Combinational Bioimpedance and Ultrasonic Diagnostics Method for Prospective Medical Applications

  • Conference paper
  • First Online:
Physics and Mechanics of New Materials and Their Applications

Part of the book series: Springer Proceedings in Materials ((SPM,volume 20))

  • 382 Accesses

Abstract

An innovative method of non-invasive combinational bioimpedance and ultrasonic diagnostics of the physiological condition and processes in the superficial tissues of a patient has been developed. The method is based on simultaneous or alternative measurements of the complex electrical resistance and ultrasonic velocity and attenuation coefficient on an arbitrary part of the patient’s body. Designs of ultrasonic and bioimpedance diagnostic moduli have been developed and tested. An experimental verification of the developed combinational echo-pulse and transmission ultrasonic and bioimpedance spectroscopy method was carried out on reference solutions and patient’s superficial tissues in-vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vorst AV, Rosen A, Kotsuka Y (2006) RF/microwave interaction with biological tissues. A John Wiley & Sons Inc., Hoboken, New Jersey

    Google Scholar 

  2. Hill CR, Bamber JC, ter Haar GR (2004) Physical principles of medical ultrasonics, 2nd edn. John Wiley & Sons

    Google Scholar 

  3. ter Haar GR (2007) Prog Biophys Mol Biol 93:111

    Article  Google Scholar 

  4. Rybyanets AN (2012) In: Parinov IA (ed) Piezoelectrics and related materials: investigations and applications. Nova Science Publishers, New York, p 143

    Google Scholar 

  5. Carstensen EI (1979) Ultrasonic tissue characterization II, vol 11. National Bureau of Standards, Spec. Publ. 525, U.S. Govt. Printing Office, Washington, p 29

    Google Scholar 

  6. Dunn F, O’Brien WD (1978) Ultrasound: its application in medicine and biology, vol 3. Elsevier, Amsterdam, p 393

    Google Scholar 

  7. Johnston RL, Goss SA, Maynard V, Brady JK, Frizzell LA, O’Brien WD, Dunn F (1979) Ultrasonic Tissue Characterization, vol 11. National Bureau of Standards, Spec. Publ. 525, U.S. Govt. Printing Office, Washington, p 19

    Google Scholar 

  8. Duck FA (1990) Physical properties of tissue, vol 346. Academic Press, London

    Google Scholar 

  9. Cortela GA, Pereira WAC, Negreira C (2019) IEEE 2019 global medical engineering physics exchanges/pan american health care exchanges (GMEPE/PAHCE), IEEE Catalog Number: CFP1918G-ART. DOI:978-1-7281-0037-1/19/$31.00

    Google Scholar 

  10. Leydier A, Mathieu J (2009) Gilles Despaux. Mater Science Meas Sci Technol 20(9):095801

    Article  Google Scholar 

  11. MartĂ­nez-Valdez R, Contreras VH, Vera MA, Leija L (2015) Phys Procedia 70:1260

    Article  Google Scholar 

  12. TK, Bera (2014) J Med Eng 2014:381251

    Article  Google Scholar 

  13. Nikolaev DV, Smirnov AV, Bobrinskaya IG, Rudnev SG (2009) Bioelectric impedance analysis of human body composition, vol 392. Nauka, Moscow (In Russian)

    Google Scholar 

  14. Khalil SF, Mohktar MS, Ibrahim F (2014) Sensors 14:10895

    Article  Google Scholar 

  15. Kim JH, Kim SS, Kim SH, Baik SW, Jeon GR (2016) J Sens Sci Technol 25(1):1

    Article  Google Scholar 

  16. Kubisz L et al (2019) Pure Appl Chem 91(9):1481

    Article  CAS  Google Scholar 

  17. Simonova AY, Putanova NN, Kurilkin YA, Kapitonov YN, Yelkov AN, Ilyashenko KK (2008) Anesth Intensiv Care 6:15 (In Russian)

    Google Scholar 

  18. Shvetsov IA, Shvetsova NA, Reznitchenko AN, Rybyanets AN (2017) In: Parinov IA, Chang SH, Jani MA (eds) Advanced materials—techniques, physics, mechanics and applications, Springer proceedings in physics, vol 193. Springer Cham, Dordrecht, London, p 545

    Google Scholar 

  19. Schwan HP, Foster KR (1980) Proc Inst Electr Electron Eng 68(1):121

    Google Scholar 

  20. PRAP (Piezoelectric Resonance Analysis Programme). TASI Technical Software Inc. www.tasitechnical.com

  21. Rybianets AN, Tasker R (2007) Ferroelectrics 360(1):90

    Article  CAS  Google Scholar 

  22. Rybyanets AN (2016) In: Parinov IA, Chang SH, Topolov VY (eds) Advanced materials—manufacturing, physics, mechanics and applications, Springer proceedings in physics, vol 175, no. 15. Springer Cham, Heidelberg, New York, Dordrecht, London, p 211

    Google Scholar 

  23. Shcherbinin SA, Shvetsov IA, Nasedkin AV, Shvetsova NA, Rybyanets AN (2019) Ferroelectrics 539(1):117

    Article  Google Scholar 

Download references

Acknowledgement

The study was financially supported by the Russian Science Foundation, grant no. 22-22-00710, https://rscf.ru/project/22-22-00710/ at the Southern Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey N. Rybyanets .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shvetsov, I.A., Kolpacheva, N.A., Shvetsova, N.A., Rybyanets, A.N. (2023). Combinational Bioimpedance and Ultrasonic Diagnostics Method for Prospective Medical Applications. In: Parinov, I.A., Chang, SH., Soloviev, A.N. (eds) Physics and Mechanics of New Materials and Their Applications. Springer Proceedings in Materials, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-031-21572-8_40

Download citation

Publish with us

Policies and ethics

Navigation