Sex Differences in Neurodevelopment and Its Disorders

  • Chapter
  • First Online:
Neurodevelopmental Pediatrics
  • 1824 Accesses

Abstract

Neurodevelopmental disorders (NDDs) are often sexually dimorphic, with one sex more affected than the other. This chapter examines the genetic mechanisms underlying sex determination and the neuroendocrine mechanisms underlying sexual differentiation. Research on the development of sex differences in the brain and body focuses on the prenatal, perinatal, and pubertal critical periods of development and how hormones and other neurochemical signals act as epigenetic mechanisms to shape male and female brains and neuroendocrine systems. In addition to genes and hormones, glial cells and the neuroimmune system are involved in sexual differentiation of just about every physiological system in the body. Given that each cell in the body has XX or XY chromosomes, every cell is sexually differentiated. While the focus of this chapter is on the sexual differentiation of the brain and neuroendocrine system and how these sex differences influence the development of NDD), I have also examined sex differences in the cardiovascular system and in energy metabolism which result in sex differences in cardiovascular and metabolic disorders. While the primary events in sexual differentiation occur prenatally and perinatally, puberty is also a period of sexual differentiation and the reorganization of neural and neuroendocrine pathways that occur during the transition from childhood to adulthood. Puberty is also associated with the onset of adolescent NDD, including obesity, anorexia, neuropsychiatric and addictive disorder, as well as disorders of gender identity and role. This chapter also discusses the effect of neurotoxins and endocrine disruptors in the disorders of sex differentiation and in the development of NDD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Glucksmann A. Sexual dimorphism in mammals. Biol Rev. 1974;49:423–75. https://doi.org/10.1111/j.1469-185X.1974.tb01171.x.

    Article  CAS  Google Scholar 

  2. Hoyenga KB, Hoyenga KT. The question of sex differences: psychological, cultural, and biological issues. Boston (Mass.): Little, Brown; 1979.

    Google Scholar 

  3. Snell DM, Turner JMA. Sex chromosome effects on male-female differences in mammals. Curr Biol. 2018;28:R-1313-R1324. https://doi.org/10.1016/j.cub.2018.09.018.

    Article  CAS  Google Scholar 

  4. Mauvais-Jarvis F, Bairey Merz N, Barnes PJ, Brinton RD, Carrero JJ, DeMeo DL, De Vries GJ, Epperson CN, Govindan R, Klein SL, Lonardo A, Maki PM, McCullough LD, Regitz-Zagrosek V, Regensteiner JG, Rubin JB, Sandberg K, Suzuki A. Sex and gender: modifiers of health, disease, and medicine. Lancet. 2020;396(10250):565–82. https://doi.org/10.1016/S0140-6736(20)31561-0.

    Article  Google Scholar 

  5. Pearse RV 2nd, Young-Pearse TL. Lost in translational biology: understanding sex differences to inform studies of diseases of the nervous system. Brain Res. 2019;1722:146352. https://doi.org/10.1016/j.brainres.2019.146352.

    Article  CAS  Google Scholar 

  6. Zagni E, Simoni L, Colombo D. Sex and gender differences in central nervous system-related disorders. Neurosci J. 2016;2016:2827090. https://doi.org/10.1155/2016/2827090.

    Article  Google Scholar 

  7. Newhouse A, Chemali Z. Neuroendocrine disturbances in neurodegenerative disorders: a sco** review. Psychosomatics. 2020;61(2):105–15. https://doi.org/10.1016/j.psym.2019.11.002.

    Article  Google Scholar 

  8. Schug TT, Blawas AM, Gray K, Heindel JJ, Lawler CP. Elucidating the links between endocrine disruptors and neurodevelopment. Endocrinology. 2015;156:1941–51. https://doi.org/10.1210/en.2014-1734.

    Article  CAS  Google Scholar 

  9. D’Souza H, Karmiloff-Smith A. Neurodevelopmental disorders. WIREs. Cogn Sci. 2017;8:1–10. https://doi.org/10.1002/wcs.1398.

    Article  Google Scholar 

  10. Bishop DVM. Which neurodevelopmental disorders get researched and why? PlosOne. 2010;5(11):e15112. https://doi.org/10.1371/journal.pone.0015112.

    Article  CAS  Google Scholar 

  11. Hanamsagar R, Bilbo SD. Sex differences in neurodevelopmental and neurodegenerative disorders: Focus on microglial function and neuroinflammation during development. J Steroid Biochem Mol Biol. 2016;160:127–33. https://doi.org/10.1016/j.jsbmb.2015.09.039.

    Article  CAS  Google Scholar 

  12. Clayton JA. Sex influences in neurological disorders: case studies and perspectives. Dialogues Clin Neurosci. 2016;18:357–60. https://doi.org/10.31887/DCNS.2016.18.4/jclayton.

    Article  Google Scholar 

  13. Polyak A, Rosenfeld JA, Girirajan S. An assessment of sex bias in neurodevelopmental disorders. Genome Med. 2015;7:94. https://doi.org/10.1186/s13073-015-0216-5.

    Article  Google Scholar 

  14. Arnold AP, McCarthy MM. Sexual differentiation of the brain and behaviour: a primer. In: Pfaff DW, Volkow ND, editors. Neuroscience in the 21st century: from basic to clinical. New York: Springer; 2016. p. 2139–68.

    Chapter  Google Scholar 

  15. Arnold AP. The organizational-activational hypothesis as the foundation for a unified theory of sexual differentiation of all mammalian tissues. Horm Behav. 2009;55:570–8. https://doi.org/10.1016/j.yhbeh.2009.03.011.

    Article  CAS  Google Scholar 

  16. Arnold AP. A general theory of sexual differentiation. J Neurosci Res. 2017;95:291–300. https://doi.org/10.1002/jnr.23884.

    Article  CAS  Google Scholar 

  17. Arnold AP. Rethinking sex determination of non-gonadal tissues. Curr Top Dev Biol. 2019;134:289–315. https://doi.org/10.1016/bs.ctdb.2019.01.003.

    Article  CAS  Google Scholar 

  18. Arnold AP. Sexual differentiation of brain and other tissues: Five questions for the next 50 years. Horm Behav. 2020;120:104691. https://doi.org/10.1016/j.yhbeh.2020.104691.

    Article  CAS  Google Scholar 

  19. McCarthy MM. A new view of sex differentiation of mammalian brain. J Comp Physiol A. 2019;206:369–78. https://doi.org/10.1007/s00359-019-01376-8.

    Article  Google Scholar 

  20. Eggers S, Sinclair A. Mammalian sex determination—insights from humans and mice. Chromosome Res. 2012;20:215–38. https://doi.org/10.1007/s10577-012-9274-3.

    Article  CAS  Google Scholar 

  21. Eggers S, Ohnesorg T, Sinclair A. Genetic regulation of mammalian gonad development. Nat Rev Endocrinol. 2014;10:673–83. https://doi.org/10.1038/nrendo.2014.163.

    Article  CAS  Google Scholar 

  22. Sekido R. The potential role of SRY in epigenetic gene regulation during brain sexual differentiation in mammals. Adv Genet. 2014;86:135–65. https://doi.org/10.1016/B978-0-12-800222-3.00007-3.

    Article  CAS  Google Scholar 

  23. Spiller C, Koopman P, Bowles J. Sex determination in the mammalian germline. Annu Rev Genet. 2017;51:265–85. https://doi.org/10.1146/annurev-genet-120215-035449.

    Article  CAS  Google Scholar 

  24. Stevant I, Nef S. Genetic control of gonadal sex determination and development. Trends Genet. 2019;35:346–58. https://doi.org/10.1016/j.tig.2019.02.004.

    Article  CAS  Google Scholar 

  25. Wilhelm D, Palmer S, Koopman P. Sex determination and gonadal development in mammals. Physiol Rev. 2007;87:1–28. https://doi.org/10.1152/physrev.00009.2006.

    Article  CAS  Google Scholar 

  26. Gomes NL, Chetty T, Jorgensen A, Mitchell RT. Disorders of sex development—novel regulators, impacts on fertility, and options for fertility preservation. Int J Mol Sci. 2020;21:2282. https://doi.org/10.3390/ijms21072282.

    Article  CAS  Google Scholar 

  27. Case LK, Teuscher C. Y genetic variation and phenotypic diversity in health and disease. Biol Sex Differ. 2015;6:6. https://doi.org/10.1186/s13293-015-0024-z.

    Article  CAS  Google Scholar 

  28. Dewing P, Chiang CWK, Sinchak K, Sim H, Fernagut P-O, Kelly S, Chesselet M-F, Micevych PE, Albercht KH, Harley VR, Vilain E. Direct regulation of adult brain function by the male-specific factor SRY. Curr Biol. 2006;16:415–20. https://doi.org/10.1016/j.cub.2006.01.017.

    Article  CAS  Google Scholar 

  29. Wilson CA, Davies DC. The control of sexual differentiation of the reproductive system and brain. Reproduction. 2007;133:331–59. https://doi.org/10.1530/REP-06-0078.

    Article  CAS  Google Scholar 

  30. Arnold AP, Reue K, Eghbali M, Vilain E, Chen X, Ghahramani N, Itoh Y, Li J, Link JC, Ngun T, Williams-Burris SM. The importance of having two X chromosomes. Phil Trans R Soc B. 2016;371:20150113. https://doi.org/10.1098/rstb.2015.0113.

    Article  CAS  Google Scholar 

  31. Finney EL, Finlayson C, Rosoklija I, Leeth EA, Chen D, Yerkes EB, Cheng EY, Johnson EK. Prenatal detection and evaluation of differences of sex development. J Pediatr Urol. 2020;16(1):89–96. https://doi.org/10.1016/j.jpurol.2019.11.005.

    Article  Google Scholar 

  32. Bashamboo A, McElreavey K. Mechanism of sex determination in humans: insights from disorders of sex development. Sex Dev. 2016;10(5-6):313–25. https://doi.org/10.1159/000452637.

    Article  CAS  Google Scholar 

  33. Gunes SO, Mahmutoglu AM, Agarwal A. Genetic and epigenetic effects in sex determination. Birth Defects Res C. 2016;108(4):321–36. https://doi.org/10.1002/bdrc.21146.

    Article  CAS  Google Scholar 

  34. Blecher SR, Erickson RP. Genetics of sexual development: a new paradigm. Am J Med Genet Part A. 2007;143A:3054–68. https://doi.org/10.1002/ajmg.a.32037.

    Article  CAS  Google Scholar 

  35. Tartaglia NR, Howell S, Sutherland A, Wilson R, Wilson L. A review of trisomy X (47, XXX). Orphanet J Rare Dis. 2010;5:8. https://doi.org/10.1186/1750-1172-5-8.

    Article  Google Scholar 

  36. Majzoub A, Arafa M, Starks C, Elbardisi H, Said AS, Sabanegh E Jr. 46 XX karyotype during male fertility evaluation; case series and literature reviews. Asian Journal of Andrology. 2017;19:168–72. https://doi.org/10.4103/1008-682X.181224.

    Article  CAS  Google Scholar 

  37. Kim IW, Khadilkar AC, Ko EY, Sabanegh ES Jr. 47, XYY syndrome and male infertility. Reviews in Urology. 2013;15:188–96.

    Google Scholar 

  38. Tartaglia N, Davis S, Hench A, Nimishakavi S, Beauregard R, Reynolds A, Fenton L, Albrecht L, Ross J, Visootsak J, Hansen R, Hagerman R. A new look at XXYY syndrome: medical and psychological features. Am J Med Genet Part A. 2008;146A:1509–22. https://doi.org/10.1002/ajmg.a.32366.

    Article  Google Scholar 

  39. Piferrer F. Epigenetics of sex determination and gonadogenesis. Dev Dyn. 2013;242:360–70. https://doi.org/10.1002/dvdy.23924.

    Article  CAS  Google Scholar 

  40. Tachibana M. Epigenetics of sex determination in mammals. Reprod Med Biol. 2016;15:59–67. https://doi.org/10.1007/s12522-015-0223-7.

    Article  CAS  Google Scholar 

  41. Miyawaki S, Tachibana M. Role of epigenetic regulation in mammalian sex determination. Curr Top Dev Biol. 2019;134:195–221. https://doi.org/10.1016/bs.ctdb.2019.01.008.

    Article  CAS  Google Scholar 

  42. Neri G, Schwartz CE, Lubs HA, Stevenson RE. X-linked intellectual disability update 2017. Am J Med Genet. 2018;176A:1375–88. https://doi.org/10.1002/ajmg.a.38710.

    Article  Google Scholar 

  43. Schurz H, Salie M, Tromp G, Hoal EG, Kinnear CJ, Möller M. The X chromosome and sex-specific effects in infectious disease susceptibility. Human Genomics. 2019;13(1):2. https://doi.org/10.1186/s40246-018-0185-z.

    Article  Google Scholar 

  44. Iwase S, Berube NG, Zhou Z, Kasri NN, Battaglioli E, Scandaglia M, Barco A. Epigenetic etiology of intellectual disability. J Neurosci. 2017;8:10773–82. https://doi.org/10.1523/JNEUROSCI.1840-17.2017.

    Article  Google Scholar 

  45. Millan MJ. An epigenetic framework for neurodevelopmental disorders: From pathogenesis to potential therapy. Neuropharmacology. 2013;68:2–82. https://doi.org/10.1016/j.neuropharm.2012.11.015.

    Article  CAS  Google Scholar 

  46. Chahil G, Yelam A, Bollu PC. Rett syndrome in males: a case report and review of literature. Cureus. 2018;10:e3414. https://doi.org/10.7759/cureus.3414.

    Article  Google Scholar 

  47. Moog U, Smeets EEJ, van Roozendaal KE, Schoenmakers S, Herbergs J, Schoonbrood-Lenssen AMJ, Schrander-Stumpel CTRM. Neurodevelopmental disorders in males related to the gene causing Rett syndrome in females (MECP2). Eur J Paediatr Neurol. 2003;7:5–12. https://doi.org/10.1016/S1090-3798(02)00134-4.

    Article  Google Scholar 

  48. Szafranski P, Golla S, ** W, Fang P, Hixson P, Matalon R, Kinney D, Bock H-G, Craigen W, Smith JL, Bi W, Patel A, Cheung SW, Bacino CA, Stankiewicz P. Neurodevelopmental and neurobehavioral characteristics in males and females with CDKL5 duplications. Eur J of Human Genet. 2015;23:915–21. https://doi.org/10.1038/ejhg.2014.217.

    Article  CAS  Google Scholar 

  49. Bassani S, Zapata J, Gerosa L, Moretto E, Murru L, Passafaro M. The neurobiology of X-linked intellectual disability. The Neuroscientist. 2013;19:541–52. https://doi.org/10.1177/1073858413493972.

    Article  Google Scholar 

  50. Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev. 2016;16:626–38. https://doi.org/10.1038/nri.2016.90.

    Article  CAS  Google Scholar 

  51. vom Steeg LG, Klien SL. SeXX matters in infectious disease pathogenesis. PLOS Pathog. 2016;12:e1005374. https://doi.org/10.1371/journal.ppat.1005374.

    Article  CAS  Google Scholar 

  52. Harper A, Flanagan KL. Effect of sex on vaccination outcomes: important but frequently overlooked. Current opinion in pharmacology. 2018;41:122–7. https://doi.org/10.1016/j.coph.2018.05.009.

    Article  CAS  Google Scholar 

  53. Klein SL, Marriott I, Fish EN. Sex-based differences in immune function and responses to vaccination. Trans R Soc Trop Med Hyg. 2015;109(1):9–15. https://doi.org/10.1093/trstmh/tru167.

    Article  CAS  Google Scholar 

  54. Andersen SL. Trajectories of brain development: point of vulnerability or window of opportunity? Neurosci Biobehav Rev. 2003;27(1-2):3–18. https://doi.org/10.1016/s0149-7634(03)00005-8.

    Article  Google Scholar 

  55. Bakker J. Chapter 1: Sex differentiation: organizing effects of sex hormones. In: Kreukels BPC, et al., editors. Gender dysphoria and disorders of sex development. New York, NY: Springer Press; 2014. p. 3–23.

    Chapter  Google Scholar 

  56. Manoli DS, Tollkuhn J. Gene regulatory mechanisms underlying sex differences in brain development and psychiatric disease. Ann N Y Acad Sci. 2018;1420(1):26–45. https://doi.org/10.1111/nyas.13564.

    Article  Google Scholar 

  57. McCarthy MM, Herold K, Stockman SL. Fast, furious and enduring: Sensitive versus critical periods in sexual differentiation of the brain. Physiol Behav. 2018;187:13–9. https://doi.org/10.1016/j.physbeh.2017.10.030.

    Article  CAS  Google Scholar 

  58. Phoenix CH, Goy RW, Gerall AA, Young WC. Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology. 1959;65:369–82. https://doi.org/10.1210/endo-65-3-369.

    Article  CAS  Google Scholar 

  59. Schulz KM, Molenda-Figueira HA, Sisk CL. Back to the future: the organization-activational hypothesis adapted to puberty and adolescence. Horm Behav. 2009;55:597–604. https://doi.org/10.1016/j.yhbeh.2009.03.010.

    Article  CAS  Google Scholar 

  60. Schulz KM, Sisk CL. The organizing actions of adolescent gonadal steroid hormones on brain and behavioral development. Neurosci Biobehav Rev. 2016;70:148–58. https://doi.org/10.1016/j.neubiorev.2016.07.036.

    Article  CAS  Google Scholar 

  61. Sisk CL, Foster DL. The neural basis of puberty and adolescence. Nat Neurosci. 2004;7:1040–70. https://doi.org/10.1038/nn1326.

    Article  CAS  Google Scholar 

  62. Forger NG, Strahan JA, Castillo-Ruiz A. Cellular and molecular mechanisms of sexual differentiation in the mammalian nervous system. Front Neuroendocrinol. 2016;40:67–86. https://doi.org/10.1016/j.yfrne.2016.01.001.

    Article  CAS  Google Scholar 

  63. McCarthy MM, Nugent BM. Epigenetic contributions to hormonally-mediated sexual differentiation of the brain. J Neuroendocrinol. 2013;25:1133–40. https://doi.org/10.1111/jne.12072.

    Article  CAS  Google Scholar 

  64. Shepard KN, Michopoulos V, Toufexis DJ, Wilson ME. Genetic, epigenetic and environmental impact on sex differences in social behaviour. Physiol Behav. 2009;97:157–70. https://doi.org/10.1016/j.physbeh.2009/02.016.

    Article  CAS  Google Scholar 

  65. Weaver ICG. Integrating early life experience, gene expression, brain development, and emergent phenotypes: Unraveling the thread of nature via nurture. Adv Genet. 2014;86:277–307. https://doi.org/10.1016/B978-0-12-800222-3.00011-5.

    Article  CAS  Google Scholar 

  66. MacLusky NJ, Naftolin F. Sexual differentiation of the central nervous system. Science. 1981;211:1294–303. https://doi.org/10.1126/science.6163211.

    Article  CAS  Google Scholar 

  67. Shay DA, Vieira-Potter VJ, Rosenfeld CS. Sexually dimorphic effects of aromatase on neurobehavioral responses. Front Mol Neurosci. 2018;11:374. https://doi.org/10.3389/fnmol.2018.00374.

    Article  CAS  Google Scholar 

  68. Roselli CE, Liu M, Hurn PD. Brain aromatization: classical roles and new perspectives. Semin Reprod Med. 2009;27:207–17. https://doi.org/10.1055/s-0029-1216274.

    Article  CAS  Google Scholar 

  69. Bakker J, De Mees C, Douhard Q, Balthazart J, Gabant P, Szpirer J, Szpirer C. Alpha-fetoprotein protects the develo** female mouse brain from masculinization and defeminization by estrogens. Nat Neurosci. 2006;9:220–6. https://doi.org/10.1038/nn1624.

    Article  CAS  Google Scholar 

  70. Rizzo A, Galgano M, Mutinati M, Sciorsci RL. Alpha-fetoprotein in animal reproduction. Res Vet Sci. 2019;123:281–5. https://doi.org/10.1016/j.rvsc.2019.01.028.

    Article  CAS  Google Scholar 

  71. Motta-Mena NV, Puts DA. Endocrinology of human female sexuality, mating, and reproductive behavior. Horm Behav. 2017;91:19–35. https://doi.org/10.1016/j.yhbeh.2016.11.012.

    Article  CAS  Google Scholar 

  72. Luoto S, Rantala MJ. On estrogenic casualization of the human brain and behaviour. Horm Behav. 2018;97:1–2. https://doi.org/10.1016/j.yhbeh.2017.07.017.

    Article  Google Scholar 

  73. Puts D, Motta-Mena NV. Is human brain masculinization estrogen receptor-mediated? Horm Behav. 2018;97:3–4. https://doi.org/10.1016/j.yhbeh.2017.07.018.

    Article  CAS  Google Scholar 

  74. Brock O, Baum MJ, Bakker J. The development of female sexual behaviour requires prepubertal estradiol. J Neurosci. 2011;31:5574–8. https://doi.org/10.1523/JNEUROSCI.0209-11.2011.

    Article  CAS  Google Scholar 

  75. Rosenfeld CS. Brain sexual differentiation and requirement of SRY: why or why not? Front Neurosci. 2017;11:632. https://doi.org/10.3389/fnins.2017.00632.

    Article  Google Scholar 

  76. Nugent DM, Wright CL, Shetty AC, Hodes GE, Lenz KM, Mahurkar A, Russo SJ, Devine SE, McCarthy MM. Brain feminization requires active repression of masculinization via DNA methylation. Nat Neurosci. 2015;18:690–70. https://doi.org/10.1038/nn.3988.

    Article  CAS  Google Scholar 

  77. Kubota T, Miyake K, Hirasawa T. Epigenetics in neurodevelopmental and mental disorders. Med Epigenet. 2013;1:52–9. https://doi.org/10.1159/000354718.

    Article  CAS  Google Scholar 

  78. Ricq EL, Hooker JM, Haggarty SJ. Toward development of epigenetic drugs for central nervous system disorders: Modulating neuroplasticity via H3K4 methylation. Psychiatry Clin Neurosci. 2016;70:536–50. https://doi.org/10.1111/pcn.12426.

    Article  Google Scholar 

  79. Szyf M. Prospects for the development of epigenetic drugs for CNS conditions. Nat Rev. 2015;14:461–74. https://doi.org/10.1038/nrd4580.

    Article  CAS  Google Scholar 

  80. Filová B, Ostatníková D, Celec P, Hodosy J. The effect of testosterone on the formation of brain structures. Cells Tissues Organs. 2013;197(3):169–77. https://doi.org/10.1159/000345567.

    Article  CAS  Google Scholar 

  81. Carruth LL, Reisert I, Arnold AP. Sex chromosome genes directly affect brain sexual differentiation. Nat Neurosci. 2002;5:933–40. https://doi.org/10.1038/nn922.

    Article  CAS  Google Scholar 

  82. McCarthy MM. Sex differences in neuroimmunity as an inherent risk factor. Neuropsychopharmacology. 2018;44(1):38–44. https://doi.org/10.1038/s41386-018-0138-1.

    Article  CAS  Google Scholar 

  83. Villa A, Della Torre S, Maggi A. Sexual differentiation of microglia. Front Neuroendocrinol. 2019;52:156–64. https://doi.org/10.1016/j.yfrne.2018.11.003.

    Article  Google Scholar 

  84. Halassa MM, Fellin T, Haydon PG. The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med. 2006;13:54–62. https://doi.org/10.1016/j.molmed.2006.12.005.

    Article  CAS  Google Scholar 

  85. Perea G, Navarrete M, Araque A. Tripartite synapse: astrocytes process and control synaptic information. Trend Neurosci. 2009;32:421–31. https://doi.org/10.1016/j.tins.2009.05.001.

    Article  CAS  Google Scholar 

  86. Schiera G, Di Liegro CM, Di Liegro I. Cell-to-cell communication in learning and memory: from neuro- and glio-transmission to information exchange mediated by extracellular vesicles. Int J Mol Sci. 2020;21(1):266. https://doi.org/10.3390/ijms21010266.

  87. VanRyzin JW, Marquardt AE, Pickett LA, McCarthy MM. Microglia and sexual differentiation of the develo** brain: a focus on extrinsic factors. Glia. 2019;2019:1–14. https://doi.org/10.1002/glia.23740.

    Article  Google Scholar 

  88. VanRyzin JW, Pickett LA, McCarthy MM. Microglia: driving critical periods and sexual differentiation of the brain. Dev Neurobiol. 2018;78(6):580–92. https://doi.org/10.1002/dneu.22569.

    Article  Google Scholar 

  89. Amateau SK, McCarthy MM. Sexual differentiation of astrocyte morphology in the develo** rat preoptic area. J Neuroendocrinol. 2002;14:904–10. https://doi.org/10.1046/j.1365-2826.2002.00858.x.

    Article  CAS  Google Scholar 

  90. Schwarz JM, Sholar PW, Bilbo SD. Sex differences in microglial colonization of the develo** rat brain. J Neurochem. 2012;120:948–63. https://doi.org/10.1111/j.1471-4159.2011.07630.x.

    Article  CAS  Google Scholar 

  91. Pfau DR, Hobbs NJ, Breedlove SM, Jordan CL. Sex and laterality differences in medial amygdala neurons and astrocytes of adult mice. J Comp Neurol. 2016;524:2492–502. https://doi.org/10.1002/cne.23964.

    Article  Google Scholar 

  92. Bordt EA, Ceasrine AM, Bilbo SD. Microglia and sexual differentiation of the develo** brain: A focus on ontogeny and intrinsic factors. Glia. 2019;68:1085–99. https://doi.org/10.1002/glia.23753.

    Article  Google Scholar 

  93. Frost JL, Schafer DP. Microglia: architects of the develo** nervous system. Trends Cell Biol. 2016;26:587–97. https://doi.org/10.1016/j.tcb.2016.02.006.

    Article  Google Scholar 

  94. Arnold AP. Sex chromosomes and brain gender. Nat Rev. 2004;5:701–8. https://doi.org/10.1038/nrn1494.

    Article  CAS  Google Scholar 

  95. Joel D, Garcia-Falgueras A, Swaab D. The complex relationships between sex and the brain. The Neuroscientist. 2020;26(2):156–69. https://doi.org/10.1177/1073858419867298.

  96. Rhodes ME, Rubin RT. Functional sex differences (‘sexual diergism’) of central nervous system cholinergic systems, vasopressin, and hypothalamic-pituitary-adrenal axis activity in mammals: a selective review. Brain Res Rev. 1999;30:135–52. https://doi.org/10.1016/s0165-0173(99)00011-9.

    Article  CAS  Google Scholar 

  97. Ruigrok ANV, Salimi-Khorshidi G, Lai M-C, Baron-Cohen S, Lombardo MV, Tait RJ, Suckling J. A meta-analysis of sex differences in human brain structure. Neurosci Biobehav Rev. 2014;39:34–50. https://doi.org/10.1016/j.neubiorev.2013.12.004.

    Article  Google Scholar 

  98. Koolschijn PCMP, Crone EA. Sex differences and structural brain maturation from childhood to early adulthood. Dev Cogn Neurosci. 2013;5:106–18. https://doi.org/10.1016/j.dcn.2013.02.003.

    Article  Google Scholar 

  99. Ritchie SJ, Cox SR, Shen X, Lombardo MV, Reus LM, Alloza C, Harris MA, Alderson HL, Hunter S, Neilson E, Liewald DCM, Auyeung B, Whalley HC, Lawrie SM, Gale CR, Bastin ME, McIntosh AM, Deary IJ. Sex differences in the adult human brain: Evidence from 5216 UK biobank participants. Cereb Cortex. 2018;28:2959–75. https://doi.org/10.1093/cercor/bhy109.

    Article  Google Scholar 

  100. Swaab DF, Chung WCJ, Kruijver FPM, Hofman MA, Hestiantoro A. Sex differences in the hypothalamus in the different stages of human life. Neurobiol Aging. 2003;24:S1–S16. https://doi.org/10.1016/S0197-4580(03)00059-9.

    Article  CAS  Google Scholar 

  101. Woodson JC and Gorski RA. Structural sex differences in the mammalian brain: Reconsidering the male/female dichotomy. In A Mutsumoto (Ed.), Sexual differentiation of the brain. Boca Roton, FL, CRC Press. 2000; (pp. 229–255).

    Google Scholar 

  102. **n J, Zhang Y, Tang Y, Yang Y. Brain differences between men and women: Evidence from deep learning. Front Neurosci. 2019;13:185. https://doi.org/10.3389/fnins.2019.00185.

    Article  Google Scholar 

  103. Kiesow H, Dunbar RIM, Kable JW, Kalenscher T, Vogeley K, Schilbach L, Marquand AF, Wiecki TV, Bzdock D. 10,000 social brains: sex differentiation in human brain anatomy. Sci Adv. 2020;6:eaaz1170. https://doi.org/10.1126/sciadv.aaz1170.

    Article  Google Scholar 

  104. Spring S, Lerch JP, Henkelman RM. Sexual dimorphism revealed in the structure of the mouse brain using three-dimensional magnetic resonance imaging. NeuroImage. 2007;35:1424–33. https://doi.org/10.1016/j.neuroimage.2007.02.023.

    Article  Google Scholar 

  105. Tobet SA, Hanna IK. Ontogeny of sex differences in the mammalian hypothalamus and preoptic area. Cell Mol Neurobiol. 1997;17:565–601. https://doi.org/10.1023/a:1022529918810.

    Article  CAS  Google Scholar 

  106. Billing A, Correia H, Kelly DA, Li GL, Bergan JF. Synaptic connections of aromatase circuits in the medial amygdala are sex specific. Eneuro. 2020;7:1–11. https://doi.org/10.1523/eneuro.0489-19.2020.

    Article  CAS  Google Scholar 

  107. Bodo C. A role for the androgen receptor in the sexual differentiation of the olfactory system in mice. Brain Res Rev. 2008;57:321–31. https://doi.org/10.1016/j.brainresrev.2007.08.008.

    Article  CAS  Google Scholar 

  108. Cherry JA, Baum MJ. Sex differences in main olfactory system pathways involved in psychosexual function. Genes Brain Behav. 2020;19:e12618. https://doi.org/10.1111/gbb.12618.

    Article  CAS  Google Scholar 

  109. Garcia-Falgueras A, Junque C, Gimenez M, Caldu X, Segovia S, Guillamon A. Sex differences in the human olfactory system. Brain Res. 2006;1116:103–11. https://doi.org/10.1016/j.brainres.2006.07.115.

    Article  CAS  Google Scholar 

  110. Moffatt CA. Steroid hormone modulation of olfactory processing in the cortex of socio-sexual behaviours in rodents and humans. Brain Res Rev. 2003;43:192–206. https://doi.org/10.1016/s0165-0173(03)00208-x.

    Article  CAS  Google Scholar 

  111. Lenz KM, Nugent BR, McCarthy MM. Sexual differentiation of the rodent brain: Dogma and beyond. Front Neurosci. 2012;6:26. https://doi.org/10.3389/fnins.2012.00026.

    Article  CAS  Google Scholar 

  112. Tsukahara S. Sex differences and the roles of sex steroids in apoptosis of sexually dimorphic nuclei of the preoptic area in postnatal rats. J Neuroendocrinol. 2009;21:370–6. https://doi.org/10.1111/j.1365-2826.2009.01855.x.

    Article  CAS  Google Scholar 

  113. Wei Y-C, Wang S-R, Jiao Z-L, Zhang W, Lin J-K, Li X-Y, Li S-S, Zhang X, Xu X-H. Medial preoptic area in mice is capable of mediating sexually dimorphic behaviