Catecholamines and Immunomodulation

  • Chapter
  • First Online:
Neuroendocrine-Immune System Interactions

Part of the book series: Masterclass in Neuroendocrinology ((MANEURO,volume 13))

  • 586 Accesses

Abstract

Dopamine, norepinephrine, and epinephrine are endogenous catecholamines, known to play many different roles in the body, such as increasing heart rate, blood pressure, and blood glucose, controlling movement, and acting on mood and behavior. Catecholamines were first described as neurotransmitters of the sympathetic nervous system, but they also act as hormones released by the adrenal medulla, and increasing evidence indicates their crucial role in the immune system. In this chapter, we will describe how catecholamines modulate immune cells in physiologic as well as pathologic conditions and provide evidence indicating that catecholamines are also to be considered cytokines, that is compounds synthesized by immune cells, which act as local intercellular signaling mediators. We will then describe how this knowledge will be helpful for new therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahlquist RP (1948) A study of the adrenotropic receptors. Am J Phys 153:586–600

    Article  CAS  Google Scholar 

  • Arreola R, Alvarez-Herrera S, Perez-Sanchez G, Becerril-Villanueva E, Cruz-Fuentes C, Flores-Gutierrez EO, Garces-Alvarez ME, De La Cruz-Aguilera DL, Medina-Rivero E, Hurtado-Alvarado G, Quintero-Fabian S, Pavon L (2016) Immunomodulatory effects mediated by dopamine. J Immunol Res 2016:3160486

    Article  PubMed  PubMed Central  Google Scholar 

  • Ayoub MA, Pfleger KD (2010) Recent advances in bioluminescence resonance energy transfer technologies to study GPCR heteromerization. Curr Opin Pharmacol 10:44–52

    Article  CAS  PubMed  Google Scholar 

  • Baker AJ, Palmer J, Johnson M, Fuller RW (1994) Inhibitory actions of salmeterol on human airway macrophages and blood monocytes. Eur J Pharmacol 264:301–306

    Article  CAS  PubMed  Google Scholar 

  • Basu S, Dasgupta PS (2000) Dopamine, a neurotransmitter, influences the immune system. J Neuroimmunol 102:113–124

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu JM, Espinoza S, Gainetdinov RR (2015) Dopamine receptors – IUPHAR Review 13. Br J Pharmacol 172:1–23

    Article  CAS  PubMed  Google Scholar 

  • Ben-Eliyahu S, Shakhar G, Shakhar K, Melamed R (2000) Timing within the oestrous cycle modulates adrenergic suppression of NK activity and resistance to metastasis: possible clinical implications. Br J Cancer 83:1747–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benschop RJ, Schedlowski M, Wienecke H, Jacobs R, Schmidt RE (1997) Adrenergic control of natural killer cell circulation and adhesion. Brain Behav Immun 11:321–332

    Article  CAS  PubMed  Google Scholar 

  • Bergquist J, Tarkowski A, Ekman R, Ewing A (1994) Discovery of endogenous catecholamines in lymphocytes and evidence for catecholamine regulation of lymphocyte function via an autocrine loop. Proc Natl Acad Sci USA 91:12912–12916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergquist J, Josefsson E, Tarkowski A, Ekman R, Ewing A (1997) Measurements of catecholamine-mediated apoptosis of immunocompetent cells by capillary electrophoresis. Electrophoresis 18:1760–1766

    Article  CAS  PubMed  Google Scholar 

  • Besser MJ, Ganor Y, Levite M (2005) Dopamine by itself activates either D2, D3 or D1/D5 dopaminergic receptors in normal human T-cells and triggers the selective secretion of either IL-10, TNFalpha or both. J Neuroimmunol 169:161–171

    Article  CAS  PubMed  Google Scholar 

  • Bigler MB, Egli SB, Hysek CM, Hoenger G, Schmied L, Baldin FS, Marquardsen FA, Recher M, Liechti ME, Hess C, Berger CT (2015) Stress-Induced in vivo recruitment of human cytotoxic natural killer cells favors subsets with distinct receptor profiles and associates with increased epinephrine levels. PLoS One 10:e0145635

    Article  PubMed  PubMed Central  Google Scholar 

  • Bigley AB, Rezvani K, Pistillo M, Reed J, Agha N, Kunz H, O'connor DP, Sekine T, Bollard CM, Simpson RJ (2015) Acute exercise preferentially redeploys NK-cells with a highly-differentiated phenotype and augments cytotoxicity against lymphoma and multiple myeloma target cells. Part II: impact of latent cytomegalovirus infection and catecholamine sensitivity. Brain Behav Immun 49:59–65

    Article  CAS  PubMed  Google Scholar 

  • Blazar BA, Rodrick ML, O’mahony JB, Wood JJ, Bessey PQ, Wilmore DW, Mannick JA (1986) Suppression of natural killer-cell function in humans following thermal and traumatic injury. J Clin Immunol 6:26–36

    Article  CAS  PubMed  Google Scholar 

  • Bone NB, Liu Z, Pittet JF, Zmijewski JW (2017) Frontline Science: D1 dopaminergic receptor signaling activates the AMPK-bioenergetic pathway in macrophages and alveolar epithelial cells and reduces endotoxin-induced ALI. J Leukoc Biol 101:357–365

    Article  CAS  PubMed  Google Scholar 

  • Boneberg EM, Von Seydlitz E, Propster K, Watzl H, Rockstroh B, Illges H (2006) D3 dopamine receptor mRNA is elevated in T cells of schizophrenic patients whereas D4 dopamine receptor mRNA is reduced in CD4+-T cells. J Neuroimmunol 173:180–187

    Article  CAS  PubMed  Google Scholar 

  • Borda ES, Tenenbaum A, Sales ME, Rumi L, Sterin-Borda L (1998) Role of arachidonic acid metabolites in the action of a beta adrenergic agonist on human monocyte phagocytosis. Prostaglandins Leukot Essent Fatty Acids 58:85–90

    Article  CAS  PubMed  Google Scholar 

  • Borger P, Hoekstra Y, Esselink MT, Postma DS, Zaagsma J, Vellenga E, Kauffman HF (1998) Beta-adrenoceptor-mediated inhibition of IFN-gamma, IL-3, and GM-CSF mRNA accumulation in activated human T lymphocytes is solely mediated by the beta2-adrenoceptor subtype. Am J Respir Cell Mol Biol 19:400–407

    Article  CAS  PubMed  Google Scholar 

  • Brunskole Hummel I, Reinartz MT, Kalble S, Burhenne H, Schwede F, Buschauer A, Seifert R (2013) Dissociations in the effects of beta2-adrenergic receptor agonists on cAMP formation and superoxide production in human neutrophils: support for the concept of functional selectivity. PLoS One 8:e64556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bucsek MJ, Qiao G, Macdonald CR, Giridharan T, Evans L, Niedzwecki B, Liu H, Kokolus KM, Eng JW, Messmer MN, Attwood K, Abrams SI, Hylander BL, Repasky EA (2017) beta-Adrenergic signaling in mice housed at standard temperatures suppresses an effector phenotype in CD8(+) T cells and undermines checkpoint inhibitor therapy. Cancer Res 77:5639–5651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bylund DB, Eikenberg DC, Hieble JP, Langer SZ, Lefkowitz RJ, Minneman KP, Molinoff PB, Ruffolo RR Jr, Trendelenburg U (1994) International union of pharmacology nomenclature of adrenoceptors. Pharmacol Rev 46:121–136

    CAS  PubMed  Google Scholar 

  • Capellino S, Cosentino M, Wolff C, Schmidt M, Grifka J, Straub RH (2010) Catecholamine-producing cells in the synovial tissue during arthritis: modulation of sympathetic neurotransmitters as new therapeutic target. Ann Rheum Dis 69:1853–1860

    Article  CAS  PubMed  Google Scholar 

  • Capellino S, Weber K, Gelder M, Haerle P, Straub RH (2012) First appearance and location of catecholaminergic cells during experimental arthritis and elimination by chemical sympathectomy. Arthritis Rheum 64:1110–1118

    Article  CAS  PubMed  Google Scholar 

  • Carlson SL, Trauth K, Brooks WH, Roszman TL (1994) Enhancement of beta-adrenergic-induced cAMP accumulation in activated T-cells. J Cell Physiol 161:39–48

    Article  CAS  PubMed  Google Scholar 

  • Carvajal Gonczi CM, Tabatabaei Shafiei M, East A, Martire E, Maurice-Ventouris MHI, Darlington PJ (2017) Reciprocal modulation of helper Th1 and Th17 cells by the beta2-adrenergic receptor agonist drug terbutaline. FEBS J 284:3018–3028

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekera PC, Wan TC, Gizewski ET, Auchampach JA, Lasley RD (2013) Adenosine A1 receptors heterodimerize with beta1- and beta2-adrenergic receptors creating novel receptor complexes with altered G protein coupling and signaling. Cell Signal 25:736–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chavez-Sanchez L, Espinosa-Luna JE, Chavez-Rueda K, Legorreta-Haquet MV, Montoya-Diaz E, Blanco-Favela F (2014) Innate immune system cells in atherosclerosis. Arch Med Res 45:1–14

    Article  CAS  PubMed  Google Scholar 

  • Chen ML, Wu S, Tsai TC, Wang LK, Tsai FM (2014) Regulation of neutrophil phagocytosis of Escherichia coli by antipsychotic drugs. Int Immunopharmacol 23:550–557

    Article  CAS  PubMed  Google Scholar 

  • Cohen M, Klein E, Kuten A, Fried G, Zinder O, Pollack S (2002) Increased emotional distress in daughters of breast cancer patients is associated with decreased natural cytotoxic activity, elevated levels of stress hormones and decreased secretion of Th1 cytokines. Int J Cancer 100:347–354

    Article  CAS  PubMed  Google Scholar 

  • Cohen MJ, Shankar R, Stevenson J, Fernandez R, Gamelli RL, Jones SB (2004) Bone marrow norepinephrine mediates development of functionally different macrophages after thermal injury and sepsis. Ann Surg 240:132–141

    Article  PubMed  PubMed Central  Google Scholar 

  • Cordano C, Pardini M, Cellerino M, Schenone A, Marino F, Cosentino M (2015) Levodopa-induced neutropenia. Parkinsonism Relat Disord 21:423–425

    Article  PubMed  Google Scholar 

  • Cosentino M (2020) Dopaminergic and adrenergic pathways as targets for drug repurposing in the neuroimmune network. J Neuroimmune Pharmacol 15:13–16

    Article  PubMed  Google Scholar 

  • Cosentino M, Marino F (2012) Nerve Driven immunity: noradrenaline and adrenaline. Springer, Nerve-Driven Immunity

    Google Scholar 

  • Cosentino M, Marino F (2016) The second insubria autumn school on neuroimmune pharmacology: repurposing established drugs for novel indications. J Neuroimmune Pharmacol 11:214–226

    Article  PubMed  Google Scholar 

  • Cosentino M, Marino F, Bombelli R, Ferrari M, Rasini E, Lecchini S, Frigo G (2002) Stimulation with phytohaemagglutinin induces the synthesis of catecholamines in human peripheral blood mononuclear cells: role of protein kinase C and contribution of intracellular calcium. J Neuroimmunol 125:125–133

    Article  CAS  PubMed  Google Scholar 

  • Cosentino M, Fietta AM, Ferrari M, Rasini E, Bombelli R, Carcano E, Saporiti F, Meloni F, Marino F, Lecchini S (2007) Human CD4+CD25+ regulatory T cells selectively express tyrosine hydroxylase and contain endogenous catecholamines subserving an autocrine/paracrine inhibitory functional loop. Blood 109:632–642

    Article  CAS  PubMed  Google Scholar 

  • Daher C, Vimeux L, Stoeva R, Peranzoni E, Bismuth G, Wieduwild E, Lucas B, Donnadieu E, Bercovici N, Trautmann A, Feuillet V (2019) Blockade of beta-Adrenergic receptors improves CD8(+) T-cell priming and cancer vaccine efficacy. Cancer Immunol Res 7:1849–1863

    Article  PubMed  Google Scholar 

  • Deane KH, Spieker S, Clarke CE (2004) Catechol-O-methyltransferase inhibitors versus active comparators for levodopa-induced complications in Parkinson’s disease. Cochrane Database Syst Rev CD004553

    Google Scholar 

  • Diaz-Salazar C, Bou-Puerto R, Mujal AM, Lau CM, Von Hoesslin M, Zehn D, Sun JC (2020) Cell-intrinsic adrenergic signaling controls the adaptive NK cell response to viral infection. J Exp Med 217

    Google Scholar 

  • Estrada LD, Agac D, Farrar JD (2016) Sympathetic neural signaling via the beta2-adrenergic receptor suppresses T-cell receptor-mediated human and mouse CD8(+) T-cell effector function. Eur J Immunol 46:1948–1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan X, Wang Y (2009) β2 Adrenergic receptor on T lymphocytes and its clinical implications. Prog Nat Sci 19:17–23

    Article  Google Scholar 

  • Fan Y, Chen Z, Pathak JL, Carneiro AMD, Chung CY (2018) Differential regulation of adhesion and phagocytosis of resting and activated microglia by dopamine. Front Cell Neurosci 12:309

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang CY, Reibel DK, Longacre ML, Rosenzweig S, Campbell DE, Douglas SD (2010) Enhanced psychosocial well-being following participation in a mindfulness-based stress reduction program is associated with increased natural killer cell activity. J Altern Complement Med 16:531–538

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng Y, Lu Y (2021) Immunomodulatory effects of dopamine in inflammatory diseases. Front Immunol 12:663102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Duenas V, Gomez-Soler M, Valle-Leon M, Watanabe M, Ferrer I, Ciruela F (2019) Revealing adenosine A2A-dopamine D2 receptor heteromers in Parkinson’s disease post-mortem brain through a new AlphaScreen-based assay. Int J Mol Sci 20

    Google Scholar 

  • Ferrari M, Cosentino M, Marino F, Bombelli R, Rasini E, Lecchini S, Frigo G (2004) Dopaminergic D1-like receptor-dependent inhibition of tyrosine hydroxylase mRNA expression and catecholamine production in human lymphocytes. Biochem Pharmacol 67:865–873

    Article  CAS  PubMed  Google Scholar 

  • Fiserova A, Starec M, Kuldova M, Kovaru H, Pav M, Vannucci L, Pospisil M (2002) Effects of D2-dopamine and alpha-adrenoceptor antagonists in stress induced changes on immune responsiveness of mice. J Neuroimmunol 130:55–65

    Article  CAS  PubMed  Google Scholar 

  • Fragala MS, Kraemer WJ, Mastro AM, Denegar CR, Volek JS, Hakkinen K, Anderson JM, Lee EC, Maresh CM (2011) Leukocyte beta2-adrenergic receptor expression in response to resistance exercise. Med Sci Sports Exerc 43:1422–1432

    Article  CAS  PubMed  Google Scholar 

  • Freier E, Weber CS, Nowottne U, Horn C, Bartels K, Meyer S, Hildebrandt Y, Luetkens T, Cao Y, Pabst C, Muzzulini J, Schnee B, Brunner-Weinzierl MC, Marangolo M, Bokemeyer C, Deter HC, Atanackovic D (2010) Decrease of CD4(+)FOXP3(+) T regulatory cells in the peripheral blood of human subjects undergoing a mental stressor. Psychoneuroendocrinology 35:663–673

    Article  CAS  PubMed  Google Scholar 

  • Gabanyi I, Muller PA, Feighery L, Oliveira TY, Costa-Pinto FA, Mucida D (2016) Neuro-immune interactions drive tissue programming in intestinal macrophages. Cell 164:378–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gandhi S, Pandey MR, Attwood K, Ji W, Witkiewicz AK, Knudsen ES, Allen C, Tario JD, Wallace PK, Cedeno CD, Levis M, Stack S, Funchain P, Drabick JJ, Bucsek MJ, Puzanov I, Mohammadpour H, Repasky EA, Ernstoff MS (2021) Phase I clinical trial of combination propranolol and Pembrolizumab in locally advanced and metastatic melanoma: safety, tolerability, and preliminary evidence of antitumor activity. Clin Cancer Res 27:87–95

    Article  CAS  PubMed  Google Scholar 

  • Gaskill PJ, Carvallo L, Eugenin EA, Berman JW (2012) Characterization and function of the human macrophage dopaminergic system: implications for CNS disease and drug abuse. J Neuroinflammation 9:203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gauthier C, Tavernier G, Charpentier F, Langin D, Le Marec H (1996) Functional beta3-adrenoceptor in the human heart. J Clin Invest 98:556–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girault JA (2012) Signaling in striatal neurons: the phosphoproteins of reward, addiction, and dyskinesia. Prog Mol Biol Transl Sci 106:33–62

    Article  CAS  PubMed  Google Scholar 

  • Gomes I, Sierra S, Devi LA (2016) Detection of receptor heteromerization using in situ proximity ligation assay. Curr Protoc Pharmacol 75:2.16.1–2.16.31

    Article  PubMed  Google Scholar 

  • Gonzalez S, Moreno-Delgado D, Moreno E, Perez-Capote K, Franco R, Mallol J, Cortes A, Casado V, Lluis C, Ortiz J, Ferre S, Canela E, Mccormick PJ (2012) Circadian-related heteromerization of adrenergic and dopamine D(4) receptors modulates melatonin synthesis and release in the pineal gland. PLoS Biol 10:e1001347

    Article  PubMed  PubMed Central  Google Scholar 

  • Goyarts E, Matsui M, Mammone T, Bender AM, Wagner JA, Maes D, Granstein RD (2008) Norepinephrine modulates human dendritic cell activation by altering cytokine release. Exp Dermatol 17:188–196

    Article  CAS  PubMed  Google Scholar 

  • Graff RM, Kunz HE, Agha NH, Baker FL, Laughlin M, Bigley AB, Markofski MM, Lavoy EC, Katsanis E, Bond RA, Bollard CM, Simpson RJ (2018) beta2-Adrenergic receptor signaling mediates the preferential mobilization of differentiated subsets of CD8+ T-cells, NK-cells and non-classical monocytes in response to acute exercise in humans. Brain Behav Immun 74:143–153

    Article  CAS  PubMed  Google Scholar 

  • Grebe KM, Hickman HD, Irvine KR, Takeda K, Bennink JR, Yewdell JW (2009) Sympathetic nervous system control of anti-influenza CD8+ T cell responses. Proc Natl Acad Sci USA 106:5300–5305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grisanti LA, Woster AP, Dahlman J, Sauter ER, Combs CK, Porter JE (2011) Alpha1-adrenergic receptors positively regulate Toll-like receptor cytokine production from human monocytes and macrophages. J Pharmacol Exp Ther 338:648–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guirao X, Kumar A, Katz J, Smith M, Lin E, Keogh C, Calvano SE, Lowry SF (1997) Catecholamines increase monocyte TNF receptors and inhibit TNF through beta 2-adrenoreceptor activation. Am J Phys 273:E1203–E1208

    CAS  Google Scholar 

  • Guo Q, You H, Yang X, Lin B, Zhu Z, Lu Z, Li X, Zhao Y, Mao L, Shen S, Cheng H, Zhang J, Deng L, Fan J, ** Z, Li R, Li CM (2017) Functional single-walled carbon nanotubes ‘CAR’ for targeting dopamine delivery into the brain of parkinsonian mice. Nanoscale 9:10832–10845

    Article  CAS  PubMed  Google Scholar 

  • Happel KI, Dubin PJ, Zheng M, Ghilardi N, Lockhart C, Quinton LJ, Odden AR, Shellito JE, Bagby GJ, Nelson S, Kolls JK (2005) Divergent roles of IL-23 and IL-12 in host defense against Klebsiella pneumoniae. J Exp Med 202:761–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidt T, Sager HB, Courties G, Dutta P, Iwamoto Y, Zaltsman A, Von Zur Muhlen C, Bode C, Fricchione GL, Denninger J, Lin CP, Vinegoni C, Libby P, Swirski FK, Weissleder R, Nahrendorf M (2014) Chronic variable stress activates hematopoietic stem cells. Nat Med 20:754–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hei**k IH, Vellenga E, Borger P, Postma DS, Monchy JG, Kauffman HF (2003) Polarized Th1 and Th2 cells are less responsive to negative feedback by receptors coupled to the AC/cAMP system compared to freshly isolated T cells. Br J Pharmacol 138:1441–1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hei**k IH, Vellenga E, Oostendorp J, De Monchy JG, Postma DS, Kauffman HF (2005) Exposure to TARC alters beta2-adrenergic receptor signaling in human peripheral blood T lymphocytes. Am J Physiol Lung Cell Mol Physiol 289:L53–L59

    Article  CAS  PubMed  Google Scholar 

  • Hein L (2006) Adrenoceptors and signal transduction in neurons. Cell Tissue Res 326:541–551

    Article  CAS  PubMed  Google Scholar 

  • Hellstrand K, Hermodsson S, Strannegard O (1985) Evidence for a beta-adrenoceptor-mediated regulation of human natural killer cells. J Immunol 134:4095–4099

    Article  CAS  PubMed  Google Scholar 

  • Hilger D, Masureel M, Kobilka BK (2018) Structure and dynamics of GPCR signaling complexes. Nat Struct Mol Biol 25:4–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inbar S, Neeman E, Avraham R, Benish M, Rosenne E, Ben-Eliyahu S (2011) Do stress responses promote leukemia progression? An animal study suggesting a role for epinephrine and prostaglandin-E2 through reduced NK activity. PLoS One 6:e19246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenei-Lanzl Z, Capellino S, Kees F, Fleck M, Lowin T, Straub RH (2015a) Anti-inflammatory effects of cell-based therapy with tyrosine hydroxylase-positive catecholaminergic cells in experimental arthritis. Ann Rheum Dis 74:444–451

    Article  CAS  PubMed  Google Scholar 

  • Jenei-Lanzl Z, Zwingenberg J, Lowin T, Anders S, Straub RH (2015b) Proinflammatory receptor switch from Galphas to Galphai signaling by beta-arrestin-mediated PDE4 recruitment in mixed RA synovial cells. Brain Behav Immun 50:266–274

    Article  CAS  PubMed  Google Scholar 

  • Jetschmann JU, Benschop RJ, Jacobs R, Kemper A, Oberbeck R, Schmidt RE, Schedlowski M (1997) Expression and in-vivo modulation of alpha- and beta-adrenoceptors on human natural killer (CD16+) cells. J Neuroimmunol 74:159–164

    Article  CAS  PubMed  Google Scholar 

  • Johnstone EKM, See HB, Abhayawardana RS, Song A, Rosengren KJ, Hill SJ, Pfleger KDG (2021) Investigation of receptor heteromers using nanoBRET ligand binding. Int J Mol Sci 22

    Google Scholar 

  • Joseph M, Tonnel AB, Capron A, Dessaint JP (1981) The interaction of IgE antibody with human alveolar macrophages and its participation in the inflammatory processes of lung allergy. Agents Actions 11:619–622

    Article  CAS  PubMed  Google Scholar 

  • Kamal M, Jockers R (2011) Biological significance of GPCR heteromerization in the neuro-endocrine system. Front Endocrinol (Lausanne) 2:2

    Article  CAS  PubMed  Google Scholar 

  • Karaszewski JW, Reder AT, Maselli R, Brown M, Arnason BG (1990) Sympathetic skin responses are decreased and lymphocyte beta-adrenergic receptors are increased in progressive multiple sclerosis. Ann Neurol 27:366–372

    Article  CAS  PubMed  Google Scholar 

  • Kasai RS, Kusumi A (2014) Single-molecule imaging revealed dynamic GPCR dimerization. Curr Opin Cell Biol 27:78–86

    Article  CAS  PubMed  Google Scholar 

  • Kavelaars A (2002) Regulated expression of alpha-1 adrenergic receptors in the immune system. Brain Behav Immun 16:799–807

    Article  CAS  PubMed  Google Scholar 

  • Kavelaars A, Cobelens PM, Teunis MA, Heijnen CJ (2005) Changes in innate and acquired immune responses in mice with targeted deletion of the dopamine transporter gene. J Neuroimmunol 161:162–168

    Article  CAS  PubMed  Google Scholar 

  • Kenne Sarenmalm E, Martensson LB, Andersson BA, Karlsson P, Bergh I (2017) Mindfulness and its efficacy for psychological and biological responses in women with breast cancer. Cancer Med 6:1108–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy SL, Nickerson M, Campisi J, Johnson JD, Smith TP, Sharkey C, Fleshner M (2005) Splenic norepinephrine depletion following acute stress suppresses in vivo antibody response. J Neuroimmunol 165:150–160

    Article  CAS  PubMed  Google Scholar 

  • Kintscher U (2012) Reuptake inhibitors of dopamine, noradrenaline, and serotonin. Handb Exp Pharmacol:339–347

    Google Scholar 

  • Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, Correa RG (2019) Dopamine: functions, signaling, and association with neurological diseases. Cell Mol Neurobiol 39:31–59

    Article  PubMed  Google Scholar 

  • Kloc M, Ghobrial RM, Wosik J, Lewicka A, Lewicki S, Kubiak JZ (2019) Macrophage functions in wound healing. J Tissue Eng Regen Med 13:99–109

    CAS  PubMed  Google Scholar 

  • Kobayashi M, Jeschke MG, Asai A, Kogiso M, Yoshida S, Herndon DN, Suzuki F (2011) Propranolol as a modulator of M2b monocytes in severely burned patients. J Leukoc Biol 89:797–803

    Article  CAS  PubMed  Google Scholar 

  • Kohm AP, Sanders VM (1999) Suppression of antigen-specific Th2 cell-dependent IgM and IgG1 production following norepinephrine depletion in vivo. J Immunol 162:5299–5308

    Article  CAS  PubMed  Google Scholar 

  • Kohm AP, Sanders VM (2001) Norepinephrine and beta 2-adrenergic receptor stimulation regulate CD4+ T and B lymphocyte function in vitro and in vivo. Pharmacol Rev 53:487–525

    CAS  PubMed  Google Scholar 

  • Korichneva IL, Tkachuk VA (1990) Alterations in beta-adrenoceptor density on T-lymphocytes upon activation with interleukin-2 and phytohaemagglutinin. Biomed Sci 1:84–88

    CAS  PubMed  Google Scholar 

  • Kuebler U, Wirtz PH, Sakai M, Stemmer A, Ehlert U (2013) Acute stress reduces wound-induced activation of microbicidal potential of ex vivo isolated human monocyte-derived macrophages. PLoS One 8:e55875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuebler U, Wirtz PH, Sakai M, Stemmer A, Meister RE, Ehlert U (2015) Anticipatory cognitive stress appraisal modulates suppression of wound-induced macrophage activation by acute psychosocial stress. Psychophysiology 52:499–508

    Article  PubMed  Google Scholar 

  • Kunz HE, Agha NH, Hussain M, Lavoy EC, Smith KA, Mylabathula P, Diak D, Baker FL, O'connor DP, Bond RA, Katsanis E, Bollard CM, Simpson RJ (2020) The effects of beta1 and beta1+2 adrenergic receptor blockade on the exercise-induced mobilization and ex vivo expansion of virus-specific T cells: implications for cellular therapy and the anti-viral immune effects of exercise. Cell Stress Chaperones 25:993–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kustrimovic N, Rasini E, Legnaro M, Marino F, Cosentino M (2014) Expression of dopaminergic receptors on human CD4+ T lymphocytes: flow cytometric analysis of naive and memory subsets and relevance for the neuroimmunology of neurodegenerative disease. J Neuroimmune Pharmacol 9:302–312

    Article  PubMed  Google Scholar 

  • Langer SZ (1980) Presynaptic regulation of the release of catecholamines. Pharmacol Rev 32:337–362

    CAS  PubMed  Google Scholar 

  • Leposavic GM, Pilipovic IM (2018) Intrinsic and extrinsic thymic adrenergic networks: sex steroid-dependent plasticity. Front Endocrinol (Lausanne) 9:13

    Article  PubMed  Google Scholar 

  • Levi B, Benish M, Goldfarb Y, Sorski L, Melamed R, Rosenne E, Ben-Eliyahu S (2011) Continuous stress disrupts immunostimulatory effects of IL-12. Brain Behav Immun 25:727–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levite M (2016) Dopamine and T cells: dopamine receptors and potent effects on T cells, dopamine production in T cells, and abnormalities in the dopaminergic system in T cells in autoimmune, neurological and psychiatric diseases. Acta Physiol (Oxf) 216:42–89

    Article  CAS  PubMed  Google Scholar 

  • Li CY, Chou TC, Lee CH, Tsai CS, Loh SH, Wong CS (2003) Adrenaline inhibits lipopolysaccharide-induced macrophage inflammatory protein-1 alpha in human monocytes: the role of beta-adrenergic receptors. Anesth Analg 96:518–523, table of contents

    Google Scholar 

  • Maestroni GJ (2000) Dendritic cell migration controlled by alpha 1b-adrenergic receptors. J Immunol 165:6743–6747

    Article  CAS  PubMed  Google Scholar 

  • Maestroni GJ, Mazzola P (2003) Langerhans cells beta 2-adrenoceptors: role in migration, cytokine production, Th priming and contact hypersensitivity. J Neuroimmunol 144:91–99

    Article  CAS  PubMed  Google Scholar 

  • Malvindi MA, Di Corato R, Curcio A, Melisi D, Rimoli MG, Tortiglione C, Tino A, George C, Brunetti V, Cingolani R, Pellegrino T, Ragusa A (2011) Multiple functionalization of fluorescent nanoparticles for specific biolabeling and drug delivery of dopamine. Nanoscale 3:5110–5119

    Article  CAS  PubMed  Google Scholar 

  • Mansfield LE, Nelson HS (1982) Effect of beta-adrenergic agents on immunoglobulin G levels of asthmatic subjects. Int Arch Allergy Appl Immunol 68:13–16

    Article  CAS  PubMed  Google Scholar 

  • Marino F, Cosentino M, Bombelli R, Ferrari M, Lecchini S, Frigo G (1999) Endogenous catecholamine synthesis, metabolism storage, and uptake in human peripheral blood mononuclear cells. Exp Hematol 27:489–495

    Article  CAS  PubMed  Google Scholar 

  • Matthews KA, Caggiula AR, Mcallister CG, Berga SL, Owens JF, Flory JD, Miller AL (1995) Sympathetic reactivity to acute stress and immune response in women. Psychosom Med 57:564–571

    Article  CAS  PubMed  Google Scholar 

  • Mckenna F, Mclaughlin PJ, Lewis BJ, Sibbring GC, Cummerson JA, Bowen-Jones D, Moots RJ (2002) Dopamine receptor expression on human T- and B-lymphocytes, monocytes, neutrophils, eosinophils and NK cells: a flow cytometric study. J Neuroimmunol 132:34–40

    Article  CAS  PubMed  Google Scholar 

  • Meltzer SJ, Meltzer C (1903) On a difference in the influence upon inflammation between the section of the sympathetic nerve and the removal of the sympathetic Ganglion. J Med Res 10:135–141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meredith EJ, Holder MJ, Rosen A, Lee AD, Dyer MJ, Barnes NM, Gordon J (2006) Dopamine targets cycling B cells independent of receptors/transporter for oxidative attack: implications for non-Hodgkin’s lymphoma. Proc Natl Acad Sci USA 103:13485–13490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miksa M, Wu R, Zhou M, Wang P (2005) Sympathetic excitotoxicity in sepsis: pro-inflammatory priming of macrophages by norepinephrine. Front Biosci 10:2217–2229

    Article  CAS  PubMed  Google Scholar 

  • Miksa M, Das P, Zhou M, Wu R, Dong W, Ji Y, Goyert SM, Ravikumar TS, Wang P (2009) Pivotal role of the alpha(2A)-adrenoceptor in producing inflammation and organ injury in a rat model of sepsis. PLoS One 4:e5504

    Article  PubMed  PubMed Central  Google Scholar 

  • Mikulak J, Bozzo L, Roberto A, Pontarini E, Tentorio P, Hudspeth K, Lugli E, Mavilio D (2014) Dopamine inhibits the effector functions of activated NK cells via the upregulation of the D5 receptor. J Immunol 193:2792–2800

    Article  CAS  PubMed  Google Scholar 

  • Mizuno K, Takahashi HK, Iwagaki H, Katsuno G, Kamurul HA, Ohtani S, Mori S, Yoshino T, Nishibori M, Tanaka N (2005) Beta2-adrenergic receptor stimulation inhibits LPS-induced IL-18 and IL-12 production in monocytes. Immunol Lett 101:168–172

    Article  CAS  PubMed  Google Scholar 

  • Moraes LJ, Miranda MB, Loures LF, Mainieri AG, Marmora CHC (2018) A systematic review of psychoneuroimmunology-based interventions. Psychol Health Med 23:635–652

    Article  PubMed  Google Scholar 

  • Mores KL, Cassell RJ, Van Rijn RM (2019) Arrestin recruitment and signaling by G protein-coupled receptor heteromers. Neuropharmacology 152:15–21

    Article  CAS  PubMed  Google Scholar 

  • Mori T, Kabashima K, Fukamachi S, Kuroda E, Sakabe J, Kobayashi M, Nakajima S, Nakano K, Tanaka Y, Matsushita S, Nakamura M, Tokura Y (2013) D1-like dopamine receptors antagonist inhibits cutaneous immune reactions mediated by Th2 and mast cells. J Dermatol Sci 71:37–44

    Article  CAS  PubMed  Google Scholar 

  • Morkawa K, Oseko F, Morikawa S (1993) Immunosuppressive property of bromocriptine on human B lymphocyte function in vitro. Clin Exp Immunol 93:200–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musso NR, Brenci S, Setti M, Indiveri F, Lotti G (1996) Catecholamine content and in vitro catecholamine synthesis in peripheral human lymphocytes. J Clin Endocrinol Metab 81:3553–3557

    CAS  PubMed  Google Scholar 

  • Nakano K, Higashi T, Hashimoto K, Takagi R, Tanaka Y, Matsushita S (2008) Antagonizing dopamine D1-like receptor inhibits Th17 cell differentiation: preventive and therapeutic effects on experimental autoimmune encephalomyelitis. Biochem Biophys Res Commun 373:286–291

    Article  CAS  PubMed  Google Scholar 

  • Nakano K, Higashi T, Takagi R, Hashimoto K, Tanaka Y, Matsushita S (2009) Dopamine released by dendritic cells polarizes Th2 differentiation. Int Immunol 21:645–654

    Article  CAS  PubMed  Google Scholar 

  • Nielson CP (1987) Beta-adrenergic modulation of the polymorphonuclear leukocyte respiratory burst is dependent upon the mechanism of cell activation. J Immunol 139:2392–2397

    Article  CAS  PubMed  Google Scholar 

  • Nolan RA, Muir R, Runner K, Haddad EK, Gaskill PJ (2019) Role of macrophage dopamine receptors in mediating cytokine production: implications for neuroinflammation in the context of HIV-associated neurocognitive disorders. J Neuroimmune Pharmacol 14:134–156

    Article  CAS  PubMed  Google Scholar 

  • Nozaki H, Hozumi K, Nishimura T, Habu S (1996) Regulation of NK activity by the administration of bromocriptine in haloperidol-treated mice. Brain Behav Immun 10:17–26

    Article  CAS  PubMed  Google Scholar 

  • Oddera S, Silvestri M, Scarso L, Testi R, Rossi GA (1997) Salmeterol inhibits the allergen-induced mononuclear cell proliferation and downregulates GM-CSF release and HLA-DR expression by monocytes. Pulm Pharmacol Ther 10:43–49

    Article  CAS  PubMed  Google Scholar 

  • Pacheco R, Prado CE, Barrientos MJ, Bernales S (2009) Role of dopamine in the physiology of T-cells and dendritic cells. J Neuroimmunol 216:8–19

    Article  CAS  PubMed  Google Scholar 

  • Page GG, Fennelly AM, Littleton-Kearney MT, Ben-Eliyahu S (2008) Male–female differences in the impact of beta-adrenoceptor stimulation on resistance to experimental metastasis: exploring the effects of age and gonadal hormone involvement. J Neuroimmunol 193:113–119

    Article  CAS  PubMed  Google Scholar 

  • Panina-Bordignon P, Mazzeo D, Lucia PD, D'ambrosio D, Lang R, Fabbri L, Self C, Sinigaglia F (1997) Beta2-agonists prevent Th1 development by selective inhibition of interleukin 12. J Clin Invest 100:1513–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papa I, Saliba D, Ponzoni M, Bustamante S, Canete PF, Gonzalez-Figueroa P, Mcnamara HA, Valvo S, Grimbaldeston M, Sweet RA, Vohra H, Cockburn IA, Meyer-Hermann M, Dustin ML, Doglioni C, Vinuesa CG (2017) TFH-derived dopamine accelerates productive synapses in germinal centres. Nature 547:318–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patchev VK, Patchev AV (2006) Experimental models of stress. Dialogues Clin Neurosci 8:417–432

    Article  PubMed  PubMed Central  Google Scholar 

  • Pedersen L, Idorn M, Olofsson GH, Lauenborg B, Nookaew I, Hansen RH, Johannesen HH, Becker JC, Pedersen KS, Dethlefsen C, Nielsen J, Gehl J, Pedersen BK, Thor Straten P, Hojman P (2016) Voluntary running suppresses tumor growth through epinephrine- and IL-6-dependent NK cell mobilization and redistribution. Cell Metab 23:554–562

    Article  CAS  PubMed  Google Scholar 

  • Pereira A, Mclaren A, Bell WR, Copolov D, Dean B (2003) Potential clozapine target sites on peripheral hematopoietic cells and stromal cells of the bone marrow. Pharmacogenomics J 3:227–234

    Article  CAS  PubMed  Google Scholar 

  • Perreault ML, Hasbi A, O’dowd BF, George SR (2014) Heteromeric dopamine receptor signaling complexes: emerging neurobiology and disease relevance. Neuropsychopharmacology 39:156–168

    Article  CAS  PubMed  Google Scholar 

  • Pinoli M, Marino F, Cosentino M (2017) Dopaminergic regulation of innate immunity: a review. J Neuroimmune Pharmacol 12:602–623

    Article  PubMed  Google Scholar 

  • Podojil JR, Sanders VM (2005) CD86 and beta2-adrenergic receptor stimulation regulate B-cell activity cooperatively. Trends Immunol 26:180–185

    Article  CAS  PubMed  Google Scholar 

  • Podolec Z, Vetulani J, Bednarczyk B, Szczeklik A (1979) Central dopamine receptors regulate blood eosinophilia in the rat. Allergy 34:103–110

    Article  CAS  PubMed  Google Scholar 

  • Pongratz G, Mcalees JW, Conrad DH, Erbe RS, Haas KM, Sanders VM (2006) The level of IgE produced by a B cell is regulated by norepinephrine in a p38 MAPK- and CD23-dependent manner. J Immunol 177:2926–2938

    Article  CAS  PubMed  Google Scholar 

  • Qiao G, Chen M, Mohammadpour H, Macdonald CR, Bucsek MJ, Hylander BL, Barbi JJ, Repasky EA (2021) Chronic adrenergic stress contributes to metabolic dysfunction and an exhausted phenotype in T cells in the tumor microenvironment. Cancer Immunol Res

    Google Scholar 

  • Qiu YH, Peng YP, Jiang JM, Wang JJ (2004) Expression of tyrosine hydroxylase in lymphocytes and effect of endogenous catecholamines on lymphocyte function. Neuroimmunomodulation 11:75–83

    Article  CAS  PubMed  Google Scholar 

  • Radojcic T, Baird S, Darko D, Smith D, Bulloch K (1991) Changes in beta-adrenergic receptor distribution on immunocytes during differentiation: an analysis of T cells and macrophages. J Neurosci Res 30:328–335

    Article  CAS  PubMed  Google Scholar 

  • Rao RM, Vadiraja HS, Nagaratna R, Gopinath KS, Patil S, Diwakar RB, Shahsidhara HP, Ajaikumar BS, Nagendra HR (2017) Effect of Yoga on sleep quality and neuroendocrine immune response in metastatic breast cancer patients. Indian J Palliat Care 23:253–260

    Article  PubMed  PubMed Central  Google Scholar 

  • Ratge D, Wiedemann A, Kohse KP, Wisser H (1988) Alterations of beta-adrenoceptors on human leukocyte subsets induced by dynamic exercise: effect of prednisone. Clin Exp Pharmacol Physiol 15:43–53

    Article  CAS  PubMed  Google Scholar 

  • Rebois RV, Maki K, Meeks JA, Fishman PH, Hebert TE, Northup JK (2012) D2-like dopamine and beta-adrenergic receptors form a signaling complex that integrates Gs- and Gi-mediated regulation of adenylyl cyclase. Cell Signal 24:2051–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricon I, Hanalis-Miller T, Haldar R, Jacoby R, Ben-Eliyahu S (2019) Perioperative biobehavioral interventions to prevent cancer recurrence through combined inhibition of beta-adrenergic and cyclooxygenase 2 signaling. Cancer 125:45–56

    Article  CAS  PubMed  Google Scholar 

  • Robinson FP, Mathews HL, Witek-Janusek L (2003) Psycho-endocrine-immune response to mindfulness-based stress reduction in individuals infected with the human immunodeficiency virus: a quasiexperimental study. J Altern Complement Med 9:683–694

    Article  PubMed  Google Scholar 

  • Romana-Souza B, Porto LC, Monte-Alto-Costa A (2010) Cutaneous wound healing of chronically stressed mice is improved through catecholamines blockade. Exp Dermatol 19:821–829

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Medina BE, Cadena-Medina DA, Esparza E, Arrieta AJ, Kirken RA (2018) Isoproterenol-induced beta-2 adrenergic receptor activation negatively regulates interleukin-2 signaling. Biochem J 475:2907–2923

    Article  CAS  PubMed  Google Scholar 

  • Scanzano A, Cosentino M (2015) Adrenergic regulation of innate immunity: a review. Front Pharmacol 6:171

    Article  PubMed  PubMed Central  Google Scholar 

  • Scanzano A, Schembri L, Rasini E, Luini A, Dallatorre J, Legnaro M, Bombelli R, Congiu T, Cosentino M, Marino F (2015) Adrenergic modulation of migration, CD11b and CD18 expression, ROS and interleukin-8 production by human polymorphonuclear leukocytes. Inflamm Res 64:127–135

    Article  CAS  PubMed  Google Scholar 

  • Schopf RE, Lemmel EM (1983) Control of the production of oxygen intermediates of human polymorphonuclear leukocytes and monocytes by beta-adrenergic receptors. J Immunopharmacol 5:203–216

    Article  CAS  PubMed  Google Scholar 

  • Schulz C, Eisenhofer G, Lehnert H (2004) Principles of catecholamine biosynthesis, metabolism and release. Front Horm Res 31:1–25

    CAS  PubMed  Google Scholar 

  • Segerstrom SC, Miller GE (2004) Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychol Bull 130:601–630

    Article  PubMed  PubMed Central  Google Scholar 

  • Segura E (2016) Review of mouse and human dendritic cell subsets. Methods Mol Biol 1423:3–15

    Article  CAS  PubMed  Google Scholar 

  • Seol IW, Kuo NY, Kim KM (2004) Effects of dopaminergic drugs on the mast cell degranulation and nitric oxide generation in RAW 264.7 cells. Arch Pharm Res 27:94–98

    Article  CAS  PubMed  Google Scholar 

  • Sheridan JF, Dobbs C, Jung J, Chu X, Konstantinos A, Padgett D, Glaser R (1998) Stress-induced neuroendocrine modulation of viral pathogenesis and immunity. Ann NY Acad Sci 840:803–808

    Article  CAS  PubMed  Google Scholar 

  • Sibley DR, Monsma FJ Jr, Shen Y (1993) Molecular neurobiology of dopaminergic receptors. Int Rev Neurobiol 35:391–415

    Article  CAS  PubMed  Google Scholar 

  • Slota C, Shi A, Chen G, Bevans M, Weng NP (2015) Norepinephrine preferentially modulates memory CD8 T cell function inducing inflammatory cytokine production and reducing proliferation in response to activation. Brain Behav Immun 46:168–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Y, Gan Y, Wang Q, Meng Z, Li G, Shen Y, Wu Y, Li P, Yao M, Gu J, Tu H (2017) Enriching the housing environment for mice enhances their NK cell antitumor immunity via sympathetic nerve-dependent regulation of NKG2D and CCR5. Cancer Res 77:1611–1622

    Article  CAS  PubMed  Google Scholar 

  • Sookhai S, Wang JH, Mccourt M, O'connell D, Redmond HP (1999) Dopamine induces neutrophil apoptosis through a dopamine D-1 receptor-independent mechanism. Surgery 126:314–322

    Article  CAS  PubMed  Google Scholar 

  • Stansfeld SA, Fuhrer R, Shipley MJ, Marmot MG (2002) Psychological distress as a risk factor for coronary heart disease in the Whitehall II Study. Int J Epidemiol 31:248–255

    Article  PubMed  Google Scholar 

  • Stein MN, Malhotra J, Tarapore RS, Malhotra U, Silk AW, Chan N, Rodriguez L, Aisner J, Aiken RD, Mayer T, Haffty BG, Newman JH, Aspromonte SM, Bommareddy PK, Estupinian R, Chesson CB, Sadimin ET, Li S, Medina DJ, Saunders T, Frankel M, Kareddula A, Damare S, Wesolowsky E, Gabel C, El-Deiry WS, Prabhu VV, Allen JE, Stogniew M, Oster W, Bertino JR, Libutti SK, Mehnert JM, Zloza A (2019) Safety and enhanced immunostimulatory activity of the DRD2 antagonist ONC201 in advanced solid tumor patients with weekly oral administration. J Immunother Cancer 7:136

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun Z, Hou D, Liu S, Fu W, Wang J, Liang Z (2018) Norepinephrine inhibits the cytotoxicity of NK92MI cells via the beta2adrenoceptor/cAMP/PKA/pCREB signaling pathway. Mol Med Rep 17:8530–8535

    CAS  PubMed  Google Scholar 

  • Svenningsson P, Nishi A, Fisone G, Girault JA, Nairn AC, Greengard P (2004) DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol Toxicol 44:269–296

    Article  CAS  PubMed  Google Scholar 

  • Swanson MA, Lee WT, Sanders VM (2001) IFN-gamma production by Th1 cells generated from naive CD4+ T cells exposed to norepinephrine. J Immunol 166:232–240

    Article  CAS  PubMed  Google Scholar 

  • Takenaka MC, Guereschi MG, Basso AS (2017) Neuroimmune interactions: dendritic cell modulation by the sympathetic nervous system. Semin Immunopathol 39:165–176

    Article  CAS  PubMed  Google Scholar 

  • Takkenberg JJ, Czer LS, Fishbein MC, Luthringer DJ, Quartel AW, Mirocha J, Queral CA, Blanche C, Trento A (2004) Eosinophilic myocarditis in patients awaiting heart transplantation. Crit Care Med 32:714–721

    Article  PubMed  Google Scholar 

  • Tarr AJ, Powell ND, Reader BF, Bhave NS, Roloson AL, Carson WE 3rd, Sheridan JF (2012) beta-Adrenergic receptor mediated increases in activation and function of natural killer cells following repeated social disruption. Brain Behav Immun 26:1226–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teunis MA, Heijnen CJ, Cools AR, Kavelaars A (2004) Reduced splenic natural killer cell activity in rats with a hyperreactive dopaminergic system. Psychoneuroendocrinology 29:1058–1064

    Article  CAS  PubMed  Google Scholar 

  • Theorell J, Gustavsson AL, Tesi B, Sigmundsson K, Ljunggren HG, Lundback T, Bryceson YT (2014) Immunomodulatory activity of commonly used drugs on Fc-receptor-mediated human natural killer cell activation. Cancer Immunol Immunother 63:627–641

    Article  CAS  PubMed  Google Scholar 

  • Thomas Broome S, Louangaphay K, Keay KA, Leggio GM, Musumeci G, Castorina A (2020) Dopamine: an immune transmitter. Neural Regen Res 15:2173–2185

    Article  PubMed  PubMed Central  Google Scholar 

  • Tonnesen E, Huttel MS, Christensen NJ, Schmitz O (1984) Natural killer cell activity in patients undergoing upper abdominal surgery: relationship to the endocrine stress response. Acta Anaesthesiol Scand 28:654–660

    Article  CAS  PubMed  Google Scholar 

  • Tonnesen E, Brinklov MM, Christensen NJ, Olesen AS, Madsen T (1987) Natural killer cell activity and lymphocyte function during and after coronary artery bypass grafting in relation to the endocrine stress response. Anesthesiology 67:526–533

    Article  CAS  PubMed  Google Scholar 

  • Ugalde V, Contreras F, Prado C, Chovar O, Espinoza A, Pacheco R (2021) Dopaminergic signalling limits suppressive activity and gut homing of regulatory T cells upon intestinal inflammation. Mucosal Immunol 14:652–666

    Article  CAS  PubMed  Google Scholar 

  • Van Gastel J, Leysen H, Boddaert J, Vangenechten L, Luttrell LM, Martin B, Maudsley S (2021) Aging-related modifications to G protein-coupled receptor signaling diversity. Pharmacol Ther 223:107793

    Article  PubMed  Google Scholar 

  • Vidi PA, Chemel BR, Hu CD, Watts VJ (2008) Ligand-dependent oligomerization of dopamine D(2) and adenosine A(2A) receptors in living neuronal cells. Mol Pharmacol 74:544–551

    Article  CAS  PubMed  Google Scholar 

  • Wahle M, Stachetzki U, Krause A, Pierer M, Hantzschel H, Baerwald CG (2001) Regulation of beta2-adrenergic receptors on CD4 and CD8 positive lymphocytes by cytokines in vitro. Cytokine 16:205–209

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Zhang C, Chen HY, Zhang ZJ, Ji ZF, Yue T, Dai XM, Zhu Q, Ma LL, He DY, Jiang LD (2015) Dopamine receptor DR2 expression in B cells is negatively correlated with disease activity in rheumatoid arthritis patients. Immunobiology 220:323–330

    Article  CAS  PubMed  Google Scholar 

  • Wen Y, Yan Q, Pan Y, Gu X, Liu Y (2019) Medical empirical research on forest bathing (Shinrin-yoku): a systematic review. Environ Health Prev Med 24:70

    Article  PubMed  PubMed Central  Google Scholar 

  • Wieduwild E, Girard-Madoux MJ, Quatrini L, Laprie C, Chasson L, Rossignol R, Bernat C, Guia S, Ugolini S (2020) beta2-adrenergic signals downregulate the innate immune response and reduce host resistance to viral infection. J Exp Med 217

    Google Scholar 

  • Wingler LM, Lefkowitz RJ (2020) Conformational basis of G protein-coupled receptor signaling versatility. Trends Cell Biol 30:736–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witek-Janusek L, Albuquerque K, Chroniak KR, Chroniak C, Durazo-Arvizu R, Mathews HL (2008) Effect of mindfulness based stress reduction on immune function, quality of life and co** in women newly diagnosed with early stage breast cancer. Brain Behav Immun 22:969–981

    Article  PubMed  PubMed Central  Google Scholar 

  • Wnorowski A, Jozwiak K (2014) Homo- and hetero-oligomerization of beta2-adrenergic receptor in receptor trafficking, signaling pathways and receptor pharmacology. Cell Signal 26:2259–2265

    Article  CAS  PubMed  Google Scholar 

  • **ao J, Huang HW, Peng YP, Bao JY, Huang Y, Qiu YH (2010) Modulation of natural killer cell function by alpha-adrenoreceptor-coupled signalling. Neuro Endocrinol Lett 31:635–644

    CAS  PubMed  Google Scholar 

  • Yanagawa Y, Matsumoto M, Togashi H (2010) Enhanced dendritic cell antigen uptake via alpha2 adrenoceptor-mediated PI3K activation following brief exposure to noradrenaline. J Immunol 185:5762–5768

    Article  CAS  PubMed  Google Scholar 

  • Yanagawa Y, Matsumoto M, Togashi H (2011) Adrenoceptor-mediated enhancement of interleukin-33 production by dendritic cells. Brain Behav Immun 25:1427–1433

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Ye Y, Chen C, Kong C, Su X, Zhang X, Bai W, He X (2019) Acute traumatic brain injury induces CD4+ and CD8+ T cell functional impairment by upregulating the expression of PD-1 via the activated sympathetic nervous system. Neuroimmunomodulation 26:43–57

    Article  CAS  PubMed  Google Scholar 

  • Yang HY, Fierro F, So M, Yoon DJ, Nguyen AV, Gallegos A, Bagood MD, Rojo-Castro T, Alex A, Stewart H, Chigbrow M, Dasu MR, Peavy TR, Soulika AM, Nolta JA, Isseroff RR (2020) Combination product of dermal matrix, human mesenchymal stem cells, and timolol promotes diabetic wound healing in mice. Stem Cells Transl Med 9:1353–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, Mcqueen M, Budaj A, Pais P, Varigos J, Lisheng L, Investigators IS (2004) Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 364:937–952

    Article  PubMed  Google Scholar 

  • Zhao W, Huang Y, Liu Z, Cao BB, Peng YP, Qiu YH (2013) Dopamine receptors modulate cytotoxicity of natural killer cells via cAMP-PKA-CREB signaling pathway. PLoS One 8:e65860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Capellino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Claus, M., Capellino, S. (2023). Catecholamines and Immunomodulation. In: Konsman, J.P., Reyes, T.M. (eds) Neuroendocrine-Immune System Interactions. Masterclass in Neuroendocrinology, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-031-21358-8_5

Download citation

Publish with us

Policies and ethics

Navigation