Cytotoxicity, Corrosion and Electrochemical Stability of Titanium Dental Implants

  • Chapter
  • First Online:
Surface Modification of Titanium Dental Implants

Abstract

While titanium (Ti) is the appropriate material choice for dental implants, its corrosion within the complex and ever-changing oral environment is likely. Obtaining a chemically and electrochemically stable implant surface is essential for long-term implant success. Various modifications have been performed to augment Ti implant resistance against chemical and electrochemical corrosion. Physical and chemical treatments have enabled the formation of a protective layers on the implant surface. Notably, nano-engineering strategies allow for fabrication of customizable coatings on Ti implants. Additionally, corrosion-resistant alloys (TiZr/TiNb) have also been proposed as an alternative option. This chapter reviews the current and emerging technologies to fabricate/modify Ti dental implants with superior corrosion resistance, and informs the reader of the challenges and future directions in this domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ASTM:

American Society for Testing and Materials

BL:

Barrier layer

BMSCs:

Bone marrow mesenchymal stem cells

COF:

Coefficient of friction

EA:

Electrochemical anodisation

EDXS:

Energy dispersive X-ray spectroscopy

EIS:

Electrochemical impedance spectroscopy

FBGC:

Foreign body giant cell

GNPs:

Graphene nanoplatelets

HA:

Hydroxyapatite

ICPMS:

Inductively coupled plasma mass spectroscopy

MAO:

Micro-arc oxidisation

NPs:

Nanoparticles

OCP:

Open circuit potential

PIII:

Plasma immersion ion implantation

PVD:

Physical vapour deposition

PVP:

Polyvinylpyrrolidone

ROS:

Reactive oxygen species

SBF:

Simulated body fluids

SLA:

Sandblasted and acid-etched

SLM:

Selective laser melting

SMAT:

Surface mechanical attrition treatment

TiN:

Titanium nitride

TNPs:

Titania nanopores

TNTs:

Titania nanotubes

UMCA:

Ultrasonic mechanical coating and armouring

References

  • Abey, S., Mathew, M. T., Lee, D. J., et al. (2014). Electrochemical behavior of titanium in artificial saliva: Influence of pH. The Journal of Oral Implantology, 40(1), 3–10.

    Article  Google Scholar 

  • Akimoto, T., Ueno, T., Tsutsumi, Y., et al. (2018). Evaluation of corrosion resistance of implant-use Ti-Zr binary alloys with a range of compositions. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 106(1), 73–79.

    Article  Google Scholar 

  • Alali, A. Q., Abdal-hay, A., Gulati, K., et al. (2021). Influence of bioinspired lithium-doped titanium implants on gingival fibroblast bioactivity and biofilm adhesion. Nanomaterials, 11(11), 2799.

    Article  Google Scholar 

  • Allsobrook, O. F. L., Leichter, J., Holborow, D., et al. (2011). Descriptive study of the longevity of dental implant surgery drills. Clinical Implant Dentistry and Related Research, 13(3), 244–254.

    Article  Google Scholar 

  • Alves, S. A., Rossi, A. L., Ribeiro, A. R., et al. (2017). Tribo-electrochemical behavior of bio-functionalized TiO2 nanotubes in artificial saliva: Understanding of degradation mechanisms. Wear, 384–385, 28–42.

    Article  Google Scholar 

  • Alves, S. A., Rossi, A. L., Ribeiro, A. R., et al. (2018). Improved tribocorrosion performance of bio-functionalized TiO2 nanotubes under two-cycle sliding actions in artificial saliva. Journal of the Mechanical Behavior of Biomedical Materials, 80, 143–154.

    Article  Google Scholar 

  • Ananthakumar, R., Subramanian, B., Kobayashi, A., et al. (2012). Electrochemical corrosion and materials properties of reactively sputtered TiN/TiAlN multilayer coatings. Ceramics International, 38(1), 477–485.

    Article  Google Scholar 

  • Apaza-Bedoya, K., Tarce, M., Benfatti, C. A. M., et al. (2017). Synergistic interactions between corrosion and wear at titanium-based dental implant connections: A sco** review. Journal of Periodontal Research, 52(6), 946–954.

    Article  Google Scholar 

  • Banas, J. A., & Vickerman, M. M. (2003). Glucan-binding proteins of the oral streptococci. Critical Reviews in Oral Biology and Medicine, 14(2), 89–99.

    Article  Google Scholar 

  • Batt, J., Milward, M., Chapple, I., et al. (2018). TiO(2) nanoparticles can selectively bind CXCL8 impacting on neutrophil chemotaxis. European Cells & Materials, 35, 13–24.

    Article  Google Scholar 

  • Berglund, F., & Carlmark, B. (2011). Titanium, sinusitis, and the yellow nail syndrome. Biological Trace Element Research, 143(1), 1–7.

    Article  Google Scholar 

  • Berryman, Z., Bridger, L., Hussaini, H. M., et al. (2020). Titanium particles: An emerging risk factor for peri-implant bone loss. The Saudi Dental Journal, 32(6), 283–292.

    Article  Google Scholar 

  • Bhaskar, P., Dasgupta, A., Sarma, V. S., et al. (2014). Mechanical properties and corrosion behaviour of nanocrystalline Ti–5Ta–1.8Nb alloy produced by cryo-rolling. Materials Science and Engineering A, 616, 71–77.

    Article  Google Scholar 

  • Bressan, E., Ferroni, L., Gardin, C., et al. (2019). Metal nanoparticles released from dental implant surfaces: Potential contribution to chronic inflammation and peri-implant bone loss. Materials, 12(12), 2036.

    Article  Google Scholar 

  • Bruno, M. E., Tasat, D. R., Ramos, E., et al. (2014). Impact through time of different sized titanium dioxide particles on biochemical and histopathological parameters. Journal of Biomedical Materials Research. Part A, 102(5), 1439–1448.

    Article  Google Scholar 

  • Burnat, B., Walkowiak-Przybyło, M., Błaszczyk, T., et al. (2013). Corrosion behaviour of polished and sandblasted titanium alloys in PBS solution. Acta of Bioengineering and Biomechanics, 15(1), 87–95.

    Google Scholar 

  • Busscher, H. J., Rinastiti, M., Siswomihardjo, W., et al. (2010). Biofilm formation on dental restorative and implant materials. Journal of Dental Research, 89(7), 657–665.

    Article  Google Scholar 

  • Cadosch, D., Al-Mushaiqri, M. S., Gautschi, O. P., et al. (2010). Biocorrosion and uptake of titanium by human osteoclasts. Journal of Biomedical Materials Research. Part A, 95A(4), 1004–1010.

    Article  Google Scholar 

  • Çaha, I., Alves, A. C., Kuroda, P. A. B., et al. (2020). Degradation behavior of Ti-Nb alloys: Corrosion behavior through 21 days of immersion and tribocorrosion behavior against alumina. Corrosion Science, 167, 108488.

    Article  Google Scholar 

  • Cao, H., Qin, H., Zhao, Y., et al. (2016). Nano-thick calcium oxide armed titanium: Boosts bone cells against methicillin-resistant Staphylococcus aureus. Scientific Reports, 6(1), 21761.

    Article  Google Scholar 

  • Chen, M., Chen, P.-M., Dong, Q.-R., et al. (2014). p38 signaling in titanium particle-induced MMP-2 secretion and activation in differentiating MC3T3-E1 cells. Journal of Biomedical Materials Research. Part A, 102(8), 2824–2832.

    Article  Google Scholar 

  • Chen, W.-Q., Zhang, S.-M., & Qiu, J. (2020). Surface analysis and corrosion behavior of pure titanium under fluoride exposure. The Journal of Prosthetic Dentistry, 124(2), 239.e231–239.e238.

    Article  Google Scholar 

  • Cheslock, M., & Harrington, D. W. (2022). Yellow nail syndrome. In StatPearls. StatPearls Publishing. Copyright © 2022, StatPearls Publishing LLC.

    Google Scholar 

  • Chin, M. Y., Busscher, H. J., Evans, R., et al. (2006). Early biofilm formation and the effects of antimicrobial agents on orthodontic bonding materials in a parallel plate flow chamber. European Journal of Orthodontics, 28(1), 1–7.

    Article  Google Scholar 

  • Chopra, D., Jayasree, A., Guo, T., et al. (2022). Advancing dental implants: Bioactive and therapeutic modifications of zirconia. Bioactive Materials, 13, 161–178.

    Article  Google Scholar 

  • Chopra, D., Guo, T., Ivanovski, S. et al. (2023). Single-step nano-engineering of multiple micro-rough metals via anodization. Nano Research, 16(1), 1320–1329.

    Google Scholar 

  • Chung, K. H., Liu, G. T., Duh, J. G., et al. (2004). Biocompatibility of a titanium–aluminum nitride film coating on a dental alloy. Surface and Coating Technology, 188–189, 745–749.

    Article  Google Scholar 

  • Coelho, P. G., de Assis, S. L., Costa, I., et al. (2009). Corrosion resistance evaluation of a Ca- and P-based bioceramic thin coating in Ti-6Al-4V. Journal of Materials Science. Materials in Medicine, 20(1), 215–222.

    Article  Google Scholar 

  • D’Alessandro, A., Muzi, G., Monaco, A., et al. (2001). Yellow nail syndrome: Does protein leakage play a role? The European Respiratory Journal, 17(1), 149–152.

    Article  Google Scholar 

  • da Silva, L. L. G., Ueda, M., Silva, M. M., et al. (2007). Corrosion behavior of Ti–6Al–4V alloy treated by plasma immersion ion implantation process. Surface and Coating Technology, 201(19), 8136–8139.

    Article  Google Scholar 

  • David-Vaudey, E., Jamard, B., Hermant, C., et al. (2004). Yellow nail syndrome in rheumatoid arthritis: A drug-induced disease? Clinical Rheumatology, 23(4), 376–378.

    Article  Google Scholar 

  • Decker, A., Daly, D., & Scher, R. K. (2015). Role of titanium in the development of yellow nail syndrome. Skin Appendage Disorders, 1(1), 28–30.

    Article  Google Scholar 

  • Delgado-Ruiz, R., & Romanos, G. (2018). Potential causes of titanium particle and ion release in implant dentistry: A systematic review. International Journal of Molecular Sciences, 19(11), 3585.

    Article  Google Scholar 

  • Demetrescu, I., Pirvu, C., & Mitran, V. (2010). Effect of nano-topographical features of Ti/TiO2 electrode surface on cell response and electrochemical stability in artificial saliva. Bioelectrochemistry, 79(1), 122–129.

    Article  Google Scholar 

  • Diamanti, M. V., Spreafico, F. C., & Pedeferri, M. P. (2013). Production of anodic TiO2 Nanofilms and their characterization. Physics Procedia, 40, 30–37.

    Article  Google Scholar 

  • Dini, C., Costa, R. C., Sukotjo, C., et al. (2020). Progression of bio-tribocorrosion in implant dentistry. Frontiers in Mechanical Engineering, 6.

