Dust and Microorganisms: Their Interactions and Health Effects

  • Chapter
  • First Online:
Dust and Health
  • 289 Accesses

Abstract

Desert regions emit a large amount of mineral particles to cause dust events frequently, and emitted dust from those events may circulate around the world. These desert-dust events transport inorganic and organic particulate matter for long distances and may cause health impacts. Additionally, the depositions of the particulates to marine environments supply essential nutrients to induce the growth of marine phytoplankton and bacteria. Recently, the dust events are reported to contain higher amounts of biological particles than expected. Some investigations focus on the amount of biological particles and the dust events or high concentration of dust environment, which may have strong associations with health-related effects. Also, the various types of dust may act as airborne fomites attributing to the dispersion of microorganisms in more stable conditions with prolonged viability of microorganisms to cause greater health effects such as allergy, asthma, respiratory infection, and more. The field observations collecting bacterial strains from several dust-source regions in the desert are described. Furthermore, the laboratory attempts to use a simulation chamber system to understand the attributing factor of various dust particles to prolong the viability of airborne microorganisms are described. Finally, the speculation and future research activities of dust and infectious diseases are also mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alan, M. J., & Harrison, R. M. (2004). The effects of meteorological factors on atmospheric bioaerosol concentrations – A revew. Science of the Total Environment, 326, 151–180.

    Article  Google Scholar 

  • Albugami, S., Palmer, S., Cinnamon, J., & Meersmans, J. (2019). Spatial and temporal variations in the incidence of dust storms in Saudi Arabia revealed from in situ observations. Geosciences, 9, 162.

    Article  Google Scholar 

  • An, S., Couteau, C., Luo, F., Neveu, J., & DuBow, M. S. (2013). Bacterial diversity of surface sand samples from the Gobi and Taklamakan Desert. Microbial Ecology, 66, 850–860.

    Article  Google Scholar 

  • Anda, M., Ikeda, S., Eda, S., Okubo, T., Sato, S., Tabata, S., Mitsui, H., & Minamisawa, K. (2011). Isolation and genetic characterization of aurantimonas and Methylobacterium strains from stems of hypernodulated soybeans. Microbes and Environments, 26, 172–180.

    Article  Google Scholar 

  • Arimoto, R., Zhang, X. Y., Huebert, B. J., Kang, C. H., Savoie, D. L., Prospero, J. M., Sage, S. K., Schloesslin, C. A., Khaing, H. M., & Oh, S. N. (2004). Chemical composition of atmospheric aerosols from Zhenbeitai, China, and Gosan, South Korea, during ACE-Asia. Journal of Geophysical Research – Atmospheres, 109, D19S04. https://doi.org/10.1029/2003JD004323

    Article  CAS  Google Scholar 

  • Asadi, S., Gaaloul Ben Hnia, N., Barre, R. S., Wexler, A. S., Ristenpart, W. D., & Bouvier, N. M. (2020). Influenza A virus is transmissible via aerosolized fomites. Nature Communications, 11(1), 4062. https://doi.org/10.1038/s41467-020-17888-w

    Article  CAS  Google Scholar 

  • Bowker, M. A., Belnap, J., Davidson, D. W., & Goldstein, H. P. (2006). Correlates of biological soil crust abundance across a continuum of spatial scales: Support for a hierarchical conceptual model. Journal of Ecology, 43, 152–163.

    Google Scholar 

  • Brodie, E. L., DeSantis, T. Z., Parker, J. P. M., Zubietta, I. X., Piceno, Y. M., & Andersen, G. L. (2007). Urban aerosols harbor diverse and dynamic bacterial populations. Proceedings of the National Academy of Sciences of the United States of America, 104, 299–302.

    Article  CAS  Google Scholar 

  • Brown, J. K. M., & Hovmøller, M. S. (2002). Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science, 297, 537–541.

    Article  CAS  Google Scholar 

  • Cha, S., Lee, D., Jang, J. H., Lim, S., Yang, D., & Seo, T. (2016). Alterations in the airborne bacterial community during Asian-dust events occurring between February and March 2015 in South Korea. Scientific Reports, 6. https://doi.org/10.1038/srep37271

  • Cha, S., Srinivasan, S., Jang, J. H., Lee, D., Lim, S., Kim, K. S., Jheong, W., Lee, D. W., Park, E. R., Chung, H. M., Choe, J., Kim, M. K., & Seo, T. (2017). Metagenomic analysis of airborne bacterial community and diversity in Seoul, Korea, during December 2014, Asian Dust Event. PLoS One, 12(1), e0170693. https://doi.org/10.1371/journal.pone.0170693

    Article  CAS  Google Scholar 

  • Chung, Y. S., & Kim, H. S. (2008). Observations of massive air-pollution transport and associated air quality in the Yellow Sea region. Air Quality, Atmosphere & Health, 1(2), 69–79.

    Article  CAS  Google Scholar 

  • Contini, D., & Costabile, F. (2020). Does air pollution influence COVID-19 outbreaks? Atmosphere, 11, 377. https://doi.org/10.3390/atmos11040377

    Article  CAS  Google Scholar 

  • Creamean, J. M., Suski, K. J., Rosenfeld, D., Cazorla, A., DeMott, P. J., Sullivan, R. C., White, A. B., Ralph, F. M., Minnis, P., Comstock, J. M., & Tomlinson, J. M. (2013). Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S. Science, 339, 1572–1578.

    Article  CAS  Google Scholar 

  • Croft, D. P., Zhang, W., & Lin, S. (2020). Associations between source-specific particulate matter and respiratory infections in New York state adults. Environmental Science & Technology, 54(2), 975–984. https://doi.org/10.1021/acs.est.9b04295

    Article  CAS  Google Scholar 

  • Cui, Y., Zhang, Z. F., Froines, J., Zhao, J., Wang, H., Yu, S. Z., & Detels, R. (2003). Air pollution and case fatality of SARS in the People’s Republic of China: An ecologic study. Environmental Health, 2(1), 15. https://doi.org/10.1186/1476-069X-2-15

    Article  Google Scholar 

  • Derimian, Y., Karnieli, A., Kaufman, Y. J., Andreae, M. O., Andreae, T. W., Dubovik, O., Maenhaut, W., Koren, I., & Holben, B. N. (2006). Dust and pollution aerosols over the Negev desert, Israel: Properties, transport, and radiative effect. Journal of Geophysical Research – Atmospheres, 111, D5. https://doi.org/10.1029/2005JD006549

    Article  Google Scholar 

  • Di, Q., Dai, L., Wang, Y., Zanobetti, A., Choirat, C., Schwartz, J. D., & Dominici, F. (2017a). Association of short-term exposure to air pollution with mortality in older adults. JAMA, 318(24), 2446–2456. https://doi.org/10.1001/jama.2017.17923

    Article  CAS  Google Scholar 

  • Di, Q., Wang, Y., Zanobetti, A., Wang, Y., Koutrakis, P., Choirat, C., Dominici, F., & Schwartz, J. (2017b). Air pollution and mortality in the Medicare population. The New England Journal of Medicine, 376(26), 2513–2522. https://doi.org/10.1056/NEJMoa1702747

    Article  CAS  Google Scholar 

  • Duce, R. A., & Tindale, N. W. (1991). Atmospheric transport of iron and its deposition in the ocean; chemistry and biology of iron and other trace metals. Limnology and Oceanography, 36, 1715–1726. https://doi.org/10.4319/lo.1991.36.8.1715

    Article  CAS  Google Scholar 

  • Duce, R. A., Unni, C. K., Ray, B. J., Prospero, J. M., & Merrill, J. T. (1980). Long-range atmospheric transport of soil dust from Asia to the tropical North Pacific: Temporal variability. Science, 209, 1522–1524.

    Article  CAS  Google Scholar 

  • Garrison, V. H., Shinn, E. A., Foreman, W. T., Griffin, D. W., Holmes, C. W., Kellogg, C. A., Majewski, M. S., Richardson, L. L., Ritchie, K. B., & Smith, G. W. (2003). African and Asian Dust: From desert soils to coral reefs. BioScience, 53(5), 469–480. https://doi.org/10.1641/0006-3568(2003)053

    Article  Google Scholar 

  • Getahun, H., Matteelli, A., Chaisson, R. E., & Raviglione, M. (2015). Latent Mycobacterium tuberculosis infection. The New England Journal of Medicine, 372(22), 2127–2135.

    Article  CAS  Google Scholar 

  • Griffin, D. W. (2007). Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clinical Microbiology Reviews, 20, 459–477.

    Article  Google Scholar 

  • Hara, K., & Zhang, D. (2012). Bacterial abundance and viability in long-range transported dust. Atmospheric Environment, 47, 20–25.

    Article  CAS  Google Scholar 

  • Hnizdo, E., & Murray, J. (1998). Risk of pulmonary tuberculosis relative to silicosis and exposure to silica dust in South African gold miners. Occupational and Environmental Medicine, 55(7), 496–502. https://doi.org/10.1136/oem.55.7.496

    Article  CAS  Google Scholar 

  • Hou, C. T., Labeda, D. P., & Rooney, A. P. (2005). Evaluation of microbial strains for linoleic acid hydroxylation and reclassification of strain ALA2. Antonie Van Leeuwenhoek, 88, 167–171. https://doi.org/10.1007/s10482-005-3369-1

    Article  CAS  Google Scholar 

  • Huang, Z., Huang, J., Bi, J., Wang, G., Wang, W., Fu, Q., Li, Z., Tsay, S. C., & Shi, J. (2010). Dust aerosol vertical structure measurements using three MPL lidars during 2008 China-U.S. joint dust field experiment. Journal of Geophysical Research, 115, D00K15. https://doi.org/10.1029/2009JD013273

    Article  Google Scholar 

  • Huang, J. P., Liu, J. J., Chen, B., & Nasiri, S. L. (2015). Detection of anthropogenic dust using CALIPSO lidar measurements. Atmospheric Chemistry and Physics, 15, 11653–11665.

    Article  CAS  Google Scholar 

  • Huebert, B. J., Bates, T., Russell, P. B., Shi, G., Kim, Y. J., Kawamura, K., Carmichael, G., & Nakajima, T. (2003). An overview of ACE-Asia: Strategies for quantifying the relationships between Asian aerosols and their climatic impacts. Journal of Geophysical Research – Atmospheres, 108(D23), 8633. https://doi.org/10.1029/2003JD003550

    Article  CAS  Google Scholar 

  • Ichinose, T., Nishikawa, M., Takano, H., Sera, N., Sadakane, K., Mori, I., Yanagisawa, R., Oda, T., Tamura, H., Hiyoshi, K., Quan, H., Tomura, S., & Shibamoto, T. (2005). Pulmonary toxicity induced by intratracheal instillation of Asian yellow dust (Kosa) in mice. Regulatory Toxicology and Pharmacology, 20, 48–56.

    Article  CAS  Google Scholar 

  • Idris, R., Trifonova, R., Puschenreiter, M., Wenzel, W. W., & Sessitsch, A. (2004). Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Applied and Environmental Microbiology, 70, 2667–2677.

    Article  CAS  Google Scholar 

  • Iwasaka, Y., Minoura, H., & Nagaya, K. (1983). The transport and spacial scale of Asian dust-storm clouds: A case study of the dust-storm event of April 1979. Tellus, 35B, 189–196.

    Article  Google Scholar 

  • Iwasaka, Y., Shi, G. Y., Yamada, M., Kobayashi, F., Kakikawa, M., Maki, T., Chen, B., Tobo, Y., & Hong, C. (2009). Mixture of Kosa (Asian dust) and bioaerosols detected in the atmosphere over the Kosa particles source regions with balloon-borne measurements: Possibility of long-range transport. Air Quality, Atmosphere and Health, 2, 29–38.

    Article  Google Scholar 

  • Jeon, E. M., Kim, H. J., Jung, K., Kim, J. H., Kim, M. Y., Kim, Y. P., & Ka, J. O. (2011). Impact of Asian-dust events on airborne bacterial community assessed by molecular analyses. Atmospheric Environment, 45, 4313–4321.

    Article  CAS  Google Scholar 

  • Julian, T. R., Leckie, J. O., & Boehm, A. B. (2010). Virus transfer between fingerpads and fomites. Journal of Applied Microbiology, 109(6), 1868–1874. https://doi.org/10.1111/j.1365-2672.2010.04814.x

    Article  CAS  Google Scholar 

  • Kakikawa, M., Kobayashi, F., Maki, T., Yamada, M., Higashi, T., Chen, B., Shi, G., Hong, C., Tobo, Y., & Iwasaka, Y. (2009). Dustborne microorganisms in the atmosphere over Asian dust (KOSA) source region, Dunhuang. Air Quality, Atmosphere and Health, 1, 195–202.

    Article  Google Scholar 

  • Kellogg, C. A., & Griffin, D. W. (2006). Aerobiology and the global transport of desert dust. Trends in Ecology & Evolution, 21(11), 638–644. https://doi.org/10.1016/j.tree.2006.07.004. Epub 2006 Jul 14. PMID: 16843565.

  • Kim, H. S., & Chung, Y. S. (2010). On the sandstorms and associated airborne dust fall episodes observed at Cheongwon in Korea in 2005. Air Quality, Atmosphere & Health, 3, 83–94. https://doi.org/10.1007/s11869-009-0054-y

    Article  CAS  Google Scholar 

  • Kiuchi, K., Nagai, T., & Kimura, K. (2008). Advanced science on Natto -Japanese soybean fermented foods-, Kenpakusha.

    Google Scholar 

  • Kobayashi, F., Maki, T., Kakikawa, M., Yamada, M., Puspitasari, F., & Iwasaka, Y. (2015). Bioprocess of Kosa bioaerosols: Effect of ultraviolet radiation on airborne bacteria within Kosa (Asian dust). Journal of Bioscience and Bioengineering, 119, 570–579.

    Article  CAS  Google Scholar 

  • Kok, J., Parteli, E., Michaels, T., & Bou, K. (2012). The physics of wind-blown sand and dust. Reports on Progress in Physics, 75, 106901.

    Article  Google Scholar 

  • Kurosaki, Y., & Mikami, M. (2005). Regional difference in the characteristic of dust event in East Asia: Relationship among dust outbreak, surface wind, and land surface condition. Journal of the Meteorological Society of Japan, 83A, 1–18.

    Google Scholar 

  • Kurosaki, Y., & Mikami, M. (2007). Threshold wind speed for dust emission in East Asia and its seasonal variations. Journal of Geophysical Research, 112, D17202. https://doi.org/10.1029/2006JD007988

    Article  Google Scholar 

  • Lawrence, C. R., & Neff, J. C. (2009). The contemporary physical and chemical flux of aeolian dust: A synthesis of direct measurements of dust deposition. Chemical Geology, 267, 46–63.

    Article  CAS  Google Scholar 

  • Liu, B., Ichinose, T., He, M., Kobayashi, N., Maki, T., Yoshida, S., Yoshida, Y., Arashidani, K., Nishikawa, M., Takano, H., Sun, G., & Shibamoto, T. (2014). Lung inflammation by fungus, Bjerkandera adusta isolated from Asian sand dust (ASD) aerosol and enhancement of ovalbumin-induced lung eosinophilia by ASD and the fungus in mice. Aller Asthma Clinical Immunology, 10(10), 10.1150321545113404. https://doi.org/10.1186/1710-1492-10-10

    Article  CAS  Google Scholar 

  • Liu, Y., Ning, Z., Chen, Y., Guo, M., Liu, Y., Gali, N. K., Sun, L., Duan, Y., Cai, J., Westerdahl, D., Liu, X., Xu, K., Ho, K. F., Kan, H., Fu, Q., & Lan, K. (2020). Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature, 582, 557. https://doi.org/10.1038/s41586-020-2271-3

    Article  CAS  Google Scholar 

  • Ma, Y., Zhou, J., Yang, S., Zhao, Y., & Zheng, X. (2017). Assessment for the impact of dust events on measles incidence in western China. Atmospheric Environment, 157, 1–9.

    Article  CAS  Google Scholar 

  • Maimaiti, J., Zhang, Y., Yang, J., Cen, Y. P., Layzell, D. B., Peoples, M., & Dong, Z. (2007). Isolation and characterization of hydrogen-oxidizing bacteria induced following exposure of soil to hydrogen gas and their impact on plant growth. Environmental Microbiology, 9, 435–444.

    Article  CAS  Google Scholar 

  • Maki, T., Susuki, S., Kobayashi, F., Kakikawa, M., Yamada, M., Higashi, T., Chen, B., Shi, G., Hong, C., Tobo, Y., Hasegawa, H., Ueda, K., & Iwasaka, Y. (2008). Phylogenetic diversity and vertical distribution of a halobacterial community in the atmosphere of an Asian dust (KOSA) source region, Dunhuang City. Air Quality, Atmosphere and Health, 1, 81–89.

    Article  CAS  Google Scholar 

  • Maki, T., Susuki, S., Kobayashi, F., Kakikawa, M., Tobo, Y., Yamada, M., Higashi, T., Matsuki, A., Hong, C., Hasegawa, H., & Iwasaka, Y. (2010). Phylogenetic analysis of atmospheric halotolerant bacterial communities at high altitude in an Asian dust (KOSA) arrival region, Suzu City. Science of the Total Environment, 408, 4556–4562.

    Article  CAS  Google Scholar 

  • Maki, T., Kakikawa, M., Kobayashi, F., Yamada, M., Matsuki, A., Hasegawa, H., & Iwasaka, Y. (2013). Assessment of composition and origin of airborne bacteria in the free troposphere over Japan. Atmospheric Environment, 74, 73–82.

    Article  CAS  Google Scholar 

  • Maki, T., Puspitasari, F., Hara, K., Yamada, M., Kobayashi, F., Hasegawa, H., & Iwasaka, Y. (2014). Variations in the structure of airborne bacterial communities in a downwind area during an Asian dust (Kosa) event. Science of the Total Environment, 488–489, 75–84.

    Article  Google Scholar 

  • Maki, T., Hara, K., Kobayashi, F., Kurosaki, Y., Kakikawa, M., Matsuki, A., Bin, C., Shi, G., Hasegawa, H., & Iwasak, Y. (2015). Vertical distribution of airborne bacterial communities in an Asian-dust downwind area, Noto Peninsula. Atmospheric Environment, 119, 282–293.

    Article  CAS  Google Scholar 

  • Maki, T., Hara, K., Iwata, A., Lee, K. C., Kawai, K., Kai, K., Kobayashi, F., Pointing, S. B., Archer, S., Hasegawa, H., & Iwasaka, Y. (2017a). Variations of airborne bacterial communities at high altitudes in response dust events, over Asian-dust downwind area (Japan). Atmospheric Chemistry and Physics, 17, 11877–11897.

    Article  CAS  Google Scholar 

  • Maki, T., Kurosaki, Y., Onishi, K., Lee, K. C., Pointing, S. B., Jugder, D., Yamanaka, N., Hasegawa, H., & Shinoda, M. (2017b). Variations in the structure of airborne bacterial communities in Tsogt-Ovoo of Gobi Desert area during dust events. Air Quality, Atmosphere and Health, 10, 249–260. https://doi.org/10.1007/s11869-016-0430-3

    Article  CAS  Google Scholar 

  • Maki, T., Bin, C., Kai, K., Kawai, K., Fujita, K., Ohara, K., Kobayashi, F., Davaanyam, E., Noda, J., Minamoto, Y., Shi, G., Hasegawa, H., & Iwasaka, Y. (2019). Vertical distributions of airborne microorganisms over Asian dust source region of Taklimakan and Gobi Desert. Atmospheric Environment, 214, 116848. https://doi.org/10.1016/j.atmosenv.2019.116848

    Article  CAS  Google Scholar 

  • Malhotra, S., Limoli, D. H., English, A. E., Parsek, M. R., & Wozniak, D. J. (2018). Mixed communities of mucoid and nonmucoid pseudomonas aeruginosa exhibit enhanced resistance to host antimicrobials. MBio, 9, e00275–e00218. https://doi.org/10.1128/mBio.00275-18

    Article  CAS  Google Scholar 

  • McKendry, I. G., Hacker, J. P., Stull, R., Sakiyama, S., Mignacca, D., & Reid, K. (2001). Long-range transport of Asian dust to the lower Fraser Valley, British Columbia, Canada. Journal of Geophysical Research: Atmospheres, 106(D16), 18361–18370.

    Article  CAS  Google Scholar 

  • McTainsh, G., & Strong, C. (2007). The role of aeolian dust in ecosystems. Geomorphology, 89, 39–54.

    Article  Google Scholar 

  • Miller, J. D. (2019). The role of dust mites in allergy. Clinical Reviews in Allergy and Immunology, 57(3), 312–329. https://doi.org/10.1007/s12016-018-8693-0

    Article  CAS  Google Scholar 

  • Mimura, K. (2002). The trend of M. Kansasii infection in Okayama prefecture between 1994 and 2000. Kekkaku, 77(10), 665–669.

    Google Scholar 

  • Mizutani, R. F., Lombardi, E. M. S., UdeP, S., & Terra-Filho, M. (2016). Silica exposure, silicosis, autoimmune diseases, tuberculosis and nontuberculous pulmonary mycobacterial disease. European Respiratory Journal, 48, PA1171. https://doi.org/10.1183/13993003.congress-2016.PA1171

    Article  Google Scholar 

  • Morimoto, K., Hasegawa, N., Izumi, K., Namkoong, H., Uchimura, K., Yoshiyama, T., Hoshino, Y., Kurashima, A., Sokunaga, J., Shibuya, S., Shimojima, M., Ato, M., & Mitarai, S. (2017). A laboratory-based analysis of nontuberculous mycobacterial lung disease in Japan from 2012 to 2013. Annals of the American Thoracic Society, 14(1), 49–56.

    Article  Google Scholar 

  • Morris, C. E., Sands, D. C., Vinatzer, B. A., Glaux, C., Guilbaud, C., Buffière, A., Yan, S., Dominguez, H., & Thompson, B. M. (2008). The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle. The ISME Journal, 2, 321–334.

    Article  CAS  Google Scholar 

  • Namkoong, H., Kurashima, A., Morimoto, K., Hoshino, Y., Hasegawa, N., Ato, M., & Mitarai, S. (2016). Epidemiology of pulmonary nontuberculous mycobacterial disease, Japan. Emerging Infectious Diseases, 22(6), 1116–1117. https://doi.org/10.3201/eid2206.151086

    Article  Google Scholar 

  • Neff, J. C., Ballantyne, A. P., & Farmer, G. L. (2008). Increasing eolian dust deposition in the western United States linked to human activity. Nature Geoscience, 1, 189–195.

    Article  CAS  Google Scholar 

  • Newton, R. J., Jones, S. E., Eiler, A., McMahon, K. D., & Bertilsson, S. (2011). A guide to the natural history of freshwater lake bacteria. Microbiology and Molecular Biology Reviews, 75, 14–49.

    Article  CAS  Google Scholar 

  • Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J., & Setlow, P. (2000). Resistance of bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiology and Molecular Biology Reviews, 64, 548–572.

    Article  CAS  Google Scholar 

  • Nie, W., Ding, A., Wang, T., Kerminen, V. M., George, C., Xue, L., Wang, W., Zhang, Q., Petäjä, T., Qi, X., Gao, X., Wang, X., Yang, X., Fu, C., & Kulmala, M. (2014). Polluted dust promotes new particle formation and growth. Scientific Reports, 4, 6634. https://doi.org/10.1038/srep06634

    Article  CAS  Google Scholar 

  • Noda, J., Tomizawa, S., Hoshino, B., Munkhjarga, E., Kawai, K., & Kai, K. (2019). Atmospheric dust as a possible survival factor for bioaerosols. E3S Web of Conferences, 99, 04007. https://doi.org/10.1051/e3sconf/20199904007

    Article  CAS  Google Scholar 

  • Noda, J., Tomizawa, S., Takahashi, K., Morimoto, K., & Mitarai, S. (2021). Air pollution and airborne infection with mycobacterial bioaerosols: A potential attribution of soot. International journal of Environmental Science and Technology, 1-10, 717. https://doi.org/10.1007/s13762-021-03203-7

    Article  CAS  Google Scholar 

  • Onishi, K., Kurosaki, Y., Otani, S., Yoshida, A., Sugimoto, N., & Kurozawa, Y. (2012). Atmospheric transport route determines components of Asian dust and health effects in Japan. Atmospheric Environment, 49, 94–102.

    Article  CAS  Google Scholar 

  • Park, J., Ichijo, T., Nasu, M., & Yamaguchi, N. (2016). Investigation of bacterial effects of Asian-dust events through comparison with seasonal variability in outdoor airborne bacterial community. Scientific Reports, 6. https://doi.org/10.1038/srep35706

  • Pointing, S. B., & Belnap, J. (2012). Microbial colonization and controls in dryland systems. Nature Reviews. Microbiology, 10, 551–562.

    Article  CAS  Google Scholar 

  • Pointing, S. B., & Belnap, J. (2014). Disturbance to desert soil ecosystems contributes to dust-mediated impacts at regional scales. Biodiversity and Conservation, 24, 1659–1667.

    Article  Google Scholar 

  • Pointing, S. B., Jayne, B. (2014) Disturbance to desert soil ecosystems contributes to dust-mediated impacts at regional scales. Biodiversity and Conservation, 23, 1659–1667. https://doi.org/10.1007/s10531-014-0690-x

  • Pratt, K. A., DeMott, P. J., French, J. R., Wang, Z., Westphal, D. L., Heymsfield, A. J., Twohy, C. H., Prenni, A. J., & Prather, K. A. (2009). In situ detection of biological particles in cloud ice-crystals. Nature Geoscience, 2, 398–401. https://doi.org/10.1038/ngeo521

    Article  CAS  Google Scholar 

  • Prospero, J. M., Blades, E., Mathison, G., & Naidu, R. (2005). Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust. Aerobiologia, 21, 1–19.

    Article  Google Scholar 

  • Prospero, J. M., Bullard, J. E., & Hodgkins, R. (2012). High-latitude dust over the North Atlantic: Inputs from Icelandic proglacial dust storms. Science, 335, 1078–1082.

    Article  CAS  Google Scholar 

  • Puspitasari, F., Maki, T., Shi, G., Bin, C., Kobayashi, F., Hasegawa, H., & Iwasaka, Y. (2015). Phylogenetic analysis of bacterial species compositions in sand dunes and dust aerosol in an Asian dust source area, the Taklimakan Desert. Air Quality, Atmosphere and Health, 9, 631–644.

    Article  Google Scholar 

  • Reynolds, R. L., Belnap, J., Reheis, M., Lamothe, P., & Luizers, F. (2001). Aoelian dust in Colorado Plateau soils: Nutrient inputs and recent change in sources. Proceedings National Academy of Sciences United States of America, 98, 7123–7127.

    Article  CAS  Google Scholar 

  • Rodó, X., Ballester, J., Cayan, D., Melish, M. E., Nakamura, Y., Uehara, R., & Burns, J. C. (2011). Association of Kawasaki disease with tropospheric wind patterns. Scientific Reports, 1, 152.

    Article  Google Scholar 

  • Rylander, R. (2013). Human Exposures to beta-Glucan in the Environment. Biology and Chemistry of Beta Glucan, 2, 131.

    Google Scholar 

  • Saito, H., Tomioka, H., Sato, K., Tasaka, H., Tsukamura, M., Kuze, F., & Asano, K. (1989). Identification and partial characterization of Mycobacterium avium and Mycobacterium intracellulare by using DNA probes. Journal of Clinical Microbiology, 27(5), 994–997. https://doi.org/10.1128/JCM.27.5.994-997

    Article  CAS  Google Scholar 

  • Smeekens, J. M., Immormino, R. M., Balogh, P. A., Randell, S. H., Kulis, M. D., & Moran, T. P. (2019). Indoor dust acts as an adjuvant to promote sensitization to peanut through the airway. Clinical and Experimental Allergy, 49(11), 1500–1511. https://doi.org/10.1111/cea.13486

    Article  CAS  Google Scholar 

  • Smith, D. J., Jaffe, D. A., Birmele, M. N., Griffin, D. W., Schuerger, A. C., Hee, J., & Roberts, M. S. (2012). Free tropospheric transport of microorganisms from Asia to North America. Microbial Ecology, 64, 973–985. https://doi.org/10.1007/s00248-012-0088-9

    Article  CAS  Google Scholar 

  • Smith, D. J., Timonen, H. J., Jaffe, D. A., Griffin, D. W., Birmele, M., Warda, P. P. D., & Roberts, M. S. (2013). Intercontinental dispersal of bacteria and archaea by transpacific winds. Applied and Environmental Microbiology, 79, 1134–1139.

    Article  CAS  Google Scholar 

  • Stuckler, D., Basu, S., McKee, M., & Lurie, M. (2011). Mining and risk of tuberculosis in sub-Saharan Africa. American Journal of Public Health, 101(3), 524–530. https://doi.org/10.2105/AJPH.2009.175646

    Article  Google Scholar 

  • Tanaka, D., Tokuyama, Y., Terada, Y., Kunimochi, K., Mizumaki, C., Tamura, S., Wakabayashi, M., Aoki, K., Shimada, W., Tanaka, H., & Nakamura, S. (2011). Bacterial communities in Asian dust-containing snow layers on Mt. Tateyama, Japan. Bulletin of Glaciological Research, 29, 31–39.

    Article  Google Scholar 

  • teWaternaude, J. M., Ehrlich, R. I., Churchyard, G. J., Pemba, L., Dekker, K., Vermeis, M., White, N. W., Thompson, M. L., & Myers, J. E. (2006). Tuberculosis and silica exposure in South African gold miners. Occupational and Environmental Medicine, 63(3), 187–192. https://doi.org/10.1136/oem.2004.018614

    Article  CAS  Google Scholar 

  • Tsai, D. H., Riediker, M., & Berchet, A. (2019). Effects of short- and long-term exposures to particulate matter on inflammatory marker levels in the general population. Environmental Science and Pollution Research International, 26(19), 19697–19704. https://doi.org/10.1007/s11356-019-05194-y

    Article  Google Scholar 

  • Turnbaugh, P. J., Biomolecules, S. B. D., & Roscoff, F. (2011). Environmental and gut bacteroidetes: The food connection. Frontiers in Microbiology, 2, 93–111.

    Google Scholar 

  • Uematsu, M., Duce, R. A., Prospero, J. M., Chen, L., Merrill, J. T., & McDonald, R. L. (1983). Transport of mineral aerosol from Asia over the North Pacific Ocean. Journal of Geophysical Research, 88(C9), 5343–5352. https://doi.org/10.1029/JC088iC09p05343

    Article  CAS  Google Scholar 

  • Uematsu, M., Duce, R. A., & Prospero, J. M. (1985). Deposition of atmospheric mineral particles in the North Pacific Ocean. Journal of Atmospheric Chemistry, 3, 123–138. https://doi.org/10.1007/BF00049372

    Article  CAS  Google Scholar 

  • van Doremalen, N., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble, A., Williamson, B. N., Tamin, A., Harcourt, J. L., Thornburg, N. J., Gerber, S. I., Lloyd-Smith, J. O., de Wit, E., & Munster, V. J. (2020). Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. The New England Journal of Medicine, 382(16), 1564–1567. https://doi.org/10.1056/NEJMc2004973

    Article  Google Scholar 

  • Verhoeff, A. P., & Burge, H. A. (1997). Health risk assessment of fungi in home environments. Annals of Allergy, Asthma & Immunology, 78(6), 544–554; quiz 555–6. https://doi.org/10.1016/S1081-1206(10)63214-0

    Article  CAS  Google Scholar 

  • Wagner, D., et al. (2019). Global epidemiology of NTM disease (except northern America). In D. Griffith (Ed.), Nontuberculous mycobacterial disease (Respiratory medicine). Humana Press. https://doi.org/10.1007/978-3-319-93473-0_8

    Chapter  Google Scholar 

  • Wang, J., & Du, G. (2020). COVID-19 may transmit through aerosol. Irish Journal of Medical Science, 189, 1143. https://doi.org/10.1007/s11845-020-02218-2

    Article  CAS  Google Scholar 

  • Wei, K., Zou, Z., Zheng, Y., Li, J., Shen, F., Wu, C. Y., Hua, M., & Yao, M. (2016). Ambient bioaerosol particle dynamics observed during haze and sunny days in Bei**g. Science of the Total Environment, 550, 751–759.

    Article  CAS  Google Scholar 

  • Woo, A. C., Brar, M. S., Chan, Y., Lau, M. C., Leung, F. C., Scott, J. A., Vrijmoed, L. P., Zawar-Reza, P., & Pointing, S. B. (2013). Temporal variation in airborne microbial populations and microbially-derived allergens in a tropical urban landscape. Atmospheric Environment, 74, 291–300.

    Article  CAS  Google Scholar 

  • Wu, X., Nethery, R. C., Sabath, B. M., Braun, D., & Dominici, F. (2020). Exposure to air pollution and COVID-19 mortality in the United States: A nationwide cross-sectional study. Preprint. https://doi.org/10.1101/2020.04.05.20054502

  • Xu, C., Wei, M., Chen, J., Sui, X., Zhu, C., Li, J., Zheng, L., Sui, G., Li, W., Wang, W., & Zhang, Q. (2017). Investigation of diverse bacteria in cloud water at Mt. Tai, China. Science of the Total Environment, 580, 258–265.

    Article  CAS  Google Scholar 

  • Yadav, S., Kaushik, R., Saxena, A. K., & Arora, D. K. (2011). Diversity and phylogeny of plant growth-promoting bacilli from moderately acidic soil. Journal of Basic Microbiology, 51, 98–106.

    Article  CAS  Google Scholar 

  • Yamaguchi, N., Ichijo, T., Sakotani, A., Baba, T., & Nasu, M. (2012). Global dispersion of bacterial cells on Asian dust. Scientific Reports, 2, 525. https://doi.org/10.1038/srep00525

    Article  CAS  Google Scholar 

  • Yokoyama, S. (2014). The origin of Natto “Natto no kigen”, in Japanese, NHK Books.

    Google Scholar 

  • Yoshida, S., Saito, H., & Suzuki, K. (2011). Present status of studies on epidemiology and molecular epidemiology of Mycobacterium kansasii, in special reference to its epidemiology. Kekkaku, 86(5), 515–521. in Japanese.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Noda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Noda, J., Morimoto, K., Mitarai, S., Maki, T. (2023). Dust and Microorganisms: Their Interactions and Health Effects. In: Al-Dousari, A., Hashmi, M.Z. (eds) Dust and Health. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-031-21209-3_8

Download citation

Publish with us

Policies and ethics

Navigation