Deep-Sea Meiofauna—A World on Its Own or Deeply Connected?

  • Chapter
  • First Online:
New Horizons in Meiobenthos Research
  • 431 Accesses

Abstract

The deep sea is Earth’s most typical environment and meiofauna its most common and arguably its most diverse metazoan inhabitants. They are therefore key in understanding temporal and spatial patterns in biodiversity and biogeography and are major contributors to ecological processes and functions. Meiofauna are integral to deep-sea benthic communities, with numerous links to other benthic organisms and the interstitial environment, the habitat from where they experience life around them. Although many meiofaunal patterns and relations have been identified, limited progress has been made in answering questions as to “why” and “how” these patterns and relations exist or are formed and maintained, and in many cases such knowledge does not exist. In this chapter, we review the knowledge we do have and present interpretations and explanations that bring a better understanding of how meiofauna patterns in the deep sea can be explained in terms of processes and ecological interactions. We applied this approach in four distinct fields of study: trophic interactions; biodiversity and ecosystem function; distribution and diversity patterns; and connectivity patterns. All four illustrate the extent to which meiofauna relate to other biological components and the abiotic environment. Moreover, technological advances and the increase in multidisciplinary approaches (inherent to offshore deep-sea research) show that meiofauna studies are becoming better integrated with other fields of deep-sea research. Meiofauna, therefore, offer an exciting scientific and diverse future of discovery with research operating at the frontiers of deep-sea science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 181.89
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nat Rev Microbiol 5:782–791

    Article  CAS  PubMed  Google Scholar 

  • Azovsky AI, Chertoprud ES, Garlitska LA, Mazei YA, Tikhonenkov DV (2020) Does size really matter in biogeography? Patterns and drivers of global distribution of marine micro- and meiofauna. J Biogeogr 47:1180–1192

    Article  Google Scholar 

  • Baco AR, Etter RJ, Ribeiro PA, Heyden S, Beerli P, Kinlan BP (2016) A synthesis of genetic connectivity in deep-sea fauna and implications for marine reserve design. Mol Ecol 25:3276–3298

    Article  PubMed  Google Scholar 

  • Baldrighi E, Manini E (2015) Deep-sea meiofauna and macrofauna diversity and functional diversity: are they related? Mar Biodivers 45:469–488

    Article  Google Scholar 

  • Balvanera P, Pfisterer AB, Buchmann N, He J-S, Nakashizuka T, Raffaelli D, Schmid B (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156

    Article  PubMed  Google Scholar 

  • Bellec L, Cambon-Bonavita M-A, Cueff-Gauchard V, Durand L, Gayet N, Zeppilli D (2018) A nematode of the Mid-Atlantic Ridge hydrothermal vents harbors a possible symbiotic relationship. Frontiers in Microbiology 9

    Google Scholar 

  • Bhadury P, Austen M, Bilton D, Lambshead P, Rogers A, Smerdon G (2008) Evaluation of combined morphological and molecular techniques for marine nematode (Terschellingia spp.) identification. Mar Biol 154:509–518

    Article  Google Scholar 

  • Bhadury P, Bik H, Lambshead JD, Austen MC, Smerdon GR, Rogers AD (2011) Molecular diversity of fungal phylotypes co-amplified alongside nematodes from coastal and deep-sea marine environments. PLoS ONE 6:e26445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bik H, Thomas WK, Lunt D, Lambshead PJ (2010) Low endemism, continued deep-shallow interchanges, and evidence for cosmopolitan distributions in free-living marine nematodes (order Enoplida). BMC Evol Biol 10:389

    Article  PubMed  PubMed Central  Google Scholar 

  • Braeckman U, Vanaverbeke J, Vincx M, van Oevelen D, Soetaert K (2013) Meiofauna metabolism in suboxic sediments: currently overestimated. PLoS ONE 8:e59289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callahan BJ, McMurdie PJ, Holmes SP (2017) Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J 11:2639–2643

    Article  PubMed  PubMed Central  Google Scholar 

  • Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing JP, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992

    Article  CAS  PubMed  Google Scholar 

  • Cavan E, Le Moigne FA, Poulton AJ, Tarling GA, Ward P, Daniels CJ, Fragoso GM, Sanders RJ (2015) Attenuation of particulate organic carbon flux in the Scotia Sea, Southern Ocean, is controlled by zooplankton fecal pellets. Geophys Res Lett 42:821–830

    Article  CAS  Google Scholar 

  • Cepeda D, Pardos F, Zeppilli D, Sanchez N (2020) Dragons of the deep sea Kinorhyncha communities in a pockmark field at Mozambique Channel, with the description of three new species. Frontiers in Marine Science 7