    Google Scholar 

  • du Preez, L. A., Bütow, K. W., & Swart, T. J. (2007). Implant failure due to titanium hypersensitivity/allergy?--Report of a case. SADJ: Journal of the South African Dental, 62(1), 22, 24–25.

    Google Scholar 

  • Egusa, H., Ko, N., Shimazu, T., et al. (2008). Suspected association of an allergic reaction with titanium dental implants: A clinical report. The Journal of Prosthetic Dentistry, 100(5), 344–347.

    Article  Google Scholar 

  • Fage, S. W., Muris, J., Jakobsen, S. S., et al. (2016). Titanium: A review on exposure, release, penetration, allergy, epidemiology, and clinical reactivity. Contact Dermatitis, 74(6), 323–345.

    Article  Google Scholar 

  • Fatichi, A. Z., de Mello, M. G., Pereira, K. D., et al. (2022). Crystalline phase of TiO2 nanotube arrays on Ti–35Nb–4Zr alloy: Surface roughness, electrochemical behavior and cellular response. Ceramics International, 48(4), 5154–5161.

    Article  Google Scholar 

  • Ferreira, S. D., Martins, C. C., Amaral, S. A., et al. (2018). Periodontitis as a risk factor for peri-implantitis: Systematic review and meta-analysis of observational studies. Journal of Dentistry, 79, 1–10.

    Article  Google Scholar 

  • Flatebø, R. S., Johannessen, A. C., Grønningsæter, A. G., et al. (2006). Host response to titanium dental implant placement evaluated in a human Oral model. Journal of Periodontology, 77(7), 1201–1210.

    Article  Google Scholar 

  • Fretwurst, T., Buzanich, G., Nahles, S., et al. (2016). Metal elements in tissue with dental peri-implantitis: A pilot study. Clinical Oral Implants Research, 27(9), 1178–1186.

    Article  Google Scholar 

  • Frisken, K., Dandie, G., Lugowski, S., et al. (2002). A study of titanium release into body organs following the insertion of single threaded screw implants into the mandibles of sheep. Australian Dental Journal, 47(3), 214–217.

    Article  Google Scholar 

  • Geetha, M., Singh, A. K., Asokamani, R., et al. (2009). Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Progress in Materials Science, 54(3), 397–425.

    Article  Google Scholar 

  • Giannelli, M., Lasagni, M., & Bani, D. (2015). Thermal effects of λ = 808 nm GaAlAs diode laser irradiation on different titanium surfaces. Lasers in Medical Science, 30(9), 2341–2352.

    Article  Google Scholar 

  • Gleiter, H. (1989). Nanocrystalline materials. Progress in Materials Science, 33(4), 223–315.

    Article  Google Scholar 

  • Golasik, M., Herman, M., & Piekoszewski, W. (2016). Toxicological aspects of soluble titanium – A review of in vitro and in vivo studies. Metallomics, 8(12), 1227–1242.

    Article  Google Scholar 

  • Gu, K.-X., Wang, K.-K., Zheng, J.-P., et al. (2018). Electrochemical behavior of Ti–6Al–4V alloy in Hank’s solution subjected to deep cryogenic treatment. Rare Metals.

    Google Scholar 

  • Gulati, K., Scimeca, J.-C., Ivanovski, S., et al. (2021). Double-edged sword: Therapeutic efficacy versus toxicity evaluations of doped titanium implants. Drug Discovery Today, 26(11), 2734–2742.

    Article  Google Scholar 

  • Gulati, K., Abdal-hay, A., Ivanovski, S. (2022a). Novel nano-engineered biomaterials for bone tissue engineering. Nanomaterials, 12(3), 333.

    Google Scholar 

  • Gulati, K., Zhang, Y., Di, P., et al. (2022b). Research to clinics: Clinical translation considerations for anodized nano-engineered titanium implants. ACS Biomaterials Science & Engineering, 8(10), 4077–4091.

    Google Scholar 

  • Guo, T., Oztug, N.A.K., Han, P., et al. (2021). Untwining the topography-chemistry interdependence to optimize the bioactivity of nano-engineered titanium implants. Applied Surface Science, 570, 151083.

    Google Scholar 

  • Guo, T., Gulati, K., Arora, H., et al. (2021a). Orchestrating soft tissue integration at the transmucosal region of titanium implants. Acta Biomaterialia, 124, 33–49.

    Article  Google Scholar 

  • Guo, T., Gulati, K., Arora, H., et al. (2021b). Race to invade: Understanding soft tissue integration at the transmucosal region of titanium dental implants. Dental Materials, 37(5), 816–831.

    Article  Google Scholar 

  • Han, M.-K., Hwang, M.-J., Yang, M.-S., et al. (2014). Effect of zirconium content on the microstructure, physical properties and corrosion behavior of Ti alloys. Materials Science and Engineering A, 616, 268–274.

    Article  Google Scholar 

  • Han, M.-K., Kim, J.-Y., Hwang, M.-J., et al. (2015). Effect of Nb on the microstructure, mechanical properties, corrosion behavior, and cytotoxicity of Ti-Nb alloys. Materials (Basel), 8(9), 5986–6003.

    Article  Google Scholar 

  • Happe, A., Sielker, S., Hanisch, M., et al. (2019). The biological effect of particulate titanium contaminants of dental implants on human osteoblasts and gingival fibroblasts. The International Journal of Oral & Maxillofacial Implants.

    Google Scholar 

  • Harrasser, N., Jüssen, S., Banke, I. J., et al. (2015). Antibacterial efficacy of titanium-containing alloy with silver-nanoparticles enriched diamond-like carbon coatings. AMB Express, 5(1), 77.

    Article  Google Scholar 

  • He, X., Reichl, F.-X., Wang, Y., et al. (2016). Analysis of titanium and other metals in human jawbones with dental implants – A case series study. Dental Materials, 32(8), 1042–1051.

    Article  Google Scholar 

  • Hongxi, L., Qian, X., **aowei, Z., et al. (2012). Wear and corrosion behaviors of Ti6Al4V alloy biomedical materials by silver plasma immersion ion implantation process. Thin Solid Films, 521, 89–93.

    Article  Google Scholar 

  • Hou, J., Wang, L., Wang, C., et al. (2019). Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. Journal of Environmental Sciences, 75, 40–53.

    Article  Google Scholar 

  • Huang, R., & Han, Y. (2013). The effect of SMAT-induced grain refinement and dislocations on the corrosion behavior of Ti–25Nb–3Mo–3Zr–2Sn alloy. Materials Science and Engineering: C, 33(4), 2353–2359.

    Article  Google Scholar 

  • Jelliti, S., Richard, C., Retraint, D., et al. (2013). Effect of surface nanocrystallization on the corrosion behavior of Ti–6Al–4V titanium alloy. Surface and Coating Technology, 224, 82–87.

    Article  Google Scholar 

  • Jiang, X. P., Wang, X. Y., Li, J. X., et al. (2006). Enhancement of fatigue and corrosion properties of pure Ti by sandblasting. Materials Science and Engineering A, 429(1), 30–35.

    Article  Google Scholar 

  • Joseph, L. A., Israel, O. K., & Edet, E. J. (2009). Comparative evaluation of metal ions release from titanium and Ti-6Al-7Nb into bio-fluids. Dental Research Journal (Isfahan), 6(1), 7–11.

    Google Scholar 

  • Kaneko, K., Yokoyama, K., Moriyama, K., et al. (2003). Delayed fracture of beta titanium orthodontic wire in fluoride aqueous solutions. Biomaterials, 24(12), 2113–2120.

    Article  Google Scholar 

  • Kazemi, M., Ahangarani, S., Esmailian, M., et al. (2020). Investigation on the corrosion behavior and biocompatibility of Ti-6Al-4V implant coated with HA/TiN dual layer for medical applications. Surface and Coating Technology, 397, 126044.

    Article  Google Scholar 

  • Khalid Naji Q, Mohammed Salman J, Mohammed Dawood N (2021) Investigations of structure and properties of layered bioceramic HA/TiO2 and ZrO2/Tio2 coatings on Ti-6Al-7Nb alloy by micro-arc oxidation. Materials Today: Proceedings61 Part 3, 786–793.

    Google Scholar 

  • Khan, A., & Sharma, D. (2020). Management of peri-implant diseases: A survey of Australian periodontists. Dentistry Journal (Basel), 8(3), 100.

    Article  Google Scholar 

  • Kheder, W., Al Kawas, S., Khalaf, K., et al. (2021). Impact of tribocorrosion and titanium particles release on dental implant complications – A narrative review. Japanese Dental Science Review, 57, 182–189.

    Article  Google Scholar 

  • Kim, K. T., Eo, M. Y., Nguyen, T. T. H., et al. (2019). General review of titanium toxicity. International Journal of Implant Dentistry, 5(1), 10–10.

    Article  Google Scholar 

  • Krupa, D., Baszkiewicz, J., Kozubowski, J., et al. (2004). Effect of calcium and phosphorus ion implantation on the corrosion resistance and biocompatibility of titanium. Bio-medical Materials and Engineering, 14, 525–536.

    Google Scholar 

  • Kwok, C. T., Wong, P. K., Cheng, F. T., et al. (2009). Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition. Applied Surface Science, 255(13), 6736–6744.

    Article  Google Scholar 

  • Lee, C.-T., Huang, Y.-W., Zhu, L., et al. (2017). Prevalences of peri-implantitis and peri-implant mucositis: Systematic review and meta-analysis. Journal of Dentistry, 62, 1–12.

    Article  Google Scholar 

  • Li, D., Liu, B., Han, Y., et al. (2001). Effects of a modified sandblasting surface treatment on topographic and chemical properties of titanium surface. Implant Dentistry, 10(1), 59–64.

    Article  Google Scholar 

  • Li, Y., Wong, C., **ong, J., et al. (2010). Cytotoxicity of titanium and titanium alloying elements. Journal of Dental Research, 89(5), 493–497.

    Article  Google Scholar 

  • Lin, Y., Lu, J., Wang, L., et al. (2006). Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasma nitrided AISI 321 stainless steel. Acta Materialia, 54(20), 5599–5605.

    Article  Google Scholar 

  • Lin, M.-H., Chen, Y.-C., Liao, C.-C., et al. (2022). Improvement in bioactivity and corrosion resistance of Ti by hydroxyapatite deposition using ultrasonic mechanical coating and armoring. Ceramics International, 48(4), 4999–5008.

    Article  Google Scholar 

  • Liu, C., Wang, Y., Wang, M., et al. (2011). Electrochemical stability of TiO2 nanotubes with different diameters in artificial saliva. Surface and Coating Technology, 206(1), 63–67.

    Article  Google Scholar 

  • Liu, B., Yu, W.-l., **ao, G.-y., et al. (2021). Comparative investigation of hydroxyapatite coatings formed on titanium via phosphate chemical conversion. Surface and Coating Technology, 413, 127093.

