Regulation of ThermoTRP Channels by PIP2 and Cholesterol

  • Chapter
  • First Online:
Cholesterol and PI(4,5)P2 in Vital Biological Functions

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1422))

Abstract

Transient receptor potential (TRP) ion channels are proteins that are expressed by diverse tissues and that play pivotal functions in physiology. These channels are polymodal and are activated by several stimuli. Among TRPs, some members of this family of channels respond to changes in ambient temperature and are known as thermoTRPs. These proteins respond to heat or cold in the noxious range and some of them to temperatures considered innocuous, as well as to mechanical, osmotic, and/or chemical stimuli. In addition to this already complex ability to respond to different signals, the activity of these ion channels can be fine-tuned by lipids. Two lipids well known to modulate ion channel activity are phosphatidylinositol 4,5-bisphosphate (PIP2) and cholesterol. These lipids can either influence the function of these proteins through direct interaction by binding to a site in the structure of the ion channel or through indirect mechanisms, which can include modifying membrane properties, such as curvature and rigidity, by regulating their expression or by modulating the actions of other molecules or signaling pathways that affect the physiology of ion channels. Here, we summarize the key aspects of the regulation of thermoTRP channels by PIP2 and cholesterol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Falkenburger BH, Jensen JB, Dickson EJ, Suh B-C, Hille B. SYMPOSIUM REVIEW: phosphoinositides: lipid regulators of membrane proteins: phosphoinositides instruct membrane proteins. J Physiol. 2010;588:3179–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shukla S, ** R, Robustelli J, Zimmerman ZE, Baumgart T. PIP2 reshapes membranes through asymmetric desorption. Biophys J. 2019;117:962–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Taberner FJ, Fernández-Ballester G, Fernández-Carvajal A, Ferrer-Montiel A. TRP channels interaction with lipids and its implications in disease. Biochim Biophys Acta Biomembr. 2015;1848:1818–27.

    Article  CAS  Google Scholar 

  4. Flockerzi V. An introduction on TRP channels. In: Flockerzi V, Nilius B, editors. Transient Receptor Potential (TRP) channels. Berlin Heidelberg, Berlin, Heidelberg: Springer; 2007. p. 1–19.

    Chapter  Google Scholar 

  5. Venkatachalam K, Montell C. TRP Channels. Annu Rev Biochem. 2007;76:387–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Clapham DE, Runnels LW, Strübing C. The TRP ion channel family. Nat Rev Neurosci. 2001;2:387–96.

    Article  CAS  PubMed  Google Scholar 

  7. Montell C, Rubin GM. Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron. 1989;2:1313–23.

    Article  CAS  PubMed  Google Scholar 

  8. Montell C, Birnbaumer L, Flockerzi V. The TRP channels, a remarkably functional family. Cell. 2002;108:595–8.

    Article  CAS  PubMed  Google Scholar 

  9. Minke B, Wu C-F, Pak WL. Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature. 1975;258:84–7.

    Article  CAS  PubMed  Google Scholar 

  10. Latorre R, Zaelzer C, Brauchi S. Structure–functional intimacies of transient receptor potential channels. Q Rev Biophys. 2009;42:201–46.

    Article  CAS  PubMed  Google Scholar 

  11. Minke B, Cook B. TRP channel proteins and signal transduction. Physiol Rev. 2002;82:429–72.

    Article  CAS  PubMed  Google Scholar 

  12. Caterina MJ, Julius D. The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci. 2001;24:487–517.

    Article  CAS  PubMed  Google Scholar 

  13. Nilius B, Owsianik G, Voets T, Peters JA. Transient receptor potential cation channels in disease. Physiol Rev. 2007;87:165–217.

    Article  CAS  PubMed  Google Scholar 

  14. Trevisani M, Patacchini R, Nicoletti P, Gatti R, Gazzieri D, Lissi N, Zagli G, Creminon C, Geppetti P, Harrison S. Hydrogen sulfide causes vanilloid receptor 1-mediated neurogenic inflammation in the airways. Br J Pharmacol. 2005;145:1123–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang J, Zhang X, McNaughton PA. Modulation of temperature-sensitive TRP channels. Semin Cell Dev Biol. 2006;17:638–45.

    Article  CAS  PubMed  Google Scholar 

  16. Morales-Lázaro SL, Simon SA, Rosenbaum T. The role of endogenous molecules in modulating pain through transient receptor potential vanilloid 1 (TRPV1). J Physiol (Lond). 2013;591:3109–21.

    Article  PubMed  Google Scholar 

  17. Kukkonen JP. A ménage à trois made in heaven: G-protein-coupled receptors, lipids and TRP channels. Cell Calcium. 2011;50:9–26.

    Article  CAS  PubMed  Google Scholar 

  18. Vlachová V, Teisinger J, Sušánková K, Lyfenko A, Ettrich R, Vyklický L. Functional role of C-terminal cytoplasmic tail of rat vanilloid receptor 1. J Neurosci. 2003;23:1340–50.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Brauchi S, Orio P, Latorre R. Clues to understanding cold sensation: Thermodynamics and electrophysiological analysis of the cold receptor TRPM8. Proc Natl Acad Sci. 2004;101:15494–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brauchi S. A hot-sensing cold receptor: C-terminal domain determines thermosensation in transient receptor potential channels. J Neurosci. 2006;26:4835–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ito E, Ikemoto Y, Yoshioka T. Thermodynamic implications of high Q10 of thermoTRP channels in living cells. Biophysics. 2015;11:33–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen J, Kang D, Xu J, Lake M, Hogan JO, Sun C, Walter K, Yao B, Kim D. Species differences and molecular determinant of TRPA1 cold sensitivity. Nat Commun. 2013;4:2501.

    Article  PubMed  Google Scholar 

  23. Wang H, Schupp M, Zurborg S, Heppenstall PA. Residues in the pore region of Drosophila transient receptor potential A1 dictate sensitivity to thermal stimuli: Molecular mechanisms of TRPA1 thermosensitivity. J Physiol. 2013;591:185–201.

    Article  CAS  PubMed  Google Scholar 

  24. Peier AM, Moqrich A, Hergarden AC, et al. A TRP channel that senses cold stimuli and menthol. Cell. 2002;108:705–15.

    Article  CAS  PubMed  Google Scholar 

  25. Laursen WJ, Anderson EO, Hoffstaetter LJ, Bagriantsev SN, Gracheva EO. Species-specific temperature sensitivity of TRPA1. Temperature. 2015;2:214–26.

    Article  Google Scholar 

  26. Nilius B, Bíró T, Owsianik G. TRPV3: time to decipher a poorly understood family member!: TRPV3. J Physiol. 2014;592:295–304.

    Article  CAS  PubMed  Google Scholar 

  27. Vandewauw I, De Clercq K, Mulier M, et al. A TRP channel trio mediates acute noxious heat sensing. Nature. 2018;555:662–6.

    Article  CAS  PubMed  Google Scholar 

  28. Cao E. Structural mechanisms of transient receptor potential ion channels. J Gen Physiol. 2020;152:e201811998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang Y, Fliegert R, Guse AH, Lü W, Du J. A structural overview of the ion channels of the TRPM family. Cell Calcium. 2020;85:102111.

    Article  CAS  PubMed  Google Scholar 

  30. Perraud AL, Fleig A, Dunn CA, et al. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature. 2001;411:595–9.

    Article  CAS  PubMed  Google Scholar 

  31. Paulsen CE, Armache J-P, Gao Y, Cheng Y, Julius D. Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature. 2015;525:552.

    Article  CAS  PubMed  Google Scholar 

  32. Startek JB, Boonen B, López-Requena A, Talavera A, Alpizar YA, Ghosh D, Van Ranst N, Nilius B, Voets T, Talavera K. Mouse TRPA1 function and membrane localization are modulated by direct interactions with cholesterol. Elife. 2019;8:e46084.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389:816–24.

    Article  CAS  PubMed  Google Scholar 

  34. Mezey E, Toth ZE, Cortright DN, Arzubi MK, Krause JE, Elde R, Guo A, Blumberg PM, Szallasi A. Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human. Proc Natl Acad Sci. 2000;97:3655–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Salazar H, Jara-Oseguera A, Rosenbaum T. The TRPV1 channel as a target for the treatment of pain. Rev Neurol. 2009;48:357–64.

    CAS  PubMed  Google Scholar 

  36. Salazar H, Llorente I, Jara-Oseguera A, García-Villegas R, Munari M, Gordon SE, Islas LD, Rosenbaum T. A single N-terminal cysteine in TRPV1 determines activation by pungent compounds from onion and garlic. Nat Neurosci. 2008;11:255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gao Y, Cao E, Julius D, Cheng Y. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature. 2016;534:347–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ufret-Vincenty CA, Klein RM, Hua L, Angueyra J, Gordon SE. Localization of the PIP2 sensor of TRPV1 ion channels. J Biol Chem. 2011;286:9688–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brauchi S, Orta G, Mascayano C, Salazar M, Raddatz N, Urbina H, Rosenmann E, Gonzalez-Nilo F, Latorre R. Dissection of the components for PIP2 activation and thermosensation in TRP channels. Proc Natl Acad Sci. 2007;104:10246–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Winter Z, Buhala A, Ötvös F, Jósvay K, Vizler C, Dombi G, Szakonyi G, Oláh Z. Functionally important amino acid residues in the Transient Receptor Potential Vanilloid 1 (TRPV1) ion channel – an overview of the current mutational data. Mol Pain. 2013;9:1744-8069-9–30.

    Article  Google Scholar 

  41. Picazo-Juarez G, Romero-Suarez S, Nieto-Posadas A, Llorente I, Jara-Oseguera A, Briggs M, McIntosh TJ, Simon SA, Ladron-de-Guevara E, Islas LD. Identification of a binding motif in the S5 helix that confers cholesterol sensitivity to the TRPV1 ion channel. J Biol Chem. 2011;286:24966–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Barbera NA, Minke B, Levitan I. Comparative docking analysis of cholesterol analogs to ion channels to discriminate between stereospecific binding vs. stereospecific response. Channels. 2019;13:136–46.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Benham CD, Gunthorpe MJ, Davis JB. TRPV channels as temperature sensors. Cell Calcium. 2003;33:479–87.

    Article  CAS  PubMed  Google Scholar 

  44. Doñate-Macián P, Perálvarez-Marín A. Dissecting domain-specific evolutionary pressure profiles of transient receptor potential vanilloid subfamily members 1 to 4. PLoS One. 2014;9:e110715.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zubcevic L, Herzik MA, Chung BC, Liu Z, Lander GC, Lee S-Y. Cryo-electron microscopy structure of the TRPV2 ion channel. Nat Struct Mol Biol. 2016;23:180–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Peier AM, Reeve AJ, Andersson DA, et al. A heat-sensitive TRP channel expressed in keratinocytes. Science. 2002;296:2046–9.

    Article  CAS  PubMed  Google Scholar 

  47. Emir TLR, editor. Neurobiology of TRP channels. 2nd ed. Boca Raton (FL): CRC Press/Taylor & Francis; 2017.

    Google Scholar 

  48. Moqrich A. Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science. 2005;307:1468–72.

    Article  CAS  PubMed  Google Scholar 

  49. Hu H-Z, **ao R, Wang C, Gao N, Colton CK, Wood JD, Zhu MX. Potentiation of TRPV3 channel function by unsaturated fatty acids. J Cell Physiol. 2006;208:201–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Parnas M, Peters M, Minke B. Linoleic acid inhibits TRP channels with intrinsic voltage sensitivity: Implications on the mechanism of linoleic acid action. Channels. 2009;3:164–6.

    Article  CAS  PubMed  Google Scholar 

  51. Shimada H, Kusakizako T, Dung Nguyen TH, Nishizawa T, Hino T, Tominaga M, Nureki O. The structure of lipid nanodisc-reconstituted TRPV3 reveals the gating mechanism. Nat Struct Mol Biol. 2020;27:645–52.

    Article  CAS  PubMed  Google Scholar 

  52. Singh AK, McGoldrick LL, Sobolevsky AI. Structure and gating mechanism of the transient receptor potential channel TRPV3. Nat Struct Mol Biol. 2018;25:805–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rajan S, Schremmer C, Weber J, Alt P, Geiger F, Dietrich A. Ca2+ signaling by TRPV4 channels in respiratory function and disease. Cell. 2021;10:822.

    Article  CAS  Google Scholar 

  54. Chen Y, Wang Z-L, Yeo M, et al. Epithelia-sensory neuron cross talk underlies cholestatic itch induced by lysophosphatidylcholine. Gastroenterology. 2021:S001650852100576X.

    Google Scholar 

  55. Kumari S, Kumar A, Sardar P, Yadav M, Majhi RK, Kumar A, Goswami C. Influence of membrane cholesterol in the molecular evolution and functional regulation of TRPV4. Biochem Biophys Res Commun. 2015;456:312–9.

    Article  CAS  PubMed  Google Scholar 

  56. Togashi K, Hara Y, Tominaga T, Higashi T, Konishi Y, Mori Y, Tominaga M. TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J. 2006;25:1804–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wehrhahn J, Kraft R, Harteneck C, Hauschildt S. Transient receptor potential melastatin 2 is required for lipopolysaccharide-induced cytokine production in human monocytes. JI. 2010;184:2386–93.

    CAS  Google Scholar 

  58. Zhang Z, Cui P, Zhang K, Chen Q, Fang X. Transient receptor potential melastatin 2 regulates phagosome maturation and is required for bacterial clearance in Escherichia coli sepsis. Anesthesiology. 2017;126:128–39.

    Article  CAS  PubMed  Google Scholar 

  59. Dietrich A. Modulators of Transient Receptor Potential (TRP) channels as therapeutic options in lung disease. Pharmaceuticals (Basel). 2019; https://doi.org/10.3390/ph12010023.

  60. Hecquet CM, Ahmmed GU, Vogel SM, Malik AB. Role of TRPM2 Channel in Mediating H 2 O 2 -Induced Ca 2+ Entry and Endothelial Hyperpermeability. Circ Res. 2008;102:347–55.

    Article  CAS  PubMed  Google Scholar 

  61. Zhang Z, Tóth B, Szollosi A, Chen J, Csanády L. Structure of a TRPM2 channel in complex with Ca2+ explains unique gating regulation. Elife. 2018; https://doi.org/10.7554/eLife.36409.

  62. Barth D, Lückhoff A, Kühn FJP. Species-specific regulation of TRPM2 by PI(4,5)P2 via the membrane interfacial cavity. IJMS. 2021;22:4637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Held K, Kichko T, De Clercq K, et al. Activation of TRPM3 by a potent synthetic ligand reveals a role in peptide release. Proc Natl Acad Sci U S A. 2015;112:E1363–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Held K, Voets T, Vriens J. TRPM3 in temperature sensing and beyond. Temperature. 2015;2:201–13.

    Article  Google Scholar 

  65. Vriens J, Owsianik G, Hofmann T, et al. TRPM3 Is a nociceptor channel involved in the detection of noxious heat. Neuron. 2011;70:482–94.

    Article  CAS  PubMed  Google Scholar 

  66. Vriens J, Held K, Janssens A, Tóth BI, Kerselaers S, Nilius B, Vennekens R, Voets T. Opening of an alternative ion permeation pathway in a nociceptor TRP channel. Nat Chem Biol. 2014;10:188–95.

    Article  CAS  PubMed  Google Scholar 

  67. Holendova B, Grycova L, Jirku M, Teisinger J. PtdIns(4,5) P 2 interacts with CaM binding domains on TRPM3 N-terminus. Channels. 2012;6:479–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zheng W, Cai R, Hofmann L, et al. Direct Binding between Pre-S1 and TRP-like Domains in TRPP Channels Mediates Gating and Functional Regulation by PIP2. Cell Rep. 2018;22:1560–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu Y, Qin N. TRPM8 in health and disease: cold sensing and beyond. In: Islam MS, editor. Transient receptor potential channels. Dordrecht: Springer; 2011. p. 185–208.

    Chapter  Google Scholar 

  70. Yin Y, Le SC, Hsu AL, Borgnia MJ, Yang H, Lee S-Y. Structural basis of cooling agent and lipid sensing by the cold-activated TRPM8 channel. Science. 2019; https://doi.org/10.1126/science.aav9334.

  71. Hughes TET, Pumroy RA, Yazici AT, et al. Structural insights on TRPV5 gating by endogenous modulators. Nat Commun. 2018;9:4198.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bidaux G, Sgobba M, Lemonnier L, Borowiec A-S, Noyer L, Jovanovic S, Zholos AV, Haider S. Functional and modeling studies of the transmembrane region of the TRPM8 channel. Biophys J. 2015;109:1840–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yin Y, Wu M, Zubcevic L, Borschel WF, Lander GC, Lee S-Y. Structure of the cold- and menthol-sensing ion channel TRPM8. Science. 2018;359:237–41.

    Article  CAS  PubMed  Google Scholar 

  74. Raddatz N, Castillo JP, Gonzalez C, Alvarez O, Latorre R. Temperature and Voltage Coupling to Channel Opening in Transient Receptor Potential Melastatin 8 (TRPM8). J Biol Chem. 2014;289:35438–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Taberner FJ, López-Córdoba A, Fernández-Ballester G, Korchev Y, Ferrer-Montiel A. The region adjacent to the C-end of the inner gate in Transient Receptor Potential Melastatin 8 (TRPM8) channels plays a central role in allosteric channel activation. J Biol Chem. 2014;289:28579–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B. Mammalian Transient Receptor Potential TRPA1 channels: from structure to disease. Physiol Rev. 2020;100:725–803.

    Article  CAS  PubMed  Google Scholar 

  77. Dai Y, Wang S, Tominaga M, Yamamoto S, Fukuoka T, Higashi T, Kobayashi K, Obata K, Yamanaka H, Noguchi K. Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest. 2007;117:1979–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim D, Cavanaugh EJ, Simkin D. Inhibition of transient receptor potential A1 channel by phosphatidylinositol-4,5-bisphosphate. Am J Physiol Cell Physiol. 2008;295:C92–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Karashima Y, Prenen J, Meseguer V, Owsianik G, Voets T, Nilius B. Modulation of the transient receptor potential channel TRPA1 by phosphatidylinositol 4,5-biphosphate manipulators. Pflugers Arch – Eur J Physiol. 2008;457:77–89.

    Article  CAS  Google Scholar 

  80. Wang YY, Chang RB, Allgood SD, Silver WL, Liman ER. A TRPA1-dependent mechanism for the pungent sensation of weak acids. J Gen Physiol. 2011;137:493–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron. 2004;41:849–57.

    Article  CAS  PubMed  Google Scholar 

  82. Witschas K, Jobin M-L, Korkut DN, Vladan MM, Salgado G, Lecomte S, Vlachova V, Alves ID. Interaction of a peptide derived from C-terminus of human TRPA1 channel with model membranes mimicking the inner leaflet of the plasma membrane. Biochim Biophys Acta Biomembr. 2015;1848:1147–56.

    Article  CAS  Google Scholar 

  83. Macikova L, Sinica V, Kadkova A, Villette S, Ciaccafava A, Faherty J, Lecomte S, Alves ID, Vlachova V. Putative interaction site for membrane phospholipids controls activation of TRPA1 channel at physiological membrane potentials. FEBS J. 2019;286:3664–83.

    Article  CAS  PubMed  Google Scholar 

  84. Zimova L, Sinica V, Kadkova A, Vyklicka L, Zima V, Barvik I, Vlachova V. Intracellular cavity of sensor domain controls allosteric gating of TRPA1 channel. Sci Signal. 2018;11:eaan8621.

    Article  PubMed  Google Scholar 

  85. Zimova L, Barvikova K, Macikova L, Vyklicka L, Sinica V, Barvik I, Vlachova V. Proximal C-terminus serves as a signaling hub for TRPA1 channel regulation via its interacting molecules and supramolecular complexes. Front Physiol. 2020;11:189.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Gallo V, Dijk FN, Holloway JW, et al. TRPA1 gene polymorphisms and childhood asthma. Pediatr Allergy Immunol. 2017;28:191–8.

    Article  PubMed  Google Scholar 

  87. Startek JB, Talavera K. Lipid raft destabilization impairs mouse TRPA1 responses to cold and bacterial lipopolysaccharides. Int J Mol Sci. 2020;21:E3826.

    Article  Google Scholar 

  88. Stein AT, Ufret-Vincenty CA, Hua L, Santana LF, Gordon SE. Phosphoinositide 3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane. J Gen Physiol. 2006;128:509–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lukacs V, Thyagarajan B, Varnai P, Balla A, Balla T, Rohacs T. Dual regulation of TRPV1 by phosphoinositides. J Neurosci. 2007;27:7070–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Klein RM, Ufret-Vincenty CA, Hua L, Gordon SE. Determinants of molecular specificity in phosphoinositide regulation. J Biol Chem. 2008;283:26208–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lukacs V, Rives J-M, Sun X, Zakharian E, Rohacs T. Promiscuous Activation of Transient Receptor Potential Vanilloid 1 (TRPV1) channels by negatively charged intracellular lipids. J Biol Chem. 2013;288:35003–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Poblete H, Oyarzún I, Olivero P, Comer J, Zuñiga M, Sepulveda RV, Báez-Nieto D, González Leon C, González-Nilo F, Latorre R. Molecular determinants of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) binding to transient receptor potential V1 (TRPV1) channels. J Biol Chem. 2015;290:2086–98.

    Article  CAS  PubMed  Google Scholar 

  93. Sun X, Zakharian E. Regulation of the temperature-dependent activation of transient receptor potential vanilloid 1 (TRPV1) by phospholipids in planar lipid bilayers. J Biol Chem. 2015;290:4741–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hammond GRV, Fischer MJ, Anderson KE, Holdich J, Koteci A, Balla T, Irvine RF. PI4P and PI(4,5)P 2 are essential but independent lipid determinants of membrane identity. Science. 2012;337:727–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nadezhdin KD, Neuberger A, Nikolaev YA, Murphy LA, Gracheva EO, Bagriantsev SN, Sobolevsky AI. Extracellular cap domain is an essential component of the TRPV1 gating mechanism. Nat Commun. 2021;12:2154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rohacs T. Phosphoinositide Regulation of TRP Channels. In: Nilius B, Flockerzi V, editors. Mammalian Transient Receptor Potential (TRP) cation channels. Cham: Springer; 2014. p. 1143–76.

    Chapter  Google Scholar 

  97. Yazici AT, Gianti E, Kasimova MA, Lee B-H, Carnevale V, Rohacs T. Dual regulation of TRPV1 channels by phosphatidylinositol via functionally distinct binding sites. J Biol Chem. 2021;296:100573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Senning EN, Collins MD, Stratiievska A, Ufret-Vincenty CA, Gordon SE. Regulation of TRPV1 ion channel by phosphoinositide (4,5)-bisphosphate: the role of membrane asymmetry. J Biol Chem. 2014;289:10999–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kim AY, Tang Z, Liu Q, Patel KN, Maag D, Geng Y, Dong X. Pirt, a phosphoinositide-binding protein, functions as a regulatory subunit of TRPV1. Cell. 2008;133:475–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Caires R, Bell B, Lee J, Romero LO, Vásquez V, Cordero-Morales JF. Deficiency of inositol monophosphatase activity decreases phosphoinositide lipids and enhances TRPV1 function in vivo. J Neurosci. 2021;41:408–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rohacs T. Phosphoinositide regulation of TRPV1 revisited. Pflugers Arch – Eur J Physiol. 2015;467:1851–69.

    Article  CAS  Google Scholar 

  102. Dosey TL, Wang Z, Fan G, Zhang Z, Serysheva II, Chiu W, Wensel TG. Structures of TRPV2 in distinct conformations provide insight into role of the pore turret. Nat Struct Mol Biol. 2019;26:40–9.

    Article  CAS  PubMed  Google Scholar 

  103. Liu M, Huang W, Wu D, Priestley JV. TRPV1, but not P2X 3, requires cholesterol for its function and membrane expression in rat nociceptors. Eur J Neurosci. 2006;24:1–6.

    Article  CAS  PubMed  Google Scholar 

  104. Szőke É, Börzsei R, Tóth DM, Lengl O, Helyes Z, Sándor Z, Szolcsányi J. Effect of lipid raft disruption on TRPV1 receptor activation of trigeminal sensory neurons and transfected cell line. Eur J Pharmacol. 2010;628:67–74.

    Article  PubMed  Google Scholar 

  105. Fantini J, Barrantes FJ. How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Front Physiol. 2013; https://doi.org/10.3389/fphys.2013.00031.

  106. Baier CJ, Fantini J, Barrantes FJ. Disclosure of cholesterol recognition motifs in transmembrane domains of the human nicotinic acetylcholine receptor. Sci Rep. 2011;1:69.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Hayes P, Meadows HJ, Gunthorpe MJ, et al. Cloning and functional expression of a human orthologue of rat vanilloid receptor-1. Pain. 2000;88:205–15.