    Google Scholar 

  • Cerca J, Purschke G, Struck TH (2018) Marine connectivity dynamics: clarifying cosmopolitan distributions of marine interstitial invertebrates and the meiofauna paradox. Mar Biol 165:123

    Article  Google Scholar 

  • Cerrano C, Arillo A, Bavestrello G, Benatti U, Calcinai B, Cattaneo-Vietti R, Cortesogno L, Gaggero L, Giovine M, Puce S, Sarà M (1999) Organism–quartz interactions in structuring benthic communities: towards a marine bio-mineralogy? Ecol Lett 2:1–3

    Article  Google Scholar 

  • Chown SL, Gaston KJ (1999) Patterns in procellariiform diversity as a test of species-energy theory in marine systems. Evol Ecol Res 1:365–373

    Google Scholar 

  • Coull BC (1990) Are members of the meiofauna food for higher trophic levels? Trans Am Microsc Soc 109

    Google Scholar 

  • Danovaro R, Gambi C, Dell’Anno A, Corinaidesi C, Fraschetti S, Vanreusel A, Vincx M, Gooday AJ (2008) Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss. Curr Biol 18:1–8

    Article  CAS  PubMed  Google Scholar 

  • Danovaro R, Gambi C, Della Croce N (2002) Meiofauna hotspot in the Atacama Trench, eastern South Pacific Ocean. Deep Sea Res Part 1 Oceanogr Res Pap 49:843–857

    Article  CAS  Google Scholar 

  • De Meester N, Derycke S, Moens T (2012) Differences in time until dispersal between cryptic species of a marine nematode species complex. PLoS ONE 7:e42674

    Article  PubMed  PubMed Central  Google Scholar 

  • De Meester N, Derycke S, Rigaux A, Moens T (2015) Temperature and salinity induce differential responses in life histories of cryptic nematode species. J Exp Mar Biol Ecol 472:54–62

    Article  Google Scholar 

  • Debenham NJ, Lambshead PJD, Ferrero TJ, Smith CR (2004) The impact of whale falls on nematode abundance in the deep sea. Deep Sea Res Part 1 Oceanogr Res Pap 51:701–706

    Article  Google Scholar 

  • Derycke S, Backeljau T, Vlaeminck C, Vierstraete A, Vanfleteren J, Vincx M, Moens T (2007) Spatiotemporal analysis of population genetic structure in Geomonhystera disjuncta (Nematoda, Monhysteridae) reveals high levels of molecular diversity. Mar Biol 151:1799–1812

    Article  Google Scholar 

  • Derycke S, Remerie T, Vierstraete A, Backeljau T, Vanfleteren J, Vincx M, Moens T (2005) Mitochondrial DNA variation and cryptic speciation within the free-living marine nematode Pellioditis marina. Mar Ecol-Prog Ser 300:91–103

    Article  CAS  Google Scholar 

  • dos Santos GAP, Silva AC, Esteves AM, Ribeiro-Ferreira VP, Neres PF, Valdes Y, Ingels J (2020) Testing bathymetric and regional patterns in the southwest Atlantic deep sea using infaunal diversity, structure, and function. Diversity 12:485

    Article  Google Scholar 

  • Evans KL, Jackson SF, Greenwood JJD, Gaston KJ (2006) Species traits and the form of individual species-energy relationships. Proceedings of the Royal Society b: Biological Sciences 273:1779–1787

    Article  PubMed Central  Google Scholar 

  • Fonseca G, Gallucci F (2008) Direct evidence of predation in deep-sea nematodes: the case of Pontonema sp. Cah Biol Mar 49:295–297

    Google Scholar 

  • Fonseca G, Muthumbi AW, Vanreusel A (2007) Species richness of the genus Molgolaimus (Nematoda) from local to ocean scale along continental slopes. Marine Ecology-an Evolutionary Perspective 28:446–459

    Article  Google Scholar 

  • Gallucci F, Fonseca G, Soltwedel T (2008a) Effects of megafauna exclusion on nematode assemblages at a deep-sea site. Deep Sea Res Part 1 Oceanogr Res Pap 55:332–349

    Article  Google Scholar 

  • Gallucci F, Moens T, Vanreusel A, Fonseca G (2008b) Active colonisation of disturbed sediments by deep-sea nematodes: evidence for the patch mosaic model. Mar Ecol-Prog Ser 367:173–183

    Article  Google Scholar 

  • Gambi C, Pusceddu A, Benedetti-Cecchi L, Danovaro R (2014) Species richness, species turnover and functional diversity in nematodes of the deep Mediterranean Sea: searching for drivers at different spatial scales. Glob Ecol Biogeogr 23:24–39

    Article  Google Scholar 

  • George KH (2014) Southern ocean harpacticoida. In: De Broyer C, Koubbi P, Griffiths HJ, Raymond B, d’Udekem d’Acoz C, Van de Putte AP, Danis B, David B, Grant S, Gutt J, Held C, Hosie G, Huettmann F, Post A, Ropert-Coudert Y (eds) Biogeographic Atlas of the southern ocean. Scientific committee on Antarctic research, Cambridge UK, pp 88–93

    Google Scholar 

  • Gollner S, Govenar B, Arbizu PM, Mills S, Le Bris N, Weinbauer M, Shank TM, Bright M (2015) Differences in recovery between deep-sea hydrothermal vent and vent-proximate communities after a volcanic eruption. Deep Sea Res Part 1 Oceanogr Res Pap 106:167–182

    Article  Google Scholar 

  • Gollner S, Stuckas H, Kihara TC, Laurent S, Kodami S, Martinez Arbizu P (2016) Mitochondrial DNA analyses indicate high diversity, expansive population growth and high genetic connectivity of vent copepods (Dirivultidae) across different oceans. PLoS ONE 11:e0163776

    Article  PubMed  PubMed Central  Google Scholar 

  • Gontikaki E, van Oevelen D, Soetaert K, Witte U (2011) Food web flows through a sub-arctic deep-sea benthic community. Prog Oceanogr 91:245–259

    Article  Google Scholar 

  • Gooday AJ (1993) Deep-sea benthic foraminiferal species which exploit phytodetritus: characteristic features and controls on distribution. Mar Micropaleontol 22:187–205

    Article  Google Scholar 

  • Gooday AJ, Pfannkuche O, Lambshead PJD (1996) An apparent lack of response by metazoan meiofauna to phytodetritus deposition in the bathyal north-eastern Atlantic. J Mar Biol Assoc UK 76:297–310

    Article  Google Scholar 

  • Gray JS (2002) Species richness of marine soft sediments. Mar Ecol Prog Ser 244:285–297

    Article  Google Scholar 

  • Grime JP (1973) Competitive exclusion in herbaceous vegetation. Nature 242:344–347

    Article  Google Scholar 

  • Guilini K, Levin LA, Vanreusel A (2012) Cold seep and oxygen minimum zone associated sources of margin heterogeneity affect benthic assemblages, diversity and nutrition at the Cascadian margin (NE Pacific Ocean). Prog Oceanogr 96:77–92

    Article  Google Scholar 

  • Guilini K, Van Oevelen D, Soetaert K, Middelburg JJ, Vanreusel A (2010) Nutritional importance of benthic bacteria for deep-sea nematodes from the Arctic ice margin: results of an isotope tracer experiment. Limnol Oceanogr 55:1977–1989

    Article  CAS  Google Scholar 

  • Hauquier F, Macheriotou L, Bezerra TN, Egho G, Martínez Arbizu P, Vanreusel A (2019) Distribution of free-living marine nematodes in the Clarion-Clipperton Zone: implications for future deep-sea mining scenarios. Biogeosciences 16:3475–3489

    Article  CAS  Google Scholar 

  • Havermans C, Sonet G, d’Acoz CdU, Nagy ZT, Martin P, Brix S, Riehl T, Agrawal S, Held C (2013) Genetic and morphological divergences in the cosmopolitan deep-sea amphipod Eurythenes gryllus reveal a diverse abyss and a bipolar species. PLoS ONE 8:e74218

    Google Scholar 

  • Holterman M, Holovachov O, van den Elsen S, van Megen H, Bongers T, Bakker J, Helder J (2008) Small subunit ribosomal DNA-based phylogeny of basal Chromadoria (Nematoda) suggests that transitions from marine to terrestrial habitats (and vice versa) require relatively simple adaptations. Mol Phylogenet Evol 48:758–763

    Article  CAS  PubMed  Google Scholar 

  • Ingels J, Vanreusel A (2013) The importance of different spatial scales in determining structural and functional characteristics of deep-sea infauna communities. Biogeosciences 10:4547–4563

    Article  Google Scholar 

  • Ingels J, Vanhove S, De Mesel I, Vanreusel A (2006) The biodiversity and biogeography of the free-living nematode genera Desmodora and Desmodorella (family Desmodoridae) at both sides of the Scotia Arc. Polar Biol 29:936–949

    Article  Google Scholar 

  • Ingels J, Kiriakoulakis K, Wolff GA, Vanreusel A (2009) Nematode diversity and its relation to the quantity and quality of sedimentary organic matter in the deep Nazare Canyon, Western Iberian Margin. Deep-Sea Research Part I-Oceanographic Research Papers 56:1521–1539

    Article  CAS  Google Scholar 

  • Ingels J, Billett DSM, Van Gaever S, Vanreusel A (2011a) An insight into the feeding ecology of deep-sea canyon nematodes—results from field observations and the first in-situ C-13 feeding experiment in the Nazare Canyon. J Exp Mar Biol Ecol 396:185–193

    Article  Google Scholar 

  • Ingels J, Tchesunov AV, Vanreusel A (2011b) Meiofauna in the Gollum Channels and the Whittard Canyon, Celtic Margin–how local environmental conditions shape nematode structure and function. PLoS ONE 6:e20094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingels J, Dashfield SL, Somerfield PJ, Widdicombe S, Austen MC (2014) Interactions between multiple large macrofauna species and nematode communities—mechanisms for indirect impacts of trawling disturbance. J Exp Mar Biol Ecol 456:41–49

    Article  Google Scholar 

  • Ingels J, Van den Driessche P, De Mesel I, Vanhove S, Moens T, Vanreusel A (2010) Preferred use of bacteria over phytoplankton by deep-sea nematodes in polar regions. Mar Ecol Prog Ser 406:121–133

    Article  CAS  Google Scholar 

  • Jamieson AJ, Singleman G, Linley TD, Casey S (2020) Fear and loathing of the deep ocean: why don’t people care about the deep sea? ICES J Mar Sci. https://doi.org/10.1093/icesjms/fsaa234

    Article  Google Scholar 

  • Jansson B-O (1971) The “umwelt” of the interstitial fauna. In: Hulings NC (ed) Proceedings of the first international conference on meiofauna. Smithsonian Institution Press, Washington, pp 129–140

    Google Scholar 

  • Jochum M, Schneider FD, Crowe TP, Brose U, O’Gorman EJ (2012) Climate-induced changes in bottom-up and top-down processes independently alter a marine ecosystem. Philosophical Transactions of the Royal Society b: Biological Sciences 367:2962–2970

    Article  Google Scholar 

  • Jumars PA, Mayer LM, Deming JW, Baross JA, Wheatcroft RA, Charnock H, Edmond John M, McCave IN, Rice AL, Wilson TRS (1990) Deep-sea deposit-feeding strategies suggested by environmental and feeding constraints. Philosophical Transactions of the Royal Society of London. Series a, Mathematical and Physical Sciences 331:85–101

    Google Scholar 

  • Kaariainen JI, Bett BJ (2006) Evidence for benthic body size miniaturization in the deep sea. J Mar Biol Assoc UK 86:1339–1345

    Article  Google Scholar 

  • Lambshead PJD (1993) Recent developments in marine benthic biodiversity research. Oceanis 19:5–24

    Google Scholar 

  • Lambshead PJD, Boucher G (2003) Marine nematode deep-sea biodiversity—hyperdiverse or hype? J Biogeogr 30:475–485

    Article  Google Scholar 

  • Lambshead PJD, Brown CJ, Ferrero TJ, Mitchell NJ, Smith CR, Hawkins LE, Tietjen J (2002) Latitudinal diversity patterns of deep-sea marine nematodes and organic fluxes: a test from the central equatorial Pacific. Mar Ecol-Prog Ser 236:129–135

    Article  Google Scholar 

  • Laroche O, Kersten O, Smith CR, Goetze E (2020) Environmental DNA surveys detect distinct metazoan communities across abyssal plains and seamounts in the western Clarion Clipperton Zone. Mol Ecol 29:4588–4604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lecroq B, Gooday AJ, Pawlowski J (2009) Global genetic homogeneity in the deep-sea foraminiferan Epistominella exigua (Rotaliida: Pseudoparrellidae). Zootaxa 2096:23–32

    Article  Google Scholar 

  • Leduc D, Rowden AA (2018) Nematode communities in sediments of the Kermadec Trench, Southwest Pacific Ocean. Deep Sea Res Part I 134:23–31

    Article  Google Scholar 

  • Leduc D, Probert PK, Berkenbusch K, Nodder SD, Pilditch CA (2010a) Abundance of small individuals influences the effectiveness of processing techniques for deep-sea nematodes. Deep Sea Res Part 1 Oceanogr Res Pap 57:1363–1371

    Article  CAS  Google Scholar 

  • Leduc D, Probert PK, Nodder SD (2010b) Influence of mesh size and core penetration on estimates of deep-sea nematode abundance, biomass, and diversity. Deep Sea Res Part 1 Oceanogr Res Pap 57:1354–1362

    Article  Google Scholar 

  • Leduc D, Brown JCS, Bury SJ, Lörz A-N (2015) High intraspecific variability in the diet of a deep-sea nematode: stable isotope and fatty acid analyses of Deontostoma tridentum on Chatham Rise, Southwest Pacific. Deep Sea Res Part I 97:10–18

    Article  CAS  Google Scholar 

  • Leduc D, Nodder SD, Rowden AA, Gibbs M, Berkenbusch K, Wood A, De Leo F, Smith C, Brown J, Bury SJ, Pallentin A (2020) Structure of infaunal communities in New Zealand submarine canyons is linked to origins of sediment organic matter. Limnol Oceanogr 65:2303–2327

    Article  CAS  Google Scholar 

  • Leduc D, Rowden AA, Bowden DA, Nodder SD, Probert PK, Pilditch CA, Duineveld GCA, Witbaard R (2012a) Nematode beta diversity on the continental slope of New Zealand: spatial patterns and environmental drivers. Mar Ecol Prog Ser 454:37–52

    Article  Google Scholar 

  • Leduc D, Rowden AA, Bowden DA, Probert PK, Pilditch CA, Nodder SD (2012b) Unimodal relationship between biomass and species richness of deep-sea nematodes: implications for the link between productivity and diversity. Mar Ecol Prog Ser 454:53–64

    Article  Google Scholar 

  • Leduc D, Rowden AA, Pilditch CA, Maas EW, Probert PK (2013) Is there a link between deep-sea biodiversity and ecosystem function? Mar Ecol 34:334–344

    Article  CAS  Google Scholar 

  • Leduc D, Rowden AA, Glud RN, Wenzhöfer F, Kitazato H, Clark MR (2016) Comparison between infaunal communities of the deep floor and edge of the Tonga Trench: possible effects of differences in organic matter supply. Deep Sea Res Part I 116:264–275

    Article  Google Scholar 

  • Levin LA, Dayton PK (2009) Ecological theory and continental margins: where shallow meets deep. Trends Ecol Evol 24:606–617

    Article  PubMed  Google Scholar 

  • Levin LA, Gage JD (1998) Relationships between oxygen, organic matter and the diversity of bathyal macrofauna. Deep Sea Res Part II 45:129–163

    Article  CAS  Google Scholar 

  • Levin LA, Etter RJ, Rex MA, Gooday AJ, Smith CR, Pineda J, Stuart CT, Hessler RR, Pawson D (2001) Environmental influences on regional deep-sea species diversity. Annu Rev Ecol Syst 32:51–93

    Article  Google Scholar 

  • Levin LA, Gooday AJ (1992) Possible roles for xenophyophores in deep-sea carbon cycling. In: Rowe GT, Pariente V (eds) Deep-sea food chains and the global carbon cycle, pp 93–104

    Google Scholar 

  • Lins L, Guilini K, Veit-Köhler G, Hauquier F, Alves RMS, Esteves AM, Vanreusel A (2014) The link between meiofauna and surface productivity in the Southern Ocean. Deep Sea Res Part II 108:60–68

    Article  CAS  Google Scholar 

  • Lohrer AM, Thrush SF, Gibbs MM (2004) Bioturbators enhance ecosystem function through complex biogeochemical interactions. Nature 431:1092–1095

    Article  CAS  PubMed  Google Scholar 

  • Loreau M (2008) Biodiversity and ecosystem functioning: the mystery of the deep sea. Curr Biol 18:R126–R128

    Article  CAS  PubMed  Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808

    Article  CAS  PubMed  Google Scholar 

  • Macheriotou L, Rigaux A, Derycke S, Vanreusel A (2020) Phylogenetic clustering and rarity imply risk of local species extinction in prospective deep-sea mining areas of the Clarion-Clipperton Fracture Zone. Proceedings of the Royal Society b: Biological Sciences 287:20192666

    Article  PubMed Central  Google Scholar 

  • Majdi N, Schmid-Araya JM, Traunspurger W (2020) Examining the diet of meiofauna: a critical review of methodologies. Hydrobiologia 847:2737–2754

    Article  Google Scholar 

  • Meadows PS, Anderson JG (1966) Micro-organisms attached to marine and freshwater sand grains. Nature 212:1059–1060

    Article  Google Scholar 

  • Meadows PS, Anderson JG (1968) Micro-organisms attached to marine sand grains. J Mar Biol Assoc UK 48:161–175

    Article  Google Scholar 

  • Miljutin D, Gad G, Miljutina M, Mokievsky V, Fonseca-Genevois V, Esteves A (2010) The state of knowledge on deep-sea nematode taxonomy: how many valid species are known down there? Mar Biodivers 40:143–159

    Article  Google Scholar 

  • Miljutin DM, Miljutina MA, Arbizu PM, Galéron J (2011) Deep-sea nematode assemblage has not recovered 26 years after experimental mining of polymetallic nodules (Clarion-Clipperton Fracture Zone, Tropical Eastern Pacific). Deep Sea Res Part I 58:885–897

    Article  Google Scholar 

  • Mokievsky VO, Udalov AA, Azovskii AI (2007) Quantitative distribution of meiobenthos in deep-water zones of the World Ocean. Oceanology 47:797–813

    Article  Google Scholar 

  • Moodley L, Middelburg JJ, Boschker HTS, Duineveld GCA, Pel R, Herman PMJ, Heip CHR (2002) Bacteria and Foraminifera: key players in a short-term deep-sea benthic response to phytodetritus. Mar Ecol-Prog Ser 236:23–29

    Article  Google Scholar 

  • Pape E, Bezerra TN, Vanneste H, Heeschen K, Moodley L, Leroux F, van Breugel P, Vanreusel A (2011) Community structure and feeding preference of nematodes associated with methane seepage at the Darwin mud volcano (Gulf of Cadiz). Mar Ecol-Prog Ser 438:71–83

    Article  Google Scholar 

  • Pape E, Bezerra T, Jones DO, Vanreusel A (2013a) Unravelling the environmental drivers of deep-sea nematode biodiversity and its relation with carbon mineralisation along a longitudinal primary productivity gradient. Biogeosciences 10:3127–3143

    Article  Google Scholar 

  • Pape E, Jones DO, Manini E, Bezerra TN, Vanreusel A (2013b) Benthic-pelagic coupling: effects on nematode communities along Southern European continental margins. PLoS ONE 8:e59954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pape E, van Oevelen D, Moodley L, Soetaert K, Vanreusel A, (2013c) Nematode feeding strategies and the fate of dissolved organic matter carbon in different deep-sea sedimentary environments. Deep sea research part I: oceanographic research papers

    Google Scholar 

  • Pawlowski J, Fahrni J, Lecroq B, Longet D, Cornelius N, Excoffier L, Cedhagen T, Gooday AJ (2007) Bipolar gene flow in deep-sea benthic foraminifera. Mol Ecol 16:4089–4096

    Article  CAS  PubMed  Google Scholar 

  • Preston FW (1962) The canonical distribution of commonness and rarity: part I. Ecology 43:185–215

    Article  Google Scholar 

  • Ptatscheck C, Traunspurger W (2020) The ability to get everywhere: dispersal modes of free-living, aquatic nematodes. Hydrobiologia 847(17):3519–3547

    Article  Google Scholar 

  • Rex MA, Etter RJ (2010) Deep-sea biodiversity: pattern and scale. Harvard Univesity Press

    Google Scholar 

  • Rex MA, McClain CR, Johnson NA, Etter RJ, Allen JA, Bouchet P, Waren A (2005) A source-sink hypothesis for abyssal biodiversity. Am Nat 165:163–178

    Article  PubMed  Google Scholar 

  • Rex MA, Etter RJ, Morris JS, Crouse J, McClain CR, Johnson NA, Stuart CT, Deming JW, Thies R, Avery R (2006) Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Mar Ecol-Prog Ser 317:1–8

    Article  Google Scholar 

  • Rosenzweig ML, Abramsky Z (1993) How are diversity and productivity related? In: Rickleffs RE, Schluter D (eds) Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press, Chicago, IL, pp 52–65

    Google Scholar 

  • Rosli N, Leduc D, Rowden AA, Probert PK (2018) Review of recent trends in ecological studies of deep-sea meiofauna, with focus on patterns and processes at small to regional spatial scales. Mar Biodivers 48:13–34

    Article  Google Scholar 

  • Sahraean N, Van Campenhout J, Rigaux A, Mosallanejad H, Leliaert F, Moens T (2017) Lack of population genetic structure in the marine nematodes Ptycholaimellus pandispiculatus and Terschellingia longicaudata in beaches of the Persian Gulf Iran. Marine Ecology 38:e12426

    Article  Google Scholar 

  • Sarmiento JL, Gruber N (2002) Sinks for anthropogenic carbon. Phys Today 55:30–36

    Article  CAS  Google Scholar 

  • Schratzberger M, Ingels J (2018) Meiofauna matters: the roles of meiofauna in benthic ecosystems. J Exp Mar Biol Ecol 502:12–25

    Article  Google Scholar 

  • Schuelke T, Pereira TJ, Hardy SM, Bik HM (2018) Nematode-associated microbial taxa do not correlate with host phylogeny, geographic region or feeding morphology in marine sediment habitats. Mol Ecol 27:1930–1951

    Article  PubMed  Google Scholar 

  • Snelgrove PVR, Smith CR (2002) A riot of species in an environmental calm: the paradox of the species-rich deep-sea floor. In: Gibson RN, Barnes M, Atkinson RJA (eds) Oceanography and marine biology, vol 40. Taylor & Francis Ltd., London, pp 311–342

    Google Scholar 

  • Soetaert K, Heip C (1995) Nematode assemblages of deep-sea and shelf break sites in the North-Atlantic and Mediterranean-Sea. Mar Ecol-Prog Ser 125:171–183

    Article  Google Scholar 

  • Soltwedel T (2000) Metazoan meiobenthos along continental margins: a review. Prog Oceanogr 46:59–84

    Article  Google Scholar 

  • Soltwedel T, Guilini K, Sauter E, Schewe I, Hasemann C (2018) Local effects of large food-falls on nematode diversity at an arctic deep-sea site: results from an in situ experiment at the deep-sea observatory HAUSGARTEN. J Exp Mar Biol Ecol 502:129–141

    Article  Google Scholar 

  • Taylor M, Roterman C (2017) Invertebrate population genetics across Earth’s largest habitat: the deep-sea floor. Mol Ecol 26:4872–4896

    Article  CAS  PubMed  Google Scholar 

  • Tchesunov AV, Ingels J, Popova EV (2012) Marine free-living nematodes associated with symbiotic bacteria in deep-sea canyons of north-east Atlantic Ocean. J Mar Biol Assoc UK 92:1257–1271

    Article  Google Scholar 

  • Thiel H (1975) The size-structure of the deep-sea benthos. Internationale Revue Der Gesamten Hydrobiologie 60

    Google Scholar 

  • Thistle D, Sedlacek L, Carman KR, Fleeger JW, Barry JP (2007) Emergence in the deep sea: evidence from harpacticoid copepods. Deep Sea Res Part 1 Oceanogr Res Pap 54:1008–1014

    Article  Google Scholar 

  • Van Gaever S, Moodley L, de Beer D, Vanreusel A (2006) Meiobenthos at the Arctic Hakon Mosby Mud Volcano, with a parental-caring nematode thriving in sulphide-rich sediments. Mar Ecol-Prog Ser 321:143–155

    Article  Google Scholar 

  • Van Gaever S, Moodley L, Pasotti F, Houtekamer M, Middelburg J, Danovaro R, Vanreusel A (2009) Trophic specialisation of metazoan meiofauna at the Håkon Mosby Mud Volcano: fatty acid biomarker isotope evidence. Mar Biol 156:1289–1296

    Article  Google Scholar 

  • van Oevelen D, Soetaert K, Middelburg JJ, Herman PMJ, Moodley L, Hamels I, Moens T, Heip CHR (2006) Carbon flows through a benthic food web: Integrating biomass, isotope and tracer data. J Mar Res 64:453–482

    Article  Google Scholar 

  • van Oevelen D, Bergmann M, Soetaert K, Bauerfeind E, Hasemann C, Klages M, Schewe I, Soltwedel T, Budaeva NE (2011a) Carbon flows in the benthic food web at the deep-sea observatory HAUSGARTEN (Fram Strait). Deep Sea Res Part I 58:1069–1083

    Article  Google Scholar 

  • van Oevelen D, Soetaert K, Garcia R, de Stigter HC, Cunha MR, Pusceddu A, Danovaro R (2011b) Canyon conditions impact carbon flows in food webs of three sections of the Nazaré canyon. Deep Sea Res Part II 58:2461–2476

    Article  Google Scholar 

  • Vanreusel A, VandenBossche I, Thiermann F (1997) Free-living marine nematodes from hydrothermal sediments: similarities with communities from diverse reduced habitats. Mar Ecol-Prog Ser 157:207–219

    Article  Google Scholar 

  • Vanreusel A, De Groote A, Gollner S, Bright M (2010) Ecology and biogeography of free-living nematodes associated with chemosynthetic environments in the deep sea: a review. PLoS ONE 5:e12449

    Article  PubMed  PubMed Central  Google Scholar 

  • Veit-Köhler G, Guilini K, Peeken I, Sachs O, Sauter EJ, Würzberg L (2011) Antarctic deep-sea meiofauna and bacteria react to the deposition of particulate organic matter after a phytoplankton bloom. Deep Sea Res Part II 58:1983–1995

    Article  Google Scholar 

  • Vermeeren H, Vanreusel A, Vanhove S (2004) Species distribution within the free-living marine nematode genus Dichromadora in the Weddell Sea and adjacent areas. Deep-Sea Research Part II: Topical Studies in Oceanography 51:1643–1664

    Article  Google Scholar 

  • Wei CL, Rowe GT, Escobar-Briones E, Boetius A, Soltwedel T, Caley MJ, Soliman Y, Huettmann F, Qu FY, Yu ZS, Pitcher CR, Haedrich RL, Wicksten MK, Rex MA, Baguley JG, Sharma J, Danovaro R, MacDonald IR, Nunnally CC, Deming JW, Montagna P, Levesque M, Weslawski JM, Wlodarska-Kowalczuk M, Ingole BS, Bett BJ, Billett DSM, Yool A, Bluhm BA, Iken K, Narayanaswamy BE (2010) Global patterns and predictions of seafloor biomass using random forests. Plos One 5

    Google Scholar 

  • Wigley RL, McIntyre AD (1964) Some quantitative comparisons of offshore meiobenthos and macrobenthos south of Martha’s Vineyard. Limnol Oceanogr 9:485–493

    Article  Google Scholar 

  • Witte U, Aberle N, Sand M, Wenzhofer F (2003a) Rapid response of a deep-sea benthic community to POM enrichment: an in situ experimental study. Mar Ecol-Prog Ser 251:27–36

    Article  Google Scholar 

  • Witte U, Wenzhofer F, Sommer S, Boetius A, Heinz P, Aberle N, Sand M, Cremer A, Abraham WR, Jorgensen BB, Pfannkuche O (2003b) In situ experimental evidence of the fate of a phytodetritus pulse at the abyssal sea floor. Nature 424:763–766

    Article  CAS  PubMed  Google Scholar 

  • Woolley SNC, Tittensor DP, Dunstan PK, Guillera-Arroita G, Lahoz-Monfort JJ, Wintle BA, Worm B, O’Hara TD (2016) Deep-sea diversity patterns are shaped by energy availability. Nature 533:393–396

    Article  CAS  PubMed  Google Scholar 

  • Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS, Jackson JBC, Lotze HK, Micheli F, Palumbi SR, Sala E, Selkoe KA, Stachowicz JJ, Watson R (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314:787–790

    Article  CAS  PubMed  Google Scholar 

  • Yasuhara M, Danovaro R (2016) Temperature impacts on deep-sea biodiversity. Biol Rev 91:275–287

    Article  PubMed  Google Scholar 

  • Zardus JD, Etter RJ, Chase MR, Rex MA, Boyle EE (2006) Bathymetric and geographic population structure in the pan-Atlantic deep-sea bivalve Deminucula atacellana (Schenck, 1939). Mol Ecol 15:639–651

    Article  CAS  PubMed  Google Scholar 

  • Zeppilli D, Leduc D, Fontanier C, Fontaneto D, Fuchs S, Gooday AJ, Goineau A, Ingels J, Ivanenko VN, Kristensen RM, Neves RC, Sanchez N, Sandulli R, Sarrazin J, Sørensen MV, Tasiemski A, Vanreusel A, Autret M, Bourdonnay L, Claireaux M, Coquillé V, De Wever L, Rachel D, Marchant J, Toomey L, Fernandes D (2018) Characteristics of meiofauna in extreme marine ecosystems: a review. Mar Biodivers 48:35–71

    Article  Google Scholar 

  • Zeppilli D, Bellec L, Cambon-Bonavita M-A, Decraemer W, Fontaneto D, Fuchs S, Gayet N, Mandon P, Michel LN, Portail M, Smol N, Sørensen MV, Vanreusel A, Sarrazin J (2019) Ecology and trophic role of Oncholaimus dyvae sp. nov. (Nematoda: Oncholaimidae) from the lucky strike hydrothermal vent field (Mid-Atlantic Ridge). BMC Zoology 4:6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeroen Ingels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ingels, J., Leduc, D., Zeppilli, D., Vanreusel, A. (2023). Deep-Sea Meiofauna—A World on Its Own or Deeply Connected?. In: Giere, O., Schratzberger, M. (eds) New Horizons in Meiobenthos Research. Springer, Cham. https://doi.org/10.1007/978-3-031-21622-0_8

Download citation

Publish with us

Policies and ethics

Navigation