    Article  Google Scholar 

  • Makihira, S., Mine, Y., Nikawa, H., et al. (2010). Titanium ion induces necrosis and sensitivity to lipopolysaccharide in gingival epithelial-like cells. Toxicology In Vitro, 24(7), 1905–1910.

    Article  Google Scholar 

  • Man, I., Pirvu, C., & Demetrescu, I. (2008). Enhancing titanium stability in Fusayama saliva using electrochemical elaboration of TiO2 nanotubes. Revista de Chimie, 59 (6), 615-617.

    Google Scholar 

  • Mano, S. S., Kanehira, K., & Taniguchi, A. (2013). Comparison of cellular uptake and inflammatory response via toll-like receptor 4 to lipopolysaccharide and titanium dioxide nanoparticles. International Journal of Molecular Sciences, 14(7), 13154–13170.

    Article  Google Scholar 

  • Manole, C. C., Dinischiotu, A., Nica, C., et al. (2018). Influence of electrospun TiO2 nanowires on corrosion resistance and cell response of Ti50Zr alloy. Werkstoffe und Korrosion, 69(11), 1609–1619.

    Article  Google Scholar 

  • Martinez-Marquez, D., Gulati, K., Carty, C. P., et al. (2022). Determining the relative importance of titania nanotubes characteristics on bone implant surface performance: A quality by design study with a fuzzy approach. Materials Science and Engineering: C, 114,110995.

    Google Scholar 

  • Meng, B., Chen, J., Guo, D., et al. (2009). The effect of titanium particles on rat bone marrow stem cells in vitro. Toxicology Mechanisms and Methods, 19(9), 552–558.

    Article  Google Scholar 

  • Mercan, S., Bölükbaşı, N., Bölükbaşı, M. K., et al. (2013). Titanium element level in peri-implant mucosa. Biotechnology and Biotechnological Equipment, 27(4), 4002–4005.

    Article  Google Scholar 

  • Mine, Y., Makihira, S., Nikawa, H., et al. (2010). Impact of titanium ions on osteoblast-, osteoclast- and gingival epithelial-like cells. Journal of Prosthodontic Research, 54(1), 1–6.

    Article  Google Scholar 

  • Mishra, S. K., & Chowdhary, R. (2014). Heat generated by dental implant drills during osteotomy-a review: Heat generated by dental implant drills. The Journal of Indian Prosthodontic Society, 14(2), 131–143.

    Article  Google Scholar 

  • Mitchell, D. L., Synnott, S. A., & VanDercreek, J. A. (1990). Tissue reaction involving an intraoral skin graft and CP titanium abutments: A clinical report. The International Journal of Oral & Maxillofacial Implants, 5(1), 79–84.

    Google Scholar 

  • Mohan, L., & Anandan, C. (2013). Wear and corrosion behavior of oxygen implanted biomedical titanium alloy Ti-13Nb-13Zr. Applied Surface Science, 282, 281–290.

    Article  Google Scholar 

  • Mombelli, A., Hashim, D., & Cionca, N. (2018). What is the impact of titanium particles and biocorrosion on implant survival and complications? A critical review. Clinical Oral Implants Research, 29(S18), 37–53.

    Article  Google Scholar 

  • Mouhyi, J., Dohan Ehrenfest, D. M., & Albrektsson, T. (2012). The peri-implantitis: Implant surfaces, microstructure, and physicochemical aspects. Clinical Implant Dentistry and Related Research, 14(2), 170–183.

    Article  Google Scholar 

  • Müller, K., & Valentine-Thon, E. (2006). Hypersensitivity to titanium: Clinical and laboratory evidence. Neuro Endocrinology Letters, 27(Suppl 1), 31–35.

    Google Scholar 

  • Noronha Oliveira, M., Schunemann, W. V. H., Mathew, M. T., et al. (2018). Can degradation products released from dental implants affect peri-implant tissues? Journal of Periodontal Research, 53(1), 1–11.

    Article  Google Scholar 

  • Noumbissi, S., Scarano, A., & Gupta, S. (2019). A literature review study on atomic ions dissolution of titanium and its alloys in implant dentistry. Materials (Basel), 12(3), 368.

    Article  Google Scholar 

  • Ogawa, E. S., Matos, A. O., Beline, T., et al. (2016). Surface-treated commercially pure titanium for biomedical applications: Electrochemical, structural, mechanical and chemical characterizations. Materials Science and Engineering: C, 65, 251–261.

    Article  Google Scholar 

  • Olmedo, D. G., Paparella, M. L., Brandizzi, D., et al. (2010). Reactive lesions of peri-implant mucosa associated with titanium dental implants: A report of 2 cases. International Journal of Oral and Maxillofacial Surgery, 39(5), 503–507.

    Article  Google Scholar 

  • Olmedo, D. G., Nalli, G., Verdú, S., et al. (2013). Exfoliative cytology and titanium dental implants: A pilot study. Journal of Periodontology, 84(1), 78–83.

    Article  Google Scholar 

  • Paknejad, M., Bayani, M., Yaghobee, S., et al. (2015). Histopathological evaluation of gingival tissue overlying two-stage implants after placement of cover screws. Biotechnology and Biotechnological Equipment, 29(6), 1169–1175.

    Article  Google Scholar 

  • Palanivelu, R., & Ruban Kumar, A. (2014). Scratch and wear behaviour of plasma sprayed nano ceramics bilayer Al2O3-13wt%TiO2/hydroxyapatite coated on medical grade titanium substrates in SBF environment. Applied Surface Science, 315, 372–379.

    Article  Google Scholar 

  • Palanivelu, R., Kalainathan, S., & Ruban Kumar, A. (2014). Characterization studies on plasma sprayed (AT/HA) bi-layered nano ceramics coating on biomedical commercially pure titanium dental implant. Ceramics International, 40(6), 7745–7751.

    Article  Google Scholar 

  • Park, Y.-J., Song, Y.-H., An, J.-H., et al. (2013). Cytocompatibility of pure metals and experimental binary titanium alloys for implant materials. Journal of Dentistry, 41(12), 1251–1258.

    Article  Google Scholar 

  • Peixoto, C. D., & Almas, K. (2016). The implant surface characteristics and peri-implantitis. An evidence-based update. Odonto-stomatologie tropicale, 39(153), 23–35.

    Google Scholar 

  • Perinetti, G., Contardo, L., Ceschi, M., et al. (2012). Surface corrosion and fracture resistance of two nickel-titanium-based archwires induced by fluoride, pH, and thermocycling. An in vitro comparative study. European Journal of Orthodontics, 34(1), 1–9.

    Article  Google Scholar 

  • Pettersson, M., Kelk, P., Belibasakis, G. N., et al. (2017). Titanium ions form particles that activate and execute interleukin-1β release from lipopolysaccharide-primed macrophages. Journal of Periodontal Research, 52(1), 21–32.

    Article  Google Scholar 

  • Pettersson, M., Pettersson, J., Johansson, A., et al. (2019). Titanium release in peri-implantitis. Journal of Oral Rehabilitation, 46(2), 179–188.

    Article  Google Scholar 

  • Pioletti, D. P., Takei, H., Kwon, S. Y., et al. (1999). The cytotoxic effect of titanium particles phagocytosed by osteoblasts. Journal of Biomedical Materials Research, 46(3), 399–407.

    Article  Google Scholar 

  • Pogribna, M., Koonce, N. A., Mathew, A., et al. (2020). Effect of titanium dioxide nanoparticles on DNA methylation in multiple human cell lines. Nanotoxicology, 14(4), 534–553.

    Article  Google Scholar 

  • Pohrelyuk, I. M., Fedirko, V. M., Tkachuk, O. V., et al. (2013). Corrosion resistance of Ti–6Al–4V alloy with nitride coatings in Ringer’s solution. Corrosion Science, 66, 392–398.

    Article  Google Scholar 

  • Poon, R. W. Y., Ho, J. P. Y., Liu, X., et al. (2005). Improvements of anti-corrosion and mechanical properties of NiTi orthopedic materials by acetylene, nitrogen and oxygen plasma immersion ion implantation. Nuclear Instruments and Methods in Physics Research B, 237(1), 411–416.

    Article  Google Scholar 

  • Prando, D., Brenna, A., Diamanti, M. V., et al. (2018). Corrosion of titanium: Part 2: Effects of surface treatments. Journal of Applied Biomaterials & Functional, 16(1), 3–13.

    Article  Google Scholar 

  • Qadir, M., Li, Y., & Wen, C. (2019). Ion-substituted calcium phosphate coatings by physical vapor deposition magnetron sputtering for biomedical applications: A review. Acta Biomaterialia, 89, 14–32.

    Article  Google Scholar 

  • Qiu, S., Zhao, F., Tang, X., et al. (2015). Type-2 cannabinoid receptor regulates proliferation, apoptosis, differentiation, and OPG/RANKL ratio of MC3T3-E1 cells exposed to titanium particles. Molecular and Cellular Biochemistry, 399(1), 131–141.

    Article  Google Scholar 

  • Rashad, A., Sadr-Eshkevari, P., Weuster, M., et al. (2013). Material attrition and bone micromorphology after conventional and ultrasonic implant site preparation. Clinical Oral Implants Research, 24(A100), 110–114.

    Article  Google Scholar 

  • Revathi, A., Borrás, A. D., Muñoz, A. I., et al. (2017). Degradation mechanisms and future challenges of titanium and its alloys for dental implant applications in oral environment. Materials Science and Engineering: C, 76, 1354–1368.

    Article  Google Scholar 

  • Ribeiro, A. R., Gemini-Piperni, S., Travassos, R., et al. (2016). Trojan-like internalization of anatase titanium dioxide nanoparticles by human osteoblast cells. Scientific Reports, 6(1), 23615.

    Article  Google Scholar 

  • Richard, C., Kowandy, C., Landoulsi, J., et al. (2010). Corrosion and wear behavior of thermally sprayed nano ceramic coatings on commercially pure titanium and Ti–13Nb–13Zr substrates. International Journal of Refractory Metals and Hard Materials, 28(1), 115–123.

    Article  Google Scholar 

  • Romanos, G. E. (2015). Wound healing in immediately loaded implants. Periodontology 2000, 68(1), 153–167.

    Article  Google Scholar 

  • Romanos, G. E., Gaertner, K., & Nentwig, G. H. (2014). Long-term evaluation of immediately loaded implants in the edentulous mandible using fixed bridges and platform shifting. Clinical Implant Dentistry and Related Research, 16(4), 601–608.

    Article  Google Scholar 

  • Romanos, G. E., Fischer, G. A., & Delgado-Ruiz, R. (2021). Titanium wear of dental implants from placement, under loading and maintenance protocols. International Journal of Molecular Sciences, 22(3), 1067.

    Article  Google Scholar 

  • Rossi, S., Fedrizzi, L., Bacci, T., et al. (2003). Corrosion behaviour of glow discharge nitrided titanium alloys. Corrosion Science, 45(3), 511–529.

