From Crosstalk to Synergism: The Combined Effect of Cholesterol and PI(4,5)P2 on Inwardly Rectifying Potassium Channels

  • Chapter
  • First Online:
Cholesterol and PI(4,5)P2 in Vital Biological Functions

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1422))

  • 753 Accesses

Abstract

Inwardly rectifying potassium (Kir) channels are integral membrane proteins that control the flux of potassium ions across cell membranes and regulate membrane permeability. All eukaryotic Kir channels require the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) for activation. In recent years, it has become evident that the function of many members of this family of channels is also mediated by another essential lipid—cholesterol. Here, we focus on members of the Kir2 and Kir3 subfamilies and their modulation by these two key lipids. We discuss how PI(4,5)P2 and cholesterol bind to Kir2 and Kir3 channels and how they affect channel activity. We also discuss the accumulating evidence indicating that there is interplay between PI(4,5)P2 and cholesterol in the modulation of Kir2 and Kir3 channels. In particular, we review the crosstalk between PI(4,5)P2 and cholesterol in the modulation of the ubiquitously expressed Kir2.1 channel and the synergy between these two lipids in the modulation of the Kir3.4 channel, which is primarily expressed in the heart. Additionally, we demonstrate that there is also synergy in the modulation of Kir3.2 channels, which are expressed in the brain. These observations suggest that alterations in the relative levels PI(4,5)P2 and cholesterol may fine-tune Kir channel activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 199.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rosenhouse-Dantsker A, Mehta D, Levitan I. Regulation of ion channels by membrane lipids. Compr Physiol. 2012;2(1):31–68.

    Article  PubMed  Google Scholar 

  2. Logothetis DE, ** T, Lupyan D, Rosenhouse-Dantsker A. Phosphoinositide-mediated gating of inwardly rectifying K(+) channels. Pflugers Arch. 2007;455(1):83–95.

    Article  CAS  PubMed  Google Scholar 

  3. Huang CL. Complex roles of PIP2 in the regulation of ion channels and transporters. Am J Physiol Renal Physiol. 2007;293(6):F1761–5.

    Article  CAS  PubMed  Google Scholar 

  4. Hille B, Dickson EJ, Kruse M, Vivas O, Suh BC. Phosphoinositides regulate ion channels. Biochim Biophys Acta. 2015;1851(6):844–56.

    Article  CAS  PubMed  Google Scholar 

  5. D’Avanzo N, Cheng WW, Doyle DA, Nichols CG. Direct and specific activation of human inward rectifier K+ channels by membrane phosphatidylinositol 4,5-bisphosphate. J Biol Chem. 2010;285(48):37129–32.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rosenhouse-Dantsker A, Leal-Pinto E, Logothetis DE, Levitan I. Comparative analysis of cholesterol sensitivity of Kir channels: role of the CD loop. Channels (Austin). 2010;4(1):63–6.

    Article  CAS  PubMed  Google Scholar 

  7. Bukiya AN, Durdagi S, Noskov S, Rosenhouse-Dantsker A. Cholesterol up-regulates neuronal G protein-gated inwardly rectifying potassium (GIRK) channel activity in the hippocampus. J Biol Chem. 2017;292(15):6135–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Deng W, Bukiya AN, Rodríguez-Menchaca AA, et al. Hypercholesterolemia induces up-regulation of KACh cardiac currents via a mechanism independent of phosphatidylinositol 4,5-bisphosphate and Gβγ. J Biol Chem. 2012;287(7):4925–35.

    Article  CAS  PubMed  Google Scholar 

  9. Romanenko VG, Fang Y, Byfield F, et al. Cholesterol sensitivity and lipid raft targeting of Kir2.1 channels. Biophys J. 2004;87(6):3850–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chan KW, Sui JL, Vivaudou M, Logothetis DE. Control of channel activity through a unique amino acid residue of a G protein-gated inwardly rectifying K+ channel subunit. Proc Natl Acad Sci U S A. 1996;93(24):14193–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vivaudou M, Chan KW, Sui JL, Jan LY, Reuveny E, Logothetis DE. Probing the G-protein regulation of GIRK1 and GIRK4, the two subunits of the KACh channel, using functional homomeric mutants. J Biol Chem. 1997;272(50):31553–60.

    Article  CAS  PubMed  Google Scholar 

  12. Tucker SJ, Gribble FM, Zhao C, Trapp S, Ashcroft FM. Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor. Nature. 1997;387(6629):179–83.

    Article  CAS  PubMed  Google Scholar 

  13. Krapivinsky G, Gordon EA, Wickman K, Velimirović B, Krapivinsky L, Clapham DE. The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K(+)-channel proteins. Nature. 1995;374(6518):135–41.