    Article  CAS  PubMed  Google Scholar 

  108. Park U, Vastani N, Guan Y, Raja SN, Koltzenburg M, Caterina MJ. TRP vanilloid 2 knock-out mice are susceptible to perinatal lethality but display normal thermal and mechanical nociception. J Neurosci. 2011;31:11425–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bender F, Mederos y Schnitzler M, Li Y, Ji A, Weihe E, Gudermann T, Schäfer M. The temperature-sensitive ion channel TRPV2 is endogenously expressed and functional in the primary sensory cell line F-11. Cell Physiol Biochem. 2005;15:183–94.

    Article  CAS  PubMed  Google Scholar 

  110. Mercado J, Gordon-Shaag A, Zagotta WN, Gordon SE. Ca2+-dependent desensitization of TRPV2 channels is mediated by hydrolysis of phosphatidylinositol 4,5-bisphosphate. J Neurosci. 2010;30:13338–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lévêque M, Penna A, Le Trionnaire S, Belleguic C, Desrues B, Brinchault G, Jouneau S, Lagadic-Gossmann D, Martin-Chouly C. Phagocytosis depends on TRPV2-mediated calcium influx and requires TRPV2 in lipids rafts: alteration in macrophages from patients with cystic fibrosis. Sci Rep. 2018;8:4310.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Doerner JF, Hatt H, Ramsey IS. Voltage- and temperature-dependent activation of TRPV3 channels is potentiated by receptor-mediated PI(4,5)P2 hydrolysis. J Gen Physiol. 2011;137:271–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Jara-Oseguera A, Huffer KE, Swartz KJ. The ion selectivity filter is not an activation gate in TRPV1-3 channels. Elife. 2019;8:e51212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Deng Z, Maksaev G, Rau M, **e Z, Hu H, Fitzpatrick JAJ, Yuan P. Gating of human TRPV3 in a lipid bilayer. Nat Struct Mol Biol. 2020;27:635–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bang S, Yoo S, Yang T-J, Cho H, Hwang SW. Farnesyl pyrophosphate is a novel pain-producing molecule via specific activation of TRPV3. J Biol Chem. 2010;285:19362–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Murthy S, Tong H, Hohl RJ. Regulation of fatty acid synthesis by farnesyl pyrophosphate. J Biol Chem. 2005;280:41793–804.

    Article  CAS  PubMed  Google Scholar 

  117. Klein AS, Tannert A, Schaefer M. Cholesterol sensitises the transient receptor potential channel TRPV3 to lower temperatures and activator concentrations. Cell Calcium. 2014;55:59–68.

    Article  CAS  PubMed  Google Scholar 

  118. Ounjian J, Bukiya AN, Rosenhouse-Dantsker A. Molecular determinants of cholesterol binding to soluble and transmembrane protein domains. In: Rosenhouse-Dantsker A, Bukiya AN, editors. Direct mechanisms in cholesterol modulation of protein function. Cham: Springer; 2019. p. 47–66.

    Chapter  Google Scholar 

  119. Takahashi N, Hamada-Nakahara S, Itoh Y, et al. TRPV4 channel activity is modulated by direct interaction of the ankyrin domain to PI(4,5)P2. Nat Commun. 2014;5:4994.

    Article  CAS  PubMed  Google Scholar 

  120. Garcia-Elias A, Mrkonjic S, Pardo-Pastor C, Inada H, Hellmich UA, Rubio-Moscardó F, Plata C, Gaudet R, Vicente R, Valverde MA. Phosphatidylinositol-4,5-biphosphate-dependent rearrangement of TRPV4 cytosolic tails enables channel activation by physiological stimuli. Proc Natl Acad Sci USA. 2013;110:9553–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Harraz OF, Longden TA, Hill-Eubanks D, Nelson MT. PIP2 depletion promotes TRPV4 channel activity in mouse brain capillary endothelial cells. Elife. 2018;7:e38689.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Cuajungco MP, Grimm C, Oshima K, D’hoedt D, Nilius B, Mensenkamp AR, Bindels RJM, Plomann M, Heller S. PACSINs bind to the TRPV4 cation channel. J Biol Chem. 2006;281:18753–62.

    Article  CAS  PubMed  Google Scholar 

  123. Goretzki B, Guhl C, Tebbe F, Harder J-M, Hellmich UA. Unstructural biology of TRP ion channels: the role of intrinsically disordered regions in channel function and regulation. J Mol Biol. 2021:166931.

    Google Scholar 

  124. Carreño FR, Ji LL, Cunningham JT. Altered central TRPV4 expression and lipid raft association related to inappropriate vasopressin secretion in cirrhotic rats. Am J Physiol Regul Integr Comp Physiol. 2009;296:R454–66.