    Article  Google Scholar 

  • Sabella, S., Carney, R. P., Brunetti, V., et al. (2014). A general mechanism for intracellular toxicity of metal-containing nanoparticles. Nanoscale, 6(12), 7052–7061.

    Article  Google Scholar 

  • Saeed, E. M., Dawood, N. M., & Hasan, S. F. (2021). Improvement corrosion resistance of Ni-Ti alloy by TiO2 coating and hydroxyaptite/TiO2 composite coating using micro arc oxidation process. Materials Today: Proceedings, 42, 2789–2796.

    Google Scholar 

  • Safioti, L. M., Kotsakis, G. A., Pozhitkov, A. E., et al. (2017). Increased levels of dissolved titanium are associated with peri-implantitis – A cross-sectional study. Journal of Periodontology, 88(5), 436–442.

    Article  Google Scholar 

  • Saji, V. S., & Choe, H. C. (2009). Electrochemical corrosion behaviour of nanotubular Ti–13Nb–13Zr alloy in Ringer’s solution. Corrosion Science, 51(8), 1658–1663.

    Article  Google Scholar 

  • Saldaña, L., Barranco, V., García-Alonso, M. C., et al. (2006). Concentration-dependent effects of titanium and aluminium ions released from thermally oxidized Ti6Al4V alloy on human osteoblasts. Journal of Biomedical Materials Research. Part A, 77A(2), 220–229.

    Article  Google Scholar 

  • Sanz-Martín, I., Sanz-Sánchez, I., Carrillo de Albornoz, A., et al. (2018). Effects of modified abutment characteristics on peri-implant soft tissue health: A systematic review and meta-analysis. Clinical Oral Implants Research, 29(1), 118–129.

    Article  Google Scholar 

  • Sato, H., Ishihata, H., Kameyama, Y., et al. (2021). Professional mechanical tooth cleaning method for dental implant surface by agar particle blasting. Materials, 14(22), 6805.

    Article  Google Scholar 

  • Schiff, N., Grosgogeat, B., Lissac, M., et al. (2002). Influence of fluoride content and pH on the corrosion resistance of titanium and its alloys. Biomaterials, 23(9), 1995–2002.

    Article  Google Scholar 

  • Schulze, C., Lochner, K., Jonitz, A., et al. (2013). Cell viability, collagen synthesis and cytokine expression in human osteoblasts following incubation with generated wear particles using different bone cements. International Journal of Molecular Medicine, 32(1), 227–234.

    Article  Google Scholar 

  • Schwarz, M. S. (2000). Mechanical complications of dental implants. Clinical Oral Implants Research, 11(s1), 156–158.

    Article  Google Scholar 

  • Schwarz, F., Sahm, N., Iglhaut, G., et al. (2011). Impact of the method of surface debridement and decontamination on the clinical outcome following combined surgical therapy of peri-implantitis: A randomized controlled clinical study. Journal of Clinical Periodontology, 38(3), 276–284.

    Article  Google Scholar 

  • Shanaghi, A., & Chu, P. K. (2019). Enhancement of mechanical properties and corrosion resistance of NiTi alloy by carbon plasma immersion ion implantation. Surface and Coating Technology, 365, 52–57.

    Article  Google Scholar 

  • Sicilia, A., Cuesta, S., Coma, G., et al. (2008). Titanium allergy in dental implant patients: A clinical study on 1500 consecutive patients. Clinical Oral Implants Research, 19(8), 823–835.

    Article  Google Scholar 

  • Siddiqui, D. A., Guida, L., Sridhar, S., et al. (2019). Evaluation of oral microbial corrosion on the surface degradation of dental implant materials. Journal of Periodontology, 90(1), 72–81.

    Article  Google Scholar 

  • Singh, S., Pandey, K. K., Islam, A., et al. (2020). Corrosion behaviour of plasma sprayed graphene nanoplatelets reinforced hydroxyapatite composite coatings in simulated body fluid. Ceramics International, 46(9), 13539–13548.

    Article  Google Scholar 

  • Skowron, K., Wróbel, M., Mosiałek, M., et al. (2021). Gradient microstructure induced by surface mechanical attrition treatment in grade 2 titanium studied using positron annihilation spectroscopy and complementary methods. Materials, 14(21), 6347.

    Article  Google Scholar 

  • Song, F., Koo, H., & Ren, D. (2015). Effects of material properties on bacterial adhesion and biofilm formation. Journal of Dental Research, 94(8), 1027–1034.

    Article  Google Scholar 

  • Souza, J. C. M., Barbosa, S. L., Ariza, E. A., et al. (2015). How do titanium and Ti6Al4V corrode in fluoridated medium as found in the oral cavity? An in vitro study. Materials Science and Engineering: C, 47, 384–393.

    Article  Google Scholar 

  • Souza, J. G. S., Cordeiro, J. M., Lima, C. V., et al. (2019). Citric acid reduces oral biofilm and influences the electrochemical behavior of titanium: An in situ and in vitro study. Journal of Periodontology, 90(2), 149–158.

    Article  Google Scholar 

  • Stacchi, C., Berton, F., Perinetti, G., et al. (2016). Risk factors for peri-implantitis: Effect of history of periodontal disease and smoking habits. A systematic review and meta-analysis. Journal of Oral & Maxillofacial Research, 7(3), e3–e3.

    Article  Google Scholar 

  • Stevens, M. M., & George, J. H. (2005). Exploring and engineering the cell surface interface. Science, 310(5751), 1135–1138.

    Article  Google Scholar 

  • Stimmelmayr, M., Edelhoff, D., Güth, J.-F., et al. (2012). Wear at the titanium–titanium and the titanium–zirconia implant–abutment interface: A comparative in vitro study. Dental Materials, 28(12), 1215–1220.

