Trends in Voice Recording Classification - Comparison of Conventional Features and Image Analysis Approach

  • Conference paper
  • First Online:
Data Science and Algorithms in Systems (CoMeSySo 2022)

Abstract

Voice pathology includes a wide selection of diseases that affect human voice. Moreover, surgeries in the vicinity of the voice apparatus might temporarily negatively influence human voice. Despite the fact that voice pathology represents a common health issue, the majority of diagnostic methods are either invasive or subject to an interpretation of the medical professional which might vary between individuals. This article presents features that have been traditionally used in aiding the voice pathology diagnosis as well as modern approach to the voice pathology detection using image analysis and classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Airainer, R., Klingholz, F.: Quantitative evaluation of phonetograms in the case of functional dysphonia. J. Voice 7(2), 136–141 (1993). https://linkinghub.elsevier.com/retrieve/pii/S0892199705803431

  2. Alhussein, M., Muhammad, G.: Voice pathology detection using deep learning on mobile healthcare framework. IEEE Access 6, 41034–41041 (2018)

    Google Scholar 

  3. Ali, Z., Alsulaiman, M., Muhammad, G., Elamvazuthi, I., Al-nasheri, A., Mesallam, T.A., Farahat, M., Malki, K.H.: Intra- and inter-database study for Arabic, English, and German databases: do conventional speech features detect voice pathology? J. Voice 31(3), 386.e1–386.e8 (2017). https://linkinghub.elsevier.com/retrieve/pii/S0892199716301837

  4. Awan, S.N., Solomon, N.P., Helou, L.B., Stojadinovic, A.: Spectral-cepstral estimation of dysphonia severity: external validation. Ann. Otorhinolaryngol. 122(1), 40–48 (2013). http://journals.sagepub.com/doi/10.1177/000348941312200108

  5. Bihari, A., Mészáros, K., Reményi, A., Lichtenberger, G.: Voice quality improvement after management of unilateral vocal cord paralysis with different techniques. Eur. Arch. Otorhinolaryngol. 263(12), 1115–1120(2006). http://springer.longhoe.net/10.1007/s00405-006-0116-9

  6. Boersma, P.: Should Jitter Be measured by peak picking or by waveform matching? Folia Phoniatr. Logop. 61(5), 305–308 (2009). https://www.karger.com/Article/FullText/245159

  7. Cesari, U., De Pietro, G., Marciano, E., Niri, C., Sannino, G., Verde, L.: A new database of healthy and pathological voices. Comput. Electr. Eng. 68, 310–321 (2018). https://www.sciencedirect.com/science/article/pii/S0045790617338739

  8. Dejonckere, P.H., Bradley, P., Clemente, P., Cornut, G., Crevier-Buchman, L., Friedrich, G., Van De Heyning, P., Remacle, M., Woisard, V.: A basic protocol for functional assessment of voice pathology, especially for investigating the efficacy of (phonosurgical) treatments and evaluating new assessment techniques. Eur. Arch. Otorinolaryngol. 258(2), 77–82 (2001). https://doi.org/10.1007/s004050000299

  9. Ferrer, C.A., Bodt, M., Maryn, Y., Van de Heyning, P., Hernandez-Diaz Huici, M.: Properties of the cepstral peak prominence and its usefulness in vocal quality measurements (2007)

    Google Scholar 

  10. Ferrer, C.A., González, E., Hernández-Díaz, M.E.: Evaluation of time and frequency domain-based methods for the estimation of harmonics-to-noise-ratios in voice signals. In: Martínez-Trinidad, J.F., Carrasco Ochoa, J.A., Kittler, J. (eds.) CIARP 2006. LNCS, vol. 4225, pp. 406–415. Springer, Heidelberg (2006). https://doi.org/10.1007/11892755_42

  11. Forero, L., Kohler, M., Vellasco, M., Cataldo, E.: Analysis and classification of voice pathologies using glottal signal parameters. J. Voice Off. J. Voice Found. 1 (2015)

    Google Scholar 

  12. Ghoniem, R.M.: Deep genetic algorithm-based voice pathology diagnostic system. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). LNCS, vol. 11608 (2019). www.scopus.com

  13. Hammarberg, B., Fritzen, B., Gauffin, J., Sundberg, J.: Acoustic and perceptual analysis of vocal dysfunction. J. Phonet. 14(3), 533–547 (1986). https://www.sciencedirect.com/science/article/pii/S0095447019307041

  14. Hammarberg, B., Fritzen, B., Gauffin, J., Sundberg, J.: Vocal acoustic analysis - Jitter, Shimmer and HNR parameters. J. Phonet. 9(3), 533–547 (1986). https://www.sciencedirect.com/science/article/pii/S2212017313002788

