v:1610.03497 [gr-qc]

  57. D. Bini, A. Geralico, Analytical determination of the periastron advance in spinning binaries from self-force computations. Phys. Rev. D 100(12), 121502 (2019). https://doi.org/10.1103/PhysRevD.100.121502, ar**v:1907.11083 [gr-qc]

  58. D. Bini, A. Geralico, Gravitational self-force corrections to tidal invariants for particles on circular orbits in a Kerr spacetime. Phys. Rev. D 98(6), 064040 (2018). https://doi.org/10.1103/PhysRevD.98.064040, ar**v:1806.08765 [gr-qc]

  59. A. Buonanno, T. Damour, Effective one-body approach to general relativistic two-body dynamics. Phys. Rev. D 59, 084006 (1999). https://doi.org/10.1103/PhysRevD.59.084006, gr-qc/9811091

  60. A. Buonanno, T. Damour, Transition from inspiral to plunge in binary black hole coalescences. Phys. Rev. D 62, 064015 (2000). https://doi.org/10.1103/PhysRevD.62.064015, gr-qc/0001013

Download references

Acknowledgements

We thank Thibault Damour for helpful discussions on analytical self-force computations.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bini, D., Geralico, A. (2022). Gravitational Self-force in the Schwarzschild Spacetime. In: Cacciatori, S.L., Kamenshchik, A. (eds) Einstein Equations: Local Energy, Self-Force, and Fields in General Relativity. Tutorials, Schools, and Workshops in the Mathematical Sciences . Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-21845-3_2

Download citation

Publish with us

Policies and ethics

Navigation