    Article  CAS  PubMed  Google Scholar 

  14. Chen X, Johnston D. Constitutively active G-protein-gated inwardly rectifying K+ channels in dendrites of hippocampal CA1 pyramidal neurons. J Neurosci. 2005;25(15):3787–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Van Dongen AM, Codina J, Olate J, et al. Newly identified brain potassium channels gated by the guanine nucleotide binding protein Go. Science. 1988;242(4884):1433–7.

    Article  Google Scholar 

  16. Leaney JL. Contribution of Kir3.1, Kir3.2A and Kir3.2C subunits to native G protein-gated inwardly rectifying potassium currents in cultured hippocampal neurons. Eur J Neurosci. 2003;18(8):2110–8.

    Article  PubMed  Google Scholar 

  17. Grigg JJ, Kozasa T, Nakajima Y, Nakajima S. Single-channel properties of a G-protein-coupled inward rectifier potassium channel in brain neurons. J Neurophysiol. 1996;75(1):318–28.

    Article  CAS  PubMed  Google Scholar 

  18. Witkowski G, Szulczyk B, Rola R, Szulczyk P. D(1) dopaminergic control of G protein-dependent inward rectifier K(+) (GIRK)-like channel current in pyramidal neurons of the medial prefrontal cortex. Neuroscience. 2008;155(1):53–63.

    Article  CAS  PubMed  Google Scholar 

  19. Miyake M, Christie MJ, North RA. Single potassium channels opened by opioids in rat locus ceruleus neurons. Proc Natl Acad Sci U S A. 1989;86(9):3419–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kawano T, Zhao P, Nakajima S, Nakajima Y. Single-cell RT-PCR analysis of GIRK channels expressed in rat locus coeruleus and nucleus basalis neurons. Neurosci Lett. 2004;358(1):63–7.

    Article  CAS  PubMed  Google Scholar 

  21. Bajic D, Koike M, Albsoul-Younes AM, Nakajima S, Nakajima Y. Two different inward rectifier K+ channels are effectors for transmitter-induced slow excitation in brain neurons. Proc Natl Acad Sci U S A. 2002;99(22):14494–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yi BA, Lin YF, Jan YN, Jan LY. Yeast screen for constitutively active mutant G protein-activated potassium channels. Neuron. 2001;29(3):657–67.

    Article  CAS  PubMed  Google Scholar 

  23. Bukiya AN, Osborn CV, Kuntamallappanavar G, et al. Cholesterol increases the open probability of cardiac KACh currents. Biochim Biophys Acta. 2015;1848(10 Pt):2406–13.

    Article  CAS  PubMed  Google Scholar 

  24. Rosenhouse-Dantsker A, Epshtein Y, Levitan I. Interplay between lipid modulators of Kir2 channels: cholesterol and PIP2. Comput Struct Biotechnol J. 2014;11(19):131–7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bukiya AN, Rosenhouse-Dantsker A. Synergistic activation of G protein-gated inwardly rectifying potassium channels by cholesterol and PI(4,5)P2. Biochim Biophys Acta Biomembr. 2017;1859(7):1233–41.

    Article  CAS  PubMed  Google Scholar 

  26. Rohács T, Lopes CM, ** T, Ramdya PP, Molnár Z, Logothetis DE. Specificity of activation by phosphoinositides determines lipid regulation of Kir channels. Proc Natl Acad Sci U S A. 2003;100(2):745–50.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liou HH, Zhou SS, Huang CL. Regulation of ROMK1 channel by protein kinase A via a phosphatidylinositol 4,5-bisphosphate-dependent mechanism. Proc Natl Acad Sci U S A. 1999;96(10):5820–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rohács T, Chen J, Prestwich GD, Logothetis DE. Distinct specificities of inwardly rectifying K(+) channels for phosphoinositides. J Biol Chem. 1999;274(51):36065–72.

    Article  PubMed  Google Scholar 

  29. Zeng WZ, Liou HH, Krishna UM, Falck JR, Huang CL. Structural determinants and specificities for ROMK1-phosphoinositide interaction. Am J Physiol Renal Physiol. 2002;282(5):F826–34.

    Article  CAS  PubMed  Google Scholar 

  30. Rosenhouse-Dantsker A, Logothetis DE. Molecular characteristics of phosphoinositide binding. Pflugers Arch. 2007;455(1):45–53.