  15. Hanson, H.: Glottal characteristics of female speakers. Ph.D. thesis (1995)

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)

    Google Scholar 

  17. Hillenbrand, J.: A methodological study of perturbation and additive noise in synthetically generated voice signals. J. Speech Lang. Hear. Res. 30(4), 448–461 (1987). http://pubs.asha.org/doi/10.1044/jshr.3004.448

  18. Hillenbrand, J., Cleveland, R.A., Erickson, R.L.: Acoustic correlates of breathy vocal quality. J. Speech Lang. Hear. Res. 37(4), 769–778 (1994). http://pubs.asha.org/doi/10.1044/jshr.3704.769

  19. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. ar**v preprint ar**v:1408.5093 (2014)

  20. Lu, C., Wang, Y., Ragulskis, M., Cheng, Y.: Fault diagnosis for rotating machinery: a method based on image processing. PLoS ONE 11(10), e0164111 (2016)

    Article  Google Scholar 

  21. Löfqvist, A.: The long-time-average spectrum as a tool in voice research. J. Phonet. 14(3), 471–475 (1986). https://www.sciencedirect.com/science/article/pii/S0095447019306928

  22. Narra, M., Dodderi, T., Anu, C.C., Varghese, S.M., Dattatreya, T.: Harmonic amplitude measures to note gender difference. Adv. Life Sci. Technol. 31, 17 (2015). https://www.iiste.org/Journals/index.php/ALST/article/view/21271

  23. Parsa, V., Jamieson, D.G.: Identification of pathological voices using glottal noise measures. J. Speech Lang. Hear. Res. 43(2), 469–485 (2000). https://www.proquest.com/docview/232351644/abstract/36BA21E399FA4450PQ/1

  24. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You Only Look Once: Unified, Real-Time Object Detection (2015). ar**v Version Number: 5. https://arxiv.org/abs/1506.02640

  25. Schlegel, P., Kist, A., Semmler, M., Döllinger, M., Kunduk, M., Dür, S., Schützenberger, A.: Determination of clinical parameters sensitive to functional voice disorders applying boosted decision stumps. IEEE J. Transl. Eng. Health Med. 8, 2100511 (2020). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7274815/

  26. Schutte, H.K., Seidner, W.: Recommendation by the union of European phoniatricians (UEP): standardizing voice area measurement/phonetography. Folia Phoniatr. (Basel) 35(6), 286–8 (1983)

    Article  Google Scholar 

  27. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014)

    Google Scholar 

  28. Skarnitzl, R.: Fonetická identifikace mluvčího. Univerzita Karlova v Praze, Filozofická fakulta, 1st edn. (2014). https://books.ff.cuni.cz/edicni-rady-ff-uk/varia/foneticka-identifikace-mluvciho/

  29. Titze, I., Horii, Y., Scherer, R.: Some technical considerations in voice perturbation measurements. J. Speech Hear. Res. 30, 252–60 (1987)

    Article  Google Scholar 

  30. Titze, I., Liang, H.: Comparison of Fo extraction methods for high-precision voice perturbation measurements. J. Speech Hear. Res. 36, 1120–33 (1993)

    Article  Google Scholar 

  31. Wang, Y., Cheng, Y.: An approach to fault diagnosis for gearbox based on image processing. In: Shock and Vibration (2016)

    Google Scholar 

  32. Weiss, K., Khoshgoftaar, T.M., Wang, D.D.: A survey of transfer learning. J. Big Data 3(1), 1–40 (2016). https://doi.org/10.1186/s40537-016-0043-6

    Article  Google Scholar 

  33. Woldert-Jokisz, B.: Saarbruecken Voice Database. Institut für Phonetik, Universität des Saarlandes (2008). http://stimmdb.coli.uni-saarland.de/

  34. Yumoto, E., Gould, W.J., Baer, T.: Harmonics-to-noise ratio as an index of the degree of hoarseness. J. Acoust. Soc. Am. 71(6), 1544–1550 (1982). https://asa.scitation.org/doi/abs/10.1121/1.387808

Download references

Acknowledgements

Jan Vrba acknowledges his specific university research grant JIGA 445-85-2222. Jakub Steinbach acknowledges his specific university grant (IGA) 445-88-2202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Steinbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Steinbach, J., Mazúr, R., Vrba, J. (2023). Trends in Voice Recording Classification - Comparison of Conventional Features and Image Analysis Approach. In: Silhavy, R., Silhavy, P., Prokopova, Z. (eds) Data Science and Algorithms in Systems. CoMeSySo 2022. Lecture Notes in Networks and Systems, vol 597. Springer, Cham. https://doi.org/10.1007/978-3-031-21438-7_51

Download citation

Publish with us

Policies and ethics

Navigation