    Article  PubMed  Google Scholar 

  125. Caires R, Sierra-Valdez FJ, Millet JRM, Herwig JD, Roan E, Vásquez V, Cordero-Morales JF. Omega-3 fatty acids modulate TRPV4 function through plasma membrane remodeling. Cell Rep. 2017;21:246–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lakk M, Hoffmann GF, Gorusupudi A, Enyong E, Lin A, Bernstein PS, Toft-Bertelsen T, MacAulay N, Elliott MH, Križaj D. Membrane cholesterol regulates TRPV4 function, cytoskeletal expression, and the cellular response to tension. J Lipid Res. 2021;62:100145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Toth B, Csanady L. Pore collapse underlies irreversible inactivation of TRPM2 cation channel currents. Proc Natl Acad Sci. 2012;109:13440–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lee AG. Interfacial binding sites for cholesterol on TRP ion channels. Biophys J. 2019;117:2020–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wagner TFJ, Loch S, Lambert S, et al. Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic β cells. Nat Cell Biol. 2008;10:1421–30.

    Article  CAS  PubMed  Google Scholar 

  130. Badheka D, Yudin Y, Borbiro I, Hartle CM, Yazici A, Mirshahi T, Rohacs T. Inhibition of Transient Receptor Potential Melastatin 3 ion channels by G-protein βγ subunits. Elife. 2017;6:e26147.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Tóth BI, Konrad M, Ghosh D, Mohr F, Halaszovich CR, Leitner MG, Vriens J, Oberwinkler J, Voets T. Regulation of the transient receptor potential channel TRPM3 by phosphoinositides. J Gen Physiol. 2015;146:51–63.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Naylor J, Li J, Milligan CJ, et al. Pregnenolone sulphate- and cholesterol-regulated TRPM3 channels coupled to vascular smooth muscle secretion and contraction. Circ Res. 2010;106:1507–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sághy É, Szőke É, Payrits M, Helyes Z, Börzsei R, Erostyák J, Jánosi TZ, Sétáló G Jr, Szolcsányi J. Evidence for the role of lipid rafts and sphingomyelin in Ca2+-gating of Transient Receptor Potential channels in trigeminal sensory neurons and peripheral nerve terminals. Pharmacol Res. 2015;100:101–16.

    Article  PubMed  Google Scholar 

  134. Liu B. Functional control of cold- and menthol-sensitive TRPM8 ion channels by phosphatidylinositol 4,5-bisphosphate. J Neurosci. 2005;25:1674–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Daniels RL, Takashima Y, McKemy DD. Activity of the neuronal cold sensor TRPM8 is regulated by phospholipase C via the phospholipid phosphoinositol 4,5-bisphosphate. J Biol Chem. 2009;284:1570–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Fujita F, Uchida K, Takaishi M, Sokabe T, Tominaga M. Ambient temperature affects the temperature threshold for TRPM8 activation through interaction of phosphatidylinositol 4,5-bisphosphate. J Neurosci. 2013;33:6154–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. De Petrocellis L, Starowicz K, Moriello AS, Vivese M, Orlando P, Di Marzo V. Regulation of transient receptor potential channels of melastatin type 8 (TRPM8): effect of cAMP, cannabinoid CB1 receptors and endovanilloids. Exp Cell Res. 2007;313:1911–20.

    Article  PubMed  Google Scholar 

  138. Linte RM, Ciobanu C, Reid G, Babes A. Desensitization of cold- and menthol-sensitive rat dorsal root ganglion neurones by inflammatory mediators. Exp Brain Res. 2007;178:89–98.

    Article  CAS  PubMed  Google Scholar 

  139. Sarria I, Gu J. Menthol response and adaptation in nociceptive-like and nonnociceptive-like neurons: role of protein kinases. Mol Pain. 2010;6:1744-8069-6–47.

    Article  Google Scholar 

  140. Morenilla-Palao C, Pertusa M, Meseguer V, Cabedo H, Viana F. Lipid raft segregation modulates TRPM8 channel activity. J Biol Chem. 2009;284:9215–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Veliz LA, Toro CA, Vivar JP, Arias LA, Villegas J, Castro MA, Brauchi S. Near-membrane dynamics and capture of TRPM8 channels within transient confinement domains. PLoS One. 2010;5:e13290.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Grolez GP, Gordiendko DV, Clarisse M, Hammadi M, Desruelles E, Fromont G, Prevarskaya N, Slomianny C, Gkika D. TRPM8-androgen receptor association within lipid rafts promotes prostate cancer cell migration. Cell Death Dis. 2019;10:652.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Gutorov R, Peters M, Katz B, Brandwine T, Barbera NA, Levitan I, Minke B. Modulation of transient receptor potential C channel activity by cholesterol. Front Pharmacol. 2019;10:1487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Singh DK, Shentu T-P, Enkvetchakul D, Levitan I. Cholesterol regulates prokaryotic Kir channel by direct binding to channel protein. Bioch Biophys Acta Biomembr. 2011;1808:2527–33.

    Article  CAS  Google Scholar 

  145. Balajthy A, Hajdu P, Panyi G, Varga Z Sterol regulation of voltage-gated K+ channels. In: Current topics in membranes. Elsevier; 2017. p 255–292.

    Google Scholar 

  146. Murrell-Lagnado RD. Regulation of P2X purinergic receptor signaling by cholesterol. In: Current topics in membranes. Elsevier; 2017. p 211–232.

    Google Scholar 

  147. Rosenhouse-Dantsker A. Insights into the molecular requirements for cholesterol binding to ion channels. In: Current topics in membranes. Elsevier; 2017. p. 187–208

    Google Scholar 

  148. Ciardo MG, Ferrer-Montiel A. Lipids as central modulators of sensory TRP channels. Bioch Biophys Acta Biomembr. 2017;1859:1615–28.

    Article  CAS  Google Scholar 

  149. Patel KN, Liu Q, Meeker S, Undem BJ, Dong X. Pirt, a TRPV1 modulator, is required for histamine-dependent and -independent itch. PLoS One. 2011;6:e20559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hansen SB. Lipid agonism: The PIP2 paradigm of ligand-gated ion channels. Biochim Biophys Acta Mol Cell Biol Lipids. 2015;1851:620–8.

    Article  CAS  Google Scholar 

  151. Allen JA, Halverson-Tamboli RA, Rasenick MM. Lipid raft microdomains and neurotransmitter signalling. Nat Rev Neurosci. 2007;8:128–40.

    Article  CAS  PubMed  Google Scholar 

  152. Ma D, Seo J, Switzer K, Fan Y, Mcmurray D, Lupton J, Chapkin R. ?3 PUFA and membrane microdomains: a new frontier in bioactive lipid research. J Nutr Biochem. 2004;15:700–6.

    Article  CAS  PubMed  Google Scholar 

  153. Chapkin RS, McMurray DN, Davidson LA, Patil BS, Fan Y-Y, Lupton JR. Bioactive dietary long-chain fatty acids: emerging mechanisms of action. Br J Nutr. 2008;100:1152–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Feron O, Dessy C, Moniotte S, Desager J-P, Balligand J-L. Hypercholesterolemia decreases nitric oxide production by promoting the interaction of caveolin and endothelial nitric oxide synthase. J Clin Invest. 1999;103:897–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Bromberg Z, Weiss Y. The role of the membrane-initiated heat shock response in cancer. Front Mol Biosci. 2016; https://doi.org/10.3389/fmolb.2016.00012.

  156. Waning J, Vriens J, Owsianik G, Stüwe L, Mally S, Fabian A, Frippiat C, Nilius B, Schwab A. A novel function of capsaicin-sensitive TRPV1 channels: involvement in cell migration. Cell Calcium. 2007;42:17–25.

    Article  CAS  PubMed  Google Scholar 

  157. Monet M, Lehen’kyi V, Gackiere F, et al. Role of cationic channel TRPV2 in promoting prostate cancer migration and progression to androgen resistance. Cancer Res. 2010;70:1225–35.

    Article  CAS  PubMed  Google Scholar 

  158. Rodrigues T, Sieglitz F, Bernardes GJL. Natural product modulators of transient receptor potential (TRP) channels as potential anti-cancer agents. Chem Soc Rev. 2016;45:6130–7.

    Article  CAS  PubMed  Google Scholar 

  159. Deering-Rice CE, Shapiro D, Romero EG, et al. Activation of transient receptor potential ankyrin-1 by insoluble particulate material and association with asthma. Am J Respir Cell Mol Biol. 2015;53:893–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kowalska M, Prendecki M, Kapelusiak-Pielok M, Grzelak T, Łagan-Jędrzejczyk U, Wiszniewska M, Kozubski W, Dorszewska J. Analysis of genetic variants in SCN1A, SCN2A, KCNK18, TRPA1 and STX1A as a possible marker of migraine. Curr Genomics. 2020;21:224–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Valdes AM, De Wilde G, Doherty SA, et al. The Ile585Val TRPV1 variant is involved in risk of painful knee osteoarthritis. Ann Rheum Dis. 2011;70:1556–61.

    Article  PubMed  Google Scholar 

  162. Yakubova A, Davidyuk Y, Tohka J, Khayrutdinova O, Kudryavtsev I, Nurkhametova D, Kamshilin A, Giniatullin R, Rizvanov A. Searching for predictors of migraine chronification: a pilot study of 1911A>G polymorphism of TRPV1 gene in episodic versus chronic migraine. J Mol Neurosci. 2021;71:618–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Itzel Llorente for the preparation of figures and proofreading the manuscript. This work was supported by grants Dirección General de Asuntos del Personal Académico (DGAPA)-Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT) grant IN200720, Consejo Nacional de Ciencia y Tecnología (CONACyT) grant A1-S-8760, and Secretaría de Educación, Ciencia, Tecnología e Innovación del Gobierno de la Ciudad de México grant SECTEI/208/2019 to T.R and PAPIIT-IN206819 and FORDECYT-PRONACES (FORDECYT-PRONACES/64392/2020), CONACyT to S.L.M.-L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara Rosenbaum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rosenbaum, T., Morales-Lázaro, S.L. (2023). Regulation of ThermoTRP Channels by PIP2 and Cholesterol. In: Dantsker, A.R. (eds) Cholesterol and PI(4,5)P2 in Vital Biological Functions. Advances in Experimental Medicine and Biology, vol 1422. Springer, Cham. https://doi.org/10.1007/978-3-031-21547-6_9

Download citation

Publish with us

Policies and ethics

Navigation