    Article  CAS  PubMed  Google Scholar 

  31. Hilgemann DW. On the physiological roles of PIP(2) at cardiac Na+ Ca2+ exchangers and K(ATP) channels: a long journey from membrane biophysics into cell biology. J Physiol. 2007;582(Pt 3):903–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Suh BC, Hille B. PIP2 is a necessary cofactor for ion channel function: how and why? Annu Rev Biophys. 2008;37:175–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Whorton MR, MacKinnon R. Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G proteins, PIP2, and sodium. Cell. 2011;147(1):199–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Niu Y, Tao X, Touhara KK, MacKinnon R. Cryo-EM analysis of PIP2 regulation in mammalian GIRK channels. elife. 2020;9:e60552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zangerl-Plessl EM, Lee SJ, Maksaev G, et al. Atomistic basis of opening and conduction in mammalian inward rectifier potassium (Kir2.2) channels. J Gen Physiol. 2020;152(1):e201912422.

    PubMed  Google Scholar 

  36. Hansen SB, Tao X, MacKinnon R. Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature. 2011;477(7365):495–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Whorton MR, MacKinnon R. X-ray structure of the mammalian GIRK2-βγ G-protein complex. Nature. 2013;498(7453):190–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rosenhouse-Dantsker A, Noskov S, Durdagi S, Logothetis DE, Levitan I. Identification of novel cholesterol-binding regions in Kir2 channels. J Biol Chem. 2013;288(43):31154–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fürst O, Nichols CG, Lamoureux G, D’Avanzo N. Identification of a cholesterol-binding pocket in inward rectifier K(+) (Kir) channels. Biophys J. 2014;107(12):2786–96.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Jones OT, McNamee MG. Annular and nonannular binding sites for cholesterol associated with the nicotinic acetylcholine receptor. Biochemistry. 1988;27(7):2364–74.

    Article  CAS  PubMed  Google Scholar 

  41. Corradi V, Bukiya AN, Miranda WE, et al. A molecular switch controls the impact of cholesterol on a Kir channel. Proc Natl Acad Sci U S A. 2022;119(13):e2109431119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rosenhouse-Dantsker A. Cholesterol binding sites in inwardly rectifying potassium channels. Adv Exp Med Biol. 2019;1135:119–38.

    Article  CAS  PubMed  Google Scholar 

  43. Mathiharan YK, Glaaser IW, Zhao Y, Robertson MJ, Skiniotis G, Slesinger PA. Structural insights into GIRK2 channel modulation by cholesterol and PIP2. Cell Rep. 2021;36(8):109619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ohvo-Rekilä H, Ramstedt B, Leppimäki P, Slotte JP. Cholesterol interactions with phospholipids in membranes. Prog Lipid Res. 2002;41(1):66–97.

    Article  PubMed  Google Scholar 

  45. Hung WC, Lee MT, Chen FY, Huang HW. The condensing effect of cholesterol in lipid bilayers. Biophys J. 2007;92(11):3960–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ermilova I, Lyubartsev AP. Cholesterol in phospholipid bilayers: positions and orientations inside membranes with different unsaturation degrees. Soft Matter. 2018;15(1):78–93.

    Article  PubMed  Google Scholar 

  47. ** T, Sui JL, Rosenhouse-Dantsker A, Chan KW, Jan LY, Logothetis DE. Stoichiometry of Kir channels with phosphatidylinositol bisphosphate. Channels (Austin). 2008;2(1):19–33.

    Article  PubMed  Google Scholar 

  48. Logothetis DE, Lupyan D, Rosenhouse-Dantsker A. Diverse Kir modulators act in close proximity to residues implicated in phosphoinositide binding. J Physiol. 2007;582(Pt 3):953–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fan Z, Makielski JC. Anionic phospholipids activate ATP-sensitive potassium channels. J Biol Chem. 1997;272(9):5388–95.

    Article  CAS  PubMed  Google Scholar 

  50. Haider S, Tarasov AI, Craig TJ, Sansom MS, Ashcroft FM. Identification of the PIP2-binding site on Kir6.2 by molecular modelling and functional analysis. EMBO J. 2007;26(16):3749–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Du X, Zhang H, Lopes C, Mirshahi T, Rohacs T, Logothetis DE. Characteristic interactions with phosphatidylinositol 4,5-bisphosphate determine regulation of kir channels by diverse modulators. J Biol Chem. 2004;279(36):37271–81.

    Article  CAS  PubMed  Google Scholar 

  52. Lopes CM, Zhang H, Rohacs T, ** T, Yang J, Logothetis DE. Alterations in conserved Kir channel-PIP2 interactions underlie channelopathies. Neuron. 2002;34(6):933–44.

    Article  CAS  PubMed  Google Scholar 

  53. Schulze D, Krauter T, Fritzenschaft H, Soom M, Baukrowitz T. Phosphatidylinositol 4,5-bisphosphate (PIP2) modulation of ATP and pH sensitivity in Kir channels. A tale of an active and a silent PIP2 site in the N terminus. J Biol Chem. 2003;278(12):10500–5.

    Article  CAS  PubMed  Google Scholar 

  54. Enkvetchakul D, Jeliazkova I, Nichols CG. Direct modulation of Kir channel gating by membrane phosphatidylinositol 4,5-bisphosphate. J Biol Chem. 2005;280(43):35785–8.

    Article  CAS  PubMed  Google Scholar 

  55. Stansfeld PJ, Hopkinson R, Ashcroft FM, Sansom MS. PIP(2)-binding site in Kir channels: definition by multiscale biomolecular simulations. Biochemistry. 2009;48(46):10926–33.

    Article  CAS  PubMed  Google Scholar 

  56. Leal-Pinto E, Gómez-Llorente Y, Sundaram S, et al. Gating of a G protein-sensitive mammalian Kir3.1 prokaryotic Kir channel chimera in planar lipid bilayers. J Biol Chem. 2010;285(51):39790–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang H, He C, Yan X, Mirshahi T, Logothetis DE. Activation of inwardly rectifying K+ channels by distinct PtdIns(4,5)P2 interactions. Nat Cell Biol. 1999;1(3):183–8.

    Article  CAS  PubMed  Google Scholar 

  58. Nishida M, Cadene M, Chait BT, MacKinnon R. Crystal structure of a Kir3.1-prokaryotic Kir channel chimera. EMBO J. 2007;26(17):4005–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rapedius M, Fowler PW, Shang L, Sansom MS, Tucker SJ, Baukrowitz T. H bonding at the helix-bundle crossing controls gating in Kir potassium channels. Neuron. 2007;55(4):602–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tucker SJ, Baukrowitz T. How highly charged anionic lipids bind and regulate ion channels. J Gen Physiol. 2008;131(5):431–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. **e LH, John SA, Ribalet B, Weiss JN. Phosphatidylinositol-4,5-bisphosphate (PIP2) regulation of strong inward rectifier Kir2.1 channels: multilevel positive cooperativity. J Physiol. 2008;586(7):1833–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nasuhoglu C, Feng S, Mao J, et al. Nonradioactive analysis of phosphatidylinositides and other anionic phospholipids by anion-exchange high-performance liquid chromatography with suppressed conductivity detection. Anal Biochem. 2002;301(2):243–54.

    Article  CAS  PubMed  Google Scholar 

  63. Hilgemann DW. Local PIP(2) signals: when, where, and how? Pflugers Arch. 2007;455(1):55–67.

    Article  CAS  PubMed  Google Scholar 

  64. Gimpl G, Burger K, Fahrenholz F. Cholesterol as modulator of receptor function. Biochemistry. 1997;36(36):10959–74.

    Article  CAS  PubMed  Google Scholar 

  65. Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE. The beta gamma subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature. 1987;325(6102):321–6.

    Article  CAS  PubMed  Google Scholar 

  66. Sui JL, Chan KW, Logothetis DE. Na+ activation of the muscarinic K+ channel by a G-protein-independent mechanism. J Gen Physiol. 1996;108(5):381–91.

    Article  CAS  PubMed  Google Scholar 

  67. Sui JL, Petit-Jacques J, Logothetis DE. Activation of the atrial KACh channel by the betagamma subunits of G proteins or intracellular Na+ ions depends on the presence of phosphatidylinositol phosphates. Proc Natl Acad Sci U S A. 1998;95(3):1307–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Huang CL, Feng S, Hilgemann DW. Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma. Nature. 1998;391(6669):803–6.

    Article  CAS  PubMed  Google Scholar 

  69. Ho IH, Murrell-Lagnado RD. Molecular determinants for sodium-dependent activation of G protein-gated K+ channels. J Biol Chem. 1999;274(13):8639–48.

    Article  CAS  PubMed  Google Scholar 

  70. Ho IH, Murrell-Lagnado RD. Molecular mechanism for sodium-dependent activation of G protein-gated K+ channels. J Physiol. 1999;520(Pt 3):645–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rosenhouse-Dantsker A, Sui JL, Zhao Q, et al. A sodium-mediated structural switch that controls the sensitivity of Kir channels to PtdIns(4,5)P(2). Nat Chem Biol. 2008;4(10):624–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mahajan R, Ha J, Zhang M, Kawano T, Kozasa T, Logothetis DE. A computational model predicts that Gβγ acts at a cleft between channel subunits to activate GIRK1 channels. Sci Signal. 2013;6(288):ra69.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Petit-Jacques J, Sui JL, Logothetis DE. Synergistic activation of G protein-gated inwardly rectifying potassium channels by the betagamma subunits of G proteins and Na(+) and Mg(2+) ions. J Gen Physiol. 1999;114(5):673–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li D, ** T, Gazgalis D, Cui M, Logothetis DE. On the mechanism of GIRK2 channel gating by phosphatidylinositol bisphosphate, sodium, and the Gβγ dimer. J Biol Chem. 2019;294(49):18934–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tao X, Avalos JL, Chen J, MacKinnon R. Crystal structure of the eukaryotic strong inward-rectifier K+ channel Kir2.2 at 3.1 A resolution. Science. 2009;326(5960):1668–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Epshtein Y, Chopra AP, Rosenhouse-Dantsker A, Kowalsky GB, Logothetis DE, Levitan I. Identification of a C-terminus domain critical for the sensitivity of Kir2.1 to cholesterol. Proc Natl Acad Sci U S A. 2009;106(19):8055–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rosenhouse-Dantsker A, Noskov S, Han H, et al. Distant cytosolic residues mediate a two-way molecular switch that controls the modulation of inwardly rectifying potassium (Kir) channels by cholesterol and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)). J Biol Chem. 2012;287(48):40266–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rosenhouse-Dantsker A, Logothetis DE, Levitan I. Cholesterol sensitivity of KIR2.1 is controlled by a belt of residues around the cytosolic pore. Biophys J. 2011;100(2):381–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rosenhouse-Dantsker A, Levitan I. Insights into structural determinants of cholesterol sensitivity of kir channels. In: Levitan I, Barrantes FJ, editors. Cholesterol regulation of ion channels and receptors. Chapter 3. Hoboken, NJ: Wiley; 2012. p. 47–67.

    Google Scholar 

  80. Garneau L, Klein H, Parent L, Sauvé R. Contribution of cytosolic cysteine residues to the gating properties of the Kir2.1 inward rectifier. Biophys J. 2003;84(6):3717–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rosenhouse-Dantsker A, Noskov S, Logothetis DE, Levitan I. Cholesterol sensitivity of KIR2.1 depends on functional inter-links between the N and C termini. Channels (Austin). 2013;7(4):303–12.

    Article  CAS  PubMed  Google Scholar 

  82. An HL, Lü SQ, Li JW, et al. The cytosolic GH loop regulates the phosphatidylinositol 4,5-bisphosphate-induced gating kinetics of Kir2 channels. J Biol Chem. 2012;287(50):42278–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Meng XY, Zhang HX, Logothetis DE, Cui M. The molecular mechanism by which PIP(2) opens the intracellular G-loop gate of a Kir3.1 channel. Biophys J. 2012;102(9):2049–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Clarke OB, Caputo AT, Hill AP, Vandenberg JI, Smith BJ, Gulbis JM. Domain reorientation and rotation of an intracellular assembly regulate conduction in Kir potassium channels. Cell. 2010;141(6):1018–29.

    Article  CAS  PubMed  Google Scholar 

  85. Murata Y, Okamura Y. Depolarization activates the phosphoinositide phosphatase ci-VSP, as detected in Xenopus oocytes coexpressing sensors of PIP2. J Physiol. 2007;583(Pt 3):875–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Glaaser IW, Slesinger PA. Dual activation of neuronal G protein-gated inwardly rectifying potassium (GIRK) channels by cholesterol and alcohol. Sci Rep. 2017;7(1):4592.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Rosenhouse-Dantsker A. Cholesterol-binding sites in GIRK channels: the devil is in the details. Lipid Insights. 2018;11:1178635317754071.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Berman HM, Westbrook J, Feng Z, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28(1):235–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tai K, Stansfeld PJ, Sansom MS. Ion-blocking sites of the Kir2.1 channel revealed by multiscale modeling. Biochemistry. 2009;48(36):8758–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avia Rosenhouse-Dantsker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bukiya, A.N., Rosenhouse-Dantsker, A. (2023). From Crosstalk to Synergism: The Combined Effect of Cholesterol and PI(4,5)P2 on Inwardly Rectifying Potassium Channels. In: Dantsker, A.R. (eds) Cholesterol and PI(4,5)P2 in Vital Biological Functions. Advances in Experimental Medicine and Biology, vol 1422. Springer, Cham. https://doi.org/10.1007/978-3-031-21547-6_6

Download citation

Publish with us

Policies and ethics

Navigation