    Article  Google Scholar 

  • Suárez-López del Amo, F., Garaicoa-Pazmiño, C., Fretwurst, T., et al. (2018). Dental implants-associated release of titanium particles: A systematic review. Clinical Oral Implants Research, 29(11), 1085–1100.

    Article  Google Scholar 

  • Takeda, A., Yamazaki, Y., Baba, K., et al. (2012). Osteogenic potential of human bone marrow–derived mesenchymal stromal cells cultured in autologous serum: A preliminary study. Journal of Oral and Maxillofacial Surgery, 70(8), e469–e476.

    Article  Google Scholar 

  • Tang, J., Luo, H., & Zhang, Y. (2017). Enhancing the surface integrity and corrosion resistance of Ti-6Al-4V titanium alloy through cryogenic burnishing. International Journal of Advanced Manufacturing Technology, 88, 2785–2793.

    Google Scholar 

  • Vayssette, B., Saintier, N., Brugger, C., et al. (2018). Surface roughness of Ti-6Al-4V parts obtained by SLM and EBM: Effect on the High Cycle Fatigue life. Procedia Engineering, 213, 89–97.

    Article  Google Scholar 

  • Wachi, T., Shuto, T., Shinohara, Y., et al. (2015). Release of titanium ions from an implant surface and their effect on cytokine production related to alveolar bone resorption. Toxicology, 327, 1–9.

    Article  Google Scholar 

  • Wang, G., Wan, Y., Wang, T., et al. (2017). Corrosion behavior of titanium implant with different surface morphologies. Procedia Manufacturing, 10, 363–370.

    Article  Google Scholar 

  • Wei, X., Zhang, X., Zuscik, M. J., et al. (2005). Fibroblasts express RANKL and support osteoclastogenesis in a COX-2-dependent manner after stimulation with titanium particles. Journal of Bone and Mineral Research, 20(7), 1136–1148.

    Article  Google Scholar 

  • Wilson, T. G., Jr., Valderrama, P., Burbano, M., et al. (2015). Foreign bodies associated with peri-implantitis human biopsies. Journal of Periodontology, 86(1), 9–15.

    Article  Google Scholar 

  • Xu, L.-n., Yu, X.-y., Chen, W.-q., et al. (2020). Biocorrosion of pure and SLA titanium surfaces in the presence of Porphyromonas gingivalis and its effects on osteoblast behavior. RSC Advances, 10(14), 8198–8206.

    Article  Google Scholar 

  • Xuereb, M., Camilleri, J., & Attard, N. J. (2015). Systematic review of current dental implant coating materials and novel coating techniques. The International Journal of Prosthodontics, 28(1), 51–59.

    Article  Google Scholar 

  • Yang, C.-H., Wang, Y.-T., Tsai, W.-F., et al. (2011). Effect of oxygen plasma immersion ion implantation treatment on corrosion resistance and cell adhesion of titanium surface. Clinical Oral Implants Research, 22(12), 1426–1432.

    Article  Google Scholar 

  • Yu, F., Addison, O., Baker, S. J., et al. (2015). Lipopolysaccharide inhibits or accelerates biomedical titanium corrosion depending on environmental acidity. International Journal of Oral Science, 7(3), 179–186.

    Article  Google Scholar 

  • Zhang, Y., Gulati, K., Li, Z., et al. (2021). Dental implant nano-engineering: Advances, limitations and future directions. Nanomaterials, 11(10), 2489.

    Article  Google Scholar 

  • Zhou, S., Zhao, Y., Wang, X., et al. (2020). Enhanced corrosion resistance of Ti-5 wt.% TiN composite compared to commercial pure Ti produced by selective laser melting in HCl solution. Journal of Alloys and Compounds, 820, 153422.

    Article  Google Scholar 

  • Zhou, Z., Shi, Q., Wang, J., et al. (2021). The unfavorable role of titanium particles released from dental implants. Nanotheranostics, 5(3), 321–332.

    Article  Google Scholar 

  • Zhu, Y., Li, C., & Zhang, L. (2014). Effects of cryo-treatment on corrosion behavior and mechanical properties of laser-welded commercial pure titanium. Materials Transactions, 55(3), 511–516.

    Article  Google Scholar 

  • Zhu, W.-q., Shao, S.-y., Xu, L.-n., et al. (2019). Enhanced corrosion resistance of zinc-containing nanowires-modified titanium surface under exposure to oxidizing microenvironment. Journal of Nanobiotechnology, 17(1), 55.

    Article  Google Scholar 

  • Zipprich, H., Weigl, P., Ratka, C., et al. (2018). The micromechanical behavior of implant-abutment connections under a dynamic load protocol. Clinical Implant Dentistry and Related Research, 20(5), 814–823.

    Article  Google Scholar 

Download references

Acknowledgements

Tianqi Guo is supported by a UQ Graduate School Scholarship (UQGSS) funded by the University of Queensland. Karan Gulati is supported by National Health and Medical Research Council (NHMRC) Early Career Fellowship (APP1140699).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sašo Ivanovski , Elise Verron or Karan Gulati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guo, T., Scimeca, JC., Ivanovski, S., Verron, E., Gulati, K. (2023). Cytotoxicity, Corrosion and Electrochemical Stability of Titanium Dental Implants. In: Gulati, K. (eds) Surface Modification of Titanium Dental Implants. Springer, Cham. https://doi.org/10.1007/978-3-031-21565-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21565-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21564-3

  • Online ISBN: 978-3-031-21565-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation