Abstract

After mercury and lead, cadmium is the third greatest hazard dangerous to the environment. Cadmium is non-essential biological functions metal element and has a series of harmful effects on the health of human, animal, and plants at low concentrations. Cadmium is unique heavy metal that causes health problems Plants in many areas are low or mildly polluted with cadmium may not display any toxicity problems. They can accumulate cadmium in their edible portions at levels that are higher than the permissible threshold for people. Plant foods are generally considered to be the most prevalent source of cadmium exposure in the population, and grains account for a considerable portion of total dietary intake. It is well documented that added at low concentrations of selenium exerts beneficial effects regulation of photosynthesis and respiration, increased antioxidant capacity, improvement of abiotic stress tolerance, and attracted attention in the alleviation of heavy metal toxicities stresses in different plant species. This chapter summarized how selenium and Nano-selenium can be mitigated cadmium stress in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adnan M (2020) Application of selenium a useful way to mitigate drought stress: a review. Open Access J Biog Sci Res 3(1). https://doi.org/10.46718/jbgsr.2020.03.000064

  • Ali J, Jan IU, Ullah H (2020) Selenium supplementation affects vegetative and yield attributes to escalate drought tolerance in okra. Sarhad J Agri 35(1). https://doi.org/10.17582/journal.sja/2020/36.1.120.129

  • Alloway BJ (2012) Heavy metals in soils: trace metals and metalloids in soils and their bioavailability, vol. 22. Springer Science and Business Media

    Google Scholar 

  • Cartes P, Jara AA, Pinilla L, Rosas A, Mora ML (2010) Selenium improves the antioxidant ability against aluminium‐induced oxidative stress in ryegrass roots. Ann Appl Biol 156(2):297–307

    Google Scholar 

  • Cartes P, Gianfreda L, Paredes C et al (2011) Selenium uptake and its antioxidant role in ryegrass cultivars as affected by selenite seed pelletization. 11(4):1–14

    Google Scholar 

  • Chakraborty S, Pal S, Paul S (2021) Nanoparticles mediated cadmium toxicity amelioration in plants. Plant Sci Today 8(4). https://doi.org/10.14719/pst.2021.8.4.1254

  • Cook M, Morrow H (1995) Anthropogenic sources of cadmium in Canada. In: Paper presented at the national workshop on cadmium transport into plants. Canadian Network of Toxicology Centres, Ottawa, Ontario, Canada

    Google Scholar 

  • Cui J, Liu T, Li Y et al (2018) Selenium reduces cadmium uptake into rice suspension cells by regulating the expression of lignin synthesis and cadmium-related genes. 644:602–610

    Google Scholar 

  • Dai Z, Imtiaz M, Rizwan M et al (2019) Dynamics of selenium uptake, speciation, and antioxidant response in rice at different panicle initiation stages. Sci Total Environ 691:827–834

    Article  CAS  PubMed  Google Scholar 

  • Das D, Das P, Biswas AKJJoPS et al (2018) Regulation of growth and carbohydrate metabolism in rice (Oryza sativa L.) seedlings by selenium and sulphate. 7(1)

    Google Scholar 

  • Di Toppi LS, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41(2):105–130

    Article  Google Scholar 

  • Duan M, Cheng S, Lu R et al (2019) Effect of foliar sodium selenate on leaf senescence of fragrant rice in south china. Appl Ecol Environ Res 17:3343–3351

    Article  Google Scholar 

  • El-Ramady H, Abdalla N, Taha HS et al (2015) Selenium and nano-selenium in plant nutrition. Environ Chem Lett 14(1):123–147. https://doi.org/10.1007/s10311-015-0535-1

  • El-Ramady H, Faizy SED, Abdalla N et al (2020) Selenium and nano-selenium biofortification for human health: opportunities and challenges. Soil Syst 4(3). https://doi.org/10.3390/soilsystems4030057

  • Feng R, Zhao P, Zhu Y et al (2021) Application of inorganic selenium to reduce accumulation and toxicity of heavy metals (metalloids) in plants: the main mechanisms, concerns, and risks. Sci Total Environ 771:144776. https://doi.org/10.1016/j.scitotenv.2020.144776

    Article  CAS  PubMed  Google Scholar 

  • Filek M, Keskinen R, Hartikainen H et al (2008) The protective role of selenium in rape seedlings subjected to cadmium stress. 165(8):833–844

    Google Scholar 

  • Galeas ML, Zhang LH, Freeman JL et al (2007) Seasonal fluctuations of selenium and sulfur accumulation in selenium hyperaccumulators and related nonaccumulators. New Phytol 173(3):517–525

    Article  CAS  PubMed  Google Scholar 

  • Gupta M, Gupta S (2016) An overview of selenium uptake, metabolism, and toxicity in plants. Front Plant Sci 7:2074. https://doi.org/10.3389/fpls.2016.02074

    Article  PubMed  Google Scholar 

  • Gupta M, Gupta S (2017) An overview of selenium uptake, metabolism, and toxicity in plants. Front Plant Sci 7:2074

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartikainen H (2005) Biogeochemistry of selenium and its impact on food chain quality and human health. J Trace Elem Med Biol 18(4):309–318

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Bhuyan MB, Raza A et al (2020) Selenium in plants: boon or bane? 104170

    Google Scholar 

  • Hawrylak-Nowak B, Matraszek R, Pogorzelec M (2015) The dual effects of two inorganic selenium forms on the growth, selected physiological parameters and macronutrients accumulation in cucumber plants. Acta Physiologiae Plantarum 37(2):41

    Google Scholar 

  • Hayat MT, Nauman M, Nazir N et al (2019) Environmental hazards of cadmium: past, present, and future cadmium toxicity and tolerance in plants, pp 163–183. Elsevier

    Google Scholar 

  • Hossain A, Skalicky M, Brestic M et al (2021) Selenium biofortification: roles, mechanisms, responses and prospects. Molecules 26(4). https://doi.org/10.3390/molecules26040881

  • Hu Y, Norton GJ, Duan G et al (2014) Effect of selenium fertilization on the accumulation of cadmium and lead in rice plants. 384(1):131–140

    Google Scholar 

  • Huang X, Duan S, Wu Q et al (2020) Reducing cadmium accumulation in plants: structure–function relations and tissue-specific operation of transporters in the spotlight. Plants 9(2):223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IPCS W, (1992) Environmental health criteria 134: cadmium. WHO, Geneva, Switzerland

    Google Scholar 

  • Ismael MA, Elyamine AM, Zhao YY et al (2018) Can selenium and molybdenum restrain cadmium toxicity to pollen grains in Brassica napus? 19(8):2163

    Google Scholar 

  • Ismael MA, Elyamine AM, Moussa MG et al (2019a) Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers. Metallomics 11(2):255–277

    Google Scholar 

  • Ismael MA, Elyamine AM, Moussa MG et al (2019b) Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers. 11(2):255–277

    Google Scholar 

  • Jamers A, Blust R, De Coen W et al (2013) An omics based assessment of cadmium toxicity in the green alga Chlamydomonas reinhardtii. Aquat Toxicol 126:355–364

    Article  CAS  PubMed  Google Scholar 

  • Ji P, Sun T, Song Y et al (2011) Strategies for enhancing the phytoremediation of cadmium-contaminated agricultural soils by Solanum nigrum L. Environ Pollut 159(3):762–768

    Article  CAS  PubMed  Google Scholar 

  • Jia H, Song Z, Wu F et al (2018) Low selenium increases the auxin concentration and enhances tolerance to low phosphorous stress in tobacco. Environ Exp Bot 153:127–134

    Article  CAS  Google Scholar 

  • Kamran M, Parveen A, Ahmar S et al (2020) An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. Int J Mol Sci 21(1):148

    Article  CAS  Google Scholar 

  • Kantola M, Purkunen R, Kröger P et al (2004) Selenium in pregnancy: is selenium an active defective ion against environmental chemical stress? 96(1):51–61

    Google Scholar 

  • Khan MIR, Nazir F, Asgher M et al (2015) Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. 173:9–18

    Google Scholar 

  • Li MQ, Hasan MK, Li CX et al (2016) Melatonin mediates selenium‐induced tolerance to cadmium stress in tomato plants. 61(3):291–302

    Google Scholar 

  • Lin L, Zhou W, Dai H et al (2012) Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. 235:343–351

    Google Scholar 

  • Luo H, Li H, Zhang X et al (2011) Antioxidant responses and gene expression in perennial ryegrass (Lolium perenne L.) under cadmium stress 20(4):770–778

    Google Scholar 

  • Mabeyo PE, Manoko ML, Gruhonjic A et al (2015) Selenium accumulating leafy vegetables are a potential source of functional foods. Int J Food Sci 2015:549676. https://doi.org/10.1155/2015/549676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malagoli M, Schiavon M, dall'Acqua S et al (2015) Effects of selenium biofortification on crop nutritional quality. Front Plant Sci 6:280. https://doi.org/10.3389/fpls.2015.00280

  • Medrano-Macías J, Mendoza-Villarreal R, Robledo-Torres V et al (2018) The use of iodine, selenium, and silicon in plant nutrition for the increase of antioxidants in fruits and vegetables antioxidants in foods and its applications

    Google Scholar 

  • Misra V, Pandey S (2005) Hazardous waste, impact on health and environment for development of better waste management strategies in future in India. Environ Int 31(3):417–431

    Article  CAS  PubMed  Google Scholar 

  • Mroczek-Zdyrska M, Wójcik M, Bter J (2012) The influence of selenium on root growth and oxidative stress induced by lead in Vicia faba L. minor plants. 147(1):320–328

    Google Scholar 

  • Pedrero Z, Madrid Y, Hartikainen H et al (2008) Protective effect of selenium in broccoli (Brassica oleracea) plants subjected to cadmium exposure. 56(1):266–271

    Google Scholar 

  • Pennanen A, Xue T, Hartikainen H (2002) Protective role of selenium in plant subjected to severe UV irradiation stress. J Appl Bot 76:66–76

    Google Scholar 

  • Pilon-Smits EA, Winkel LH, Lin Z-Q (2017) Selenium in plants: molecular, physiological, ecological and evolutionary aspects, vol 11. Springer, Berlin

    Google Scholar 

  • Van Puymbroeck SL, Stips WJ, Vanderborght, Aoec OLJ et al (1982) The antagonism between selenium and cadmium in a freshwater mollusc 11(1):103–106

    Google Scholar 

  • Qadir S, Qureshi M, Javed S et al (2004) Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress. Plant Sci 167(5):1171–1181

    Article  CAS  Google Scholar 

  • Qi W-Y, Li Q, Chen H et al (2021) Selenium nanoparticles ameliorate Brassica napus L. cadmium toxicity by inhibiting the respiratory burst and scavenging reactive oxygen species. 417:125900

    Google Scholar 

  • Rana S, Verma S, Bter J (1996) Protective effects of GSH, vitamin E, and selenium on lipid peroxidation in cadmium-fed rats. 51(2):161–168

    Google Scholar 

  • Riaz M, Kamran M, Rizwan M et al (2021a) Cadmium uptake and translocation: selenium and silicon roles in Cd detoxification for the production of low Cd crops: a critical review. Chemosphere 273:129690. https://doi.org/10.1016/j.chemosphere.2021a.129690

    Google Scholar 

  • Riaz M, Kamran M, Rizwan M et al (2021b) Cadmium uptake and translocation: synergetic roles of selenium and silicon in Cd detoxification for the production of low Cd crops: a critical review. 129690

    Google Scholar 

  • Rizwan M, Ali S, Rehman MZU et al (2021) Effects of selenium on the uptake of toxic trace elements by crop plants: a review. Crit Rev Environ Sci Technol 51(21):2531–2566

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Rehman MZ et al (2020) Effects of selenium on the uptake of toxic trace elements by crop plants: a review. Crit Rev Environ Sci Technol 51(21):2531–2566. https://doi.org/10.1080/10643389.2020.1796566

  • Ryant P, Antošovský J, Adam V et al (2020) The importance of selenium in fruit nutrition Fruit Crops, pp 241–254

    Google Scholar 

  • Seifikalhor M, Aliniaeifard S, Bernard F et al (2020) γ-Aminobutyric acid confers cadmium tolerance in maize plants by concerted regulation of polyamine metabolism and antioxidant defense systems. 10(1):1–18

    Google Scholar 

  • Shahid M, Dumat C, Khalid S et al (2016) Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. Rev Environ Contam Toxicol 241:73–137

    Google Scholar 

  • Sieprawska A, Kornas A, Filek M (2015a) Involvement of selenium in protective mechanisms of plants under environmental stress conditions-review. Acta Biologica Cracoviensia Series Botanica 57(1)

    Google Scholar 

  • Sieprawska A, Kornas A, Filek MJABCSB (2015b) Involvement of selenium in protective mechanisms of plants under environmental stress conditions-review. 57(1)

    Google Scholar 

  • Sillanpää M, Jansson H (1992) Status of cadmium, lead, cobalt and selenium in soils and plants of thirty countries: Food and Agriculture Org

    Google Scholar 

  • Solenkova NV, Newman JD, Berger JS et al (2014) Metal pollutants and cardiovascular disease: mechanisms and consequences of exposure. Am Heart J 168(6):812–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Štajn A, Žikić R, Ognjanović B et al (1997) Effect of cadmium and selenium on the antioxidant defense system in rat kidneys. 117(2):167–172

    Google Scholar 

  • Sun H-Y, Wang X-Y, Dai H-X et al (2013) Effect of exogenous glutathione and selenium on cadmium-induced changes in cadmium and mineral concentrations and antioxidative metabolism in maize seedlings 25(6)

    Google Scholar 

  • Tang H, Liu Y, Gong X et al (2015) Effects of selenium and silicon on enhancing antioxidative capacity in ramie (Boehmeria nivea (L.) Gaud.) under cadmium stress 22(13):9999–10008

    Google Scholar 

  • Ulhassan Z, Gill RA, Ali S et al (2019) Dual behavior of selenium: insights into physio-biochemical, anatomical and molecular analyses of four Brassica napus cultivars. Chemosphere 225:329–341

    Article  CAS  PubMed  Google Scholar 

  • Vahter M, Berglund M, Slorach S et al (1991) Methods for integrated exposure monitoring of lead and cadmium. Environ Res 56:78–89. Find this article online

    Google Scholar 

  • Van Assche F (1998) A stepwise model to quantify the relative contribution of different environmental sources to human cadmium exposure. NiCad 98:21–22

    Google Scholar 

  • Waisberg M, Black W, Waisberg C et al (2004) The effect of pH, time and dietary source of cadmium on the bioaccessibility and adsorption of cadmium to/from lettuce (Lactuca sativa L. cv. Ostinata) 42(5):835–842

    Google Scholar 

  • Wang F, Wang M, Liu Z et al (2015a) Different responses of low grain-Cd-accumulating and high grain-Cd-accumulating rice cultivars to Cd stress. Plant Physiol Biochem 96:261–269

    Google Scholar 

  • Wang P, Deng X, Huang Y et al (2015b) Comparison of subcellular distribution and chemical forms of cadmium among four soybean cultivars at young seedlings. Environ Sci Pollut Res 22(24):19584–19595

    Google Scholar 

  • Wang C, Rong H, Zhang X et al (2020) Effects and mechanisms of foliar application of silicon and selenium composite sols on diminishing cadmium and lead translocation and affiliated physiological and biochemical responses in hybrid rice (Oryza sativa L.) exposed to cadmium and lead 251:126347

    Google Scholar 

  • White PJ (2018) Selenium metabolism in plants. Biochim Biophys Acta Gen Subj 1862(11):2333–2342. https://doi.org/10.1016/j.bbagen.2018.05.006

    Article  CAS  PubMed  Google Scholar 

  • WHO (1973) Expert Committee on Trace Elements in Human Nutrition: World Health Organization

    Google Scholar 

  • Wu J-W, Shi Y, Zhu Y-X et al (2013) Mechanisms of enhanced heavy metal tolerance in plants by silicon: a review. Pedosphere 23(6):815–825. https://doi.org/10.1016/s1002-0160(13)60073-9

    Article  CAS  Google Scholar 

  • Wu Z, Liu S, Zhao J et al (2017) Comparative responses to silicon and selenium in relation to antioxidant enzyme system and the glutathione-ascorbate cycle in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis) under cadmium stress 133: 1–11

    Google Scholar 

  • Wu C, Dun Y, Zhang Z et al (2020) Foliar application of selenium and zinc to alleviate wheat (Triticum aestivum L.) cadmium toxicity and uptake from cadmium-contaminated soil 190: 110091

    Google Scholar 

  • **a Q, Yang Z, Shui Y et al (2020) methods of selenium application differentially modulate plant growth, selenium accumulation and speciation, protein, anthocyanins and concentrations of mineral elements in purple-grained wheat 11: 1114

    Google Scholar 

  • **ang C, Werner BL, Christensen ELM, Oliver DJ (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126(2):564–574

    Google Scholar 

  • Xue D, Jiang H, Deng X et al (2014) Comparative proteomic analysis provides new insights into cadmium accumulation in rice grain under cadmium stress. J Hazard Mater 280:269–278

    Article  CAS  PubMed  Google Scholar 

  • Yanqun Z, Yuan L, Jianjun C et al (2005) Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead–zinc mining area in Yunnan, China. Environ int 31(5):755–762

    Google Scholar 

  • Yin H, Qi Z, Li M et al (2019) Selenium forms and methods of application differentially modulate plant growth, photosynthesis, stress tolerance, selenium content and speciation in Oryza sativa L. Ecotoxicol Environ Saf 169:911–917

    Article  CAS  PubMed  Google Scholar 

  • Zagorchev L, Seal CE, Kranner I, Odjakova M (2013) A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 14(4):7405–7432

    Google Scholar 

  • Zarcinas BA, Ishak CF, McLaughlin MJ et al (2004) Heavy metals in soils and crops in Southeast Asia. Environ Geochem Health 26(3):343–357

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Ackley AR, Pilon-Smits EA (2007) Variation in selenium tolerance and accumulation among 19 Arabidopsis thaliana accessions. J Plant Physiol 164(3):327–336

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Zhang P, Mo C et al (2013) Cadmium uptake, chemical forms, subcellular distribution, and accumulation in Echinodorus osiris Rataj. Environ Sci Process Impacts 15(7):1459–1465

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Yang J, Kronzucker HJ et al (2020) Selenium biofortification and interaction with other elements in plants: a review. Front Plant Sci 11:586421. https://doi.org/10.3389/fpls.2020.586421

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu Y-G, Pilon-Smits EA, Zhao F-J et al (2009) Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci 14(8):436–442

    Article  CAS  PubMed  Google Scholar 

  • Zohra E, Ikram M, Omar AA et al (2021) Potential applications of biogenic selenium nanoparticles in alleviating biotic and abiotic stresses in plants: a comprehensive insight on the mechanistic approach and future perspectives. Green Process Synth 10(1):456–475. https://doi.org/10.1515/gps-2021-0047

  • Zwolak I (2020) The role of selenium in arsenic and cadmium toxicity: an updated review of scientific literature. Biol Trace Elem Res 193(1):44–63. https://doi.org/10.1007/s12011-019-01691-w

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Kordrostami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghasemi-Soloklui, A.A., Didaran, F., Kordrostami, M., Al-Khayri, J.M. (2023). Plant Mediation to Tolerate Cadmium Stress with Selenium and Nano-Selenium. In: Al-Khayri, J.M., Alnaddaf, L.M., Jain, S.M. (eds) Nanomaterial Interactions with Plant Cellular Mechanisms and Macromolecules and Agricultural Implications. Springer, Cham. https://doi.org/10.1007/978-3-031-20878-2_17

Download citation

Publish with us

Policies and ethics

Navigation