Generalized 3-Valued Belief States in Conformant Planning

  • Conference paper
  • First Online:
PRICAI 2022: Trends in Artificial Intelligence (PRICAI 2022)

Abstract

The high complexity of planning with partial observability has motivated to find compact representations of belief state (sets of states) that reduce their size exponentially, including the 3-valued literal-based approximations by Baral et al. and tag-based approximations by Palacios and Geffner.

We present a generalization of 3-valued literal-based approximations, and an algorithm that analyzes a succinctly represented planning problem to derive a set of formulas the truth of which accurately represents any reachable belief state. This set is not limited to literals and can contain arbitrary formulas. We demonstrate that a factored representation of belief states based on this analysis enables fully automated reduction of conformant planning problems to classical planning, bypassing some of the limitations of earlier approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 74.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 96.29
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The left-hand side of this conditional effect can be simplified by replacing all occurrences of \(\phi \) by \(\top \), as the effect does something only if \(\phi \) is true when the action is taken. This modification is is needed to maximize Graphplan-style [3] parallelism.

References

  1. Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints using hitting set dualization. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL 2005. LNCS, vol. 3350, pp. 174–186. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30557-6_14

    Chapter  Google Scholar 

  2. Baral, C., Kreinovich, V., Trejo, R.: Computational complexity of planning and approximate planning in the presence of incompleteness. Artif. Intell. 122(1), 241–267 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Artif. Intell. 90(1–2), 281–300 (1997)

    Article  MATH  Google Scholar 

  4. Bryant, R.E.: Symbolic Boolean manipulation with ordered binary decision diagrams. ACM Comput. Surv. 24(3), 293–318 (1992)

    Article  Google Scholar 

  5. Burch, J.R., Clarke, E.M., Long, D.E., MacMillan, K.L., Dill, D.L.: Symbolic model checking for sequential circuit verification. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 13(4), 401–424 (1994)

    Article  Google Scholar 

  6. Bylander, T.: The computational complexity of propositional STRIPS planning. Artif. Intell. 69(1–2), 165–204 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Geffner, T., Geffner, H.: Compact policies for non-deterministic fully observable planning as sat. In: ICAPS 2018. Proceedings of the Twenty-Eighth International Conference on Automated Planning and Scheduling, pp. 88–96. AAAI Press (2018)

    Google Scholar 

  8. Haslum, P., Jonsson, P.: Some results on the complexity of planning with incomplete information. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS (LNAI), vol. 1809, pp. 308–318. Springer, Heidelberg (2000). https://doi.org/10.1007/10720246_24

    Chapter  Google Scholar 

  9. Hoffmann, J., Nebel, B.: The FF planning system: fast plan generation through heuristic search. J. Artif. Intell. Res. 14, 253–302 (2001)

    Article  MATH  Google Scholar 

  10. Liffiton, M.H., Sakallah, K.A.: On finding all minimally unsatisfiable subformulas. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 173–186. Springer, Heidelberg (2005). https://doi.org/10.1007/11499107_13

    Chapter  Google Scholar 

  11. Palacios, H., Geffner, H.: Compiling uncertainty away in conformant planning problems with bounded width. J. Artif. Intell. Res. 35, 623–675 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rintanen, J.: Complexity of planning with partial observability. In: ICAPS 2004. Proceedings of the Fourteenth International Conference on Automated Planning and Scheduling, pp. 345–354. AAAI Press (2004)

    Google Scholar 

  13. Rintanen, J.: Regression for classical and nondeterministic planning. In: ECAI 2008. Proceedings of the 18th European Conference on Artificial Intelligence, pp. 568–571. IOS Press (2008)

    Google Scholar 

  14. Rintanen, J.: Planning as satisfiability: heuristics. Artif. Intell. 193, 45–86 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. To, S., Pontelli, E., Son, T.: A conformant planner with explicit disjunctive representation of belief states. In: Proceedings of the 19th International Conference on Automated Planning and Scheduling, pp. 305–312. AAAI Press (2009)

    Google Scholar 

  16. To, S., Son, T., Pontelli, E.: On the use of prime implicates in conformant planning. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 1205–1210. AAAI Press (2010)

    Google Scholar 

  17. To, S.T., Son, T.C., Pontelli, E.: A new approach to conformant planning using CNF. In: Proceedings of the 20th International Conference on Automated Planning and Scheduling, pp. 169–176. AAAI Press (2010)

    Google Scholar 

  18. To, S.T., Son, T.C., Pontelli, E.: A generic approach to planning in the presence of incomplete information: theory and implementation. Artif. Intell. 227, 1–51 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tu, P.H., Son, T.C., Baral, C.: Reasoning and planning with sensing actions, incomplete information, and static causal laws using answer set programming. Theory Pract. Logic Program. 7, 1–74 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabh Fadnis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fadnis, S., Rintanen, J. (2022). Generalized 3-Valued Belief States in Conformant Planning. In: Khanna, S., Cao, J., Bai, Q., Xu, G. (eds) PRICAI 2022: Trends in Artificial Intelligence. PRICAI 2022. Lecture Notes in Computer Science, vol 13629. Springer, Cham. https://doi.org/10.1007/978-3-031-20862-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20862-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20861-4

  • Online ISBN: 978-3-031-20862-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation