Multi-Frequency Polarimetric SAR Data Analysis for Crop Type Classification Using Random Forest

  • Chapter
  • First Online:
Synthetic Aperture Radar (SAR) Data Applications

Abstract

This chapter investigates multi-frequency (C-, L-, and P-bands) single-date AIRSAR data using Random Forest (RF) based polarimetric parameter selection for crop separation and classification. The RF classifier has an inherent parameter ranking and partial probability plot ability which gives not only the important parameters but also their optimal dynamic range. Crop separation was assessed among crop types by identifying polarimetric parameters having highest difference of Mean Decrease Accuracy (MDA) scores as measured by RF. Earlier studies primarily focused on polarimetric backscattering coefficients for crop analysis. In this study in addition to these parameters, the scattering decomposition powers along with the backscattering ratio parameters were also analyzed and found vital for multi-frequency crop classification. The Yamaguchi model-based decomposition, the Cloude-Pottier and the Touzi decomposition parameters provided complimentary information which were further used for critical analysis of crops in this study. In this study, the classification accuracy using RF was obtained as: C-band (71.9%); L-band (80.7%); P-band (75.8%). The long-stem crops: barley and rapeseed had the best accuracy in L-band (91.7%) and C-band (91.4%), respectively, while for the short-stem broad-leaf crops: sugarbeet (86.2%) in L-band and potatoes (95.4%) in L-band and (94.5%) in P-band, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://airsar.asf.alaska.edu/data/cm/cm3253/.

References

  1. Alt H, Godau M (1995) Computing the Fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5(01n02):75–91

    Google Scholar 

  2. Archer KJ, Kimes RV (2008) Empirical characterization of random forest variable importance measures. Computational Statistics & Data Analysis 52(4):2249–2260

    Article  MathSciNet  MATH  Google Scholar 

  3. ASF (Retrieved from ASF DAAC 25 December 2020) Dataset: AIRSAR, NASA 1991. https://asf.alaska.edu/

  4. Bargiel D (2017) A new method for crop classification combining time series of radar images and crop phenology information. Remote sensing of environment 198:369–383

    Article  Google Scholar 

  5. Baruch-Mordo S, Evans JS, Severson JP, Naugle DE, Maestas JD, Kiesecker JM, Falkowski MJ, Hagen CA, Reese KP (2013) Saving sage-grouse from the trees: A proactive solution to reducing a key threat to a candidate species. Biological Conservation 167(0):233–241, https://doi.org/10.1016/j.biocon.2013.08.017, http://www.sciencedirect.com/science/article/pii/S0006320713002917

  6. Blaes X, Vanhalle L, Defourny P (2005) Efficiency of crop identification based on optical and SAR image time series. Remote sensing of environment 96(3):352–365

    Article  Google Scholar 

  7. Breiman L (2001) Random forests. Machine learning 45(1):5–32

    Article  MATH  Google Scholar 

  8. Chen K, Huang W, Tsay D, Amar F (1996) Classification of multifrequency polarimetric SAR imagery using a dynamic learning neural network. Geoscience and Remote Sensing, IEEE Transactions on 34(3):814–820

    Article  Google Scholar 

  9. Cloude S, Pottier E (1997) An entropy based classification scheme for land applications of polarimetric SAR. Geoscience and Remote Sensing, IEEE Transactions on 35(1):68–78, https://doi.org/10.1109/36.551935

    Article  Google Scholar 

  10. Deschamps B, McNairn H, Shang J, Jiao X (2012) Towards operational radar-only crop type classification: comparison of a traditional decision tree with a random forest classifier. Canadian Journal of Remote Sensing 38(1):60–68

    Article  Google Scholar 

  11. Dey S, Mandal D, Robertson LD, Banerjee B, Kumar V, McNairn H, Bhattacharya A, Rao Y (2020) In-season crop classification using elements of the Kennaugh matrix derived from polarimetric radarsat-2 SAR data. International Journal of Applied Earth Observation and Geoinformation 88:102059

    Article  Google Scholar 

  12. Díaz-Uriarte R, De Andres SA (2006) Gene selection and classification of microarray data using random forest. BMC bioinformatics 7(1):3

    Article  Google Scholar 

  13. Dingle Robertson L, M Davidson A, McNairn H, Hosseini M, Mitchell S, de Abelleyra D, Verón S, Le Maire G, Plannells M, Valero S, et al. (2020) C-band synthetic aperture radar (sar) imagery for the classification of diverse crop** systems. International Journal of Remote Sensing 41(24):9628–9649

    Google Scholar 

  14. Ferrazzoli P, Guerriero L, Schiavon G (1999) Experimental and model investigation on radar classification capability. Geoscience and Remote Sensing, IEEE Transactions on 37(2):960–968

    Article  Google Scholar 

  15. Foody G, McCulloch M, Yates W (1994) Crop classification from c-band polarimetric radar data. International Journal of Remote Sensing 15(14):2871–2885

    Article  Google Scholar 

  16. Fréchet MM (1906) Sur quelques points du calcul fonctionnel. Rendiconti del Circolo Matematico di Palermo (1884–1940) 22(1):1–72

    Article  MATH  Google Scholar 

  17. Freeman A, Villasenor J, Klein J, Hoogeboom P, Groot J (1994) On the use of multi-frequency and polarimetric radar backscatter features for classification of agricultural crops. International Journal of Remote Sensing 15(9):1799–1812

    Article  Google Scholar 

  18. Friedman JH (2001) Greedy function approximation: A gradient boosting machine. The Annals of Statistics 29(5):pp. 1189–1232, http://www.jstor.org/stable/2699986

    Article  MathSciNet  MATH  Google Scholar 

  19. Gonzalez-Sampedro M, Le Toan T, Davidson M, Moreno J (2002) Assessment of crop discrimination using multi-site databases. EUROPEAN SPACE AGENCY-PUBLICATIONS-ESA SP 475:63–68

    Google Scholar 

  20. González Sanpedro M, et al. (2008) Optical and radar remote sensing applied to agricultural areas in Europe. Universitat de València

    Google Scholar 

  21. Hariharan S, Tirodkar S, De S, Bhattacharya A (2014) Variable importance and random forest classification using radarsat-2 PolSAR data. In: Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International, pp 1210–1213, https://doi.org/10.1109/IGARSS.2014.6946649

  22. Hariharan S, Mandal D, Tirodkar S, Kumar V, Bhattacharya A, Lopez-Sanchez JM (2018) A novel phenology based feature subset selection technique using random forest for multitemporal PolSAR crop classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11(11):4244–4258

    Article  Google Scholar 

  23. Hastie T, Tibshirani R, Friedman J, Franklin J (2005) The elements of statistical learning: data mining, inference and prediction. The Mathematical Intelligencer 27(2):83–85

    Article  Google Scholar 

  24. Hoekman DH, Vissers MA (2003) A new polarimetric classification approach evaluated for agricultural crops. Geoscience and Remote Sensing, IEEE Transactions on 41(12):2881–2889

    Article  Google Scholar 

  25. Hoekman DH, Vissers MA, Tran TN (2011) Unsupervised full-polarimetric SAR data segmentation as a tool for classification of agricultural areas. Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of 4(2):402–411

    Article  Google Scholar 

  26. Hollander M, Wolfe DA, Chicken E (2013) Nonparametric statistical methods. John Wiley & Sons

    MATH  Google Scholar 

  27. Inoue Y, Kurosu T, Maeno H, Uratsuka S, Kozu T, Dabrowska-Zielinska K, Qi J (2002) Season-long daily measurements of multifrequency (Ka, Ku, X, C, and L) and full-polarization backscatter signatures over paddy rice field and their relationship with biological variables. Remote Sensing of Environment 81(2–3):194–204

    Article  Google Scholar 

  28. Jia M, Tong L, Zhang Y, Chen Y (2013) Multitemporal radar backscattering measurement of wheat fields using multifrequency (l, s, c, and x) and full-polarization. Radio Science 48(5):471–481

    Article  Google Scholar 

  29. Jiao X, Kovacs JM, Shang J, McNairn H, Walters D, Ma B, Geng X (2014) Object-oriented crop map** and monitoring using multi-temporal polarimetric radarsat-2 data. ISPRS Journal of Photogrammetry and Remote Sensing 96:38–46

    Article  Google Scholar 

  30. Kumar V, Rao YS, Bhattacharya A, Cloude SR (2019) Classification assessment of real versus simulated compact and quad-pol modes of alos-2. IEEE Geoscience and Remote Sensing Letters 16(9):1497–1501

    Article  Google Scholar 

  31. Kussul N, Mykola L, Shelestov A, Skakun S (2018) Crop inventory at regional scale in Ukraine: develo** in season and end of season crop maps with multi-temporal optical and SAR satellite imagery. European Journal of Remote Sensing 51(1):627–636

    Article  Google Scholar 

  32. Lee JS, Pottier E (2009) Polarimetric radar imaging: from basics to applications. CRC Press

    Book  Google Scholar 

  33. Lee JS, Grunes MR, Pottier E (2001) Quantitative comparison of classification capability: fully polarimetric versus dual and single-polarization SAR. Geoscience and Remote Sensing, IEEE Transactions on 39(11):2343–2351

    Article  Google Scholar 

  34. Lemoine G, De Grandi G, Sieber A (1994) Polarimetric contrast classification of agricultural fields using maestro 1 AIRSAR data. International journal of remote sensing 15(14):2851–2869

    Article  Google Scholar 

  35. Leys C, Ley C, Klein O, Bernard P, Licata L (2013) Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. Journal of Experimental Social Psychology 49(4):764–766

    Article  Google Scholar 

  36. Li H, Zhang C, Zhang S, Atkinson PM (2020) Crop classification from full-year fully-polarimetric l-band UAVSAR time-series using the random forest algorithm. International Journal of Applied Earth Observation and Geoinformation 87:102032

    Article  Google Scholar 

  37. Liaw A, Wiener M (2002) Classification and regression by randomForest. R news 2(3):18–22

    Google Scholar 

  38. Loosvelt L, Peters J, Skriver H, De Baets B, Verhoest NE (2012) Impact of reducing polarimetric SAR input on the uncertainty of crop classifications based on the random forests algorithm. Geoscience and Remote Sensing, IEEE Transactions on 50(10):4185–4200

    Article  Google Scholar 

  39. Löw F, Michel U, Dech S, Conrad C (2013) Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using support vector machines. ISPRS Journal of Photogrammetry and Remote Sensing 85:102–119

    Article  Google Scholar 

  40. Lumley T, Diehr P, Emerson S, Chen L (2002) The importance of the normality assumption in large public health data sets. Annual review of public health 23(1):151–169

    Article  Google Scholar 

  41. Macelloni G, Paloscia S, Pampaloni P, Marliani F, Gai M (2001) The relationship between the backscattering coefficient and the biomass of narrow and broad leaf crops. Geoscience and Remote Sensing, IEEE Transactions on 39(4):873–884

    Article  Google Scholar 

  42. Mahdianpari M, Mohammadimanesh F, McNairn H, Davidson A, Rezaee M, Salehi B, Homayouni S (2019) Mid-season crop classification using dual-, compact-, and full-polarization in preparation for the Radarsat constellation mission (RCM). Remote Sensing 11(13):1582

    Google Scholar 

  43. Mandal D, Kumar V, Rao YS (2020) An assessment of temporal RADARSAT-2 SAR data for crop classification using KPCA based support vector machine. Geocarto International pp 1–13

    Google Scholar 

  44. Mandal D, Bhattacharya A, Rao YS (2021) Radar Remote Sensing for Crop Biophysical Parameter Estimation. Springer

    Book  Google Scholar 

  45. McNairn H, Brisco B (2004) The application of c-band polarimetric SAR for agriculture: a review. Canadian Journal of Remote Sensing 30(3):525–542

    Article  Google Scholar 

  46. McNairn H, Duguay C, Brisco B, Pultz T (2002) The effect of soil and crop residue characteristics on polarimetric radar response. Remote sensing of environment 80(2):308–320

    Article  Google Scholar 

  47. McNairn H, Shang J, Champagne C, Jiao X (2009) TerraSAR-x and radarsat-2 for crop classification and acreage estimation. In: Geoscience and Remote Sensing Symposium, 2009 IEEE International, IGARSS 2009, IEEE, vol 2, pp II–898

    Google Scholar 

  48. McNairn H, Shang J, Jiao X, Champagne C (2009) The contribution of ALOS PALSAR multipolarization and polarimetric data to crop classification. Geoscience and Remote Sensing, IEEE Transactions on 47(12):3981–3992

    Article  Google Scholar 

  49. R Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/, ISBN 3-900051-07-0

  50. Rao K, Rao Y, Wang J (1995) Frequency dependence of polarization phase difference. International Journal of Remote Sensing 16(18):3605–3617

    Article  Google Scholar 

  51. Riedel T, Liebeskind P, Schmullius C (2002) Seasonal and diurnal changes of polarimetric parameters from crops derived by the Cloude decomposition theorem at l-band. In: Geoscience and Remote Sensing Symposium, 2002. IGARSS’02. 2002 IEEE International, IEEE, vol 5, pp 2714–2716

    Google Scholar 

  52. Robertson LD, Davidson A, McNairn H, Hosseini M, Mitchell S (2019) Assessment of multi-frequency SAR for crop type classification and map**. In: IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, IEEE, pp 489–492

    Google Scholar 

  53. Saich P, Borgeaud M (2000) Interpreting ERS SAR signatures of agricultural crops in Flevoland, 1993–1996. Geoscience and Remote Sensing, IEEE Transactions on 38(2):651–657

    Google Scholar 

  54. Schotten C, Van Rooy W, Janssen L (1995) Assessment of the capabilities of multi-temporal ers-1 SAR data to discriminate between agricultural crops. International Journal of Remote Sensing 16(14):2619–2637

    Article  Google Scholar 

  55. Skriver H (2012) Crop classification by multitemporal c-and l-band single-and dual-polarization and fully polarimetric SAR. Geoscience and Remote Sensing, IEEE Transactions on 50(6):2138–2149

    Article  Google Scholar 

  56. Skriver H, Svendsen MT, Nielsen F, Thomsen A (1999) Crop classification by polarimetric SAR. In: Geoscience and Remote Sensing Symposium, 1999. IGARSS’99 Proceedings. IEEE 1999 International, IEEE, vol 4, pp 2333–2335

    Google Scholar 

  57. Skriver H, Svendsen MT, Thomsen AG (1999) Multitemporal c-and l-band polarimetric signatures of crops. Geoscience and Remote Sensing, IEEE Transactions on 37(5):2413–2429

    Article  Google Scholar 

  58. Sonobe R, Tani H, Wang X, Kobayashi N, Shimamura H (2014) Random forest classification of crop type using multi-temporal TerraSAR-x dual-polarimetric data. Remote Sensing Letters 5(2):157–164

    Article  Google Scholar 

  59. Strobl C, Zeileis A (2008) Danger: High power!? Exploring the statistical properties of a test for random forest variable importance. http://nbn-resolving.de/urn/resolver.pl?urn=nbn:de:bvb:19-epub-2111-8

  60. Touzi R (2007) Target scattering decomposition in terms of roll-invariant target parameters. Geoscience and Remote Sensing, IEEE Transactions on 45(1):73–84, https://doi.org/10.1109/TGRS.2006.886176

    Article  Google Scholar 

  61. Ulaby FT, Dobson MC (1989) Handbook of radar scattering statistics for terrain. ARTECH HOUSE, 685 CANTON STREET, NORWOOD, MA 02062(USA), 1989, 500

    Google Scholar 

  62. Vissers M, van der Sanden J (1992) Groundtruth collection for the JPL-SAR and ERS-1 campaign in Flevoland and the Veluwe (NL) 1991. Tech. Rep. BCRS 92–26, Netherlands Remote Sensing Board

    Google Scholar 

  63. Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics bulletin pp 80–83

    Google Scholar 

  64. **e Q, Wang J, Liao C, Shang J, Lopez-Sanchez JM, Fu H, Liu X (2019) On the use of Neumann decomposition for crop classification using multi-temporal radarsat-2 polarimetric SAR data. Remote Sensing 11(7):776

    Article  Google Scholar 

  65. Yamaguchi Y, Moriyama T, Ishido M, Yamada H (2005) Four-component scattering model for polarimetric SAR image decomposition. Geoscience and Remote Sensing, IEEE Transactions on 43(8):1699–1706, https://doi.org/10.1109/TGRS.2005.852084

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the NASA/JPL for providing AIRSAR data products. Authors acknowledge the GEO-AWS Earth Observation Cloud Credits Program, which supported the computation on AWS cloud platform through the project: “AWS4AgriSAR-Crop inventory map** from SAR data on cloud computing platform.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipankar Mandal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hariharan, S., Mandal, D., Tirodkar, S., Kumar, V., Bhattacharya, A. (2022). Multi-Frequency Polarimetric SAR Data Analysis for Crop Type Classification Using Random Forest. In: Rysz, M., Tsokas, A., Dipple, K.M., Fair, K.L., Pardalos, P.M. (eds) Synthetic Aperture Radar (SAR) Data Applications. Springer Optimization and Its Applications, vol 199. Springer, Cham. https://doi.org/10.1007/978-3-031-21225-3_8

Download citation

Publish with us

Policies and ethics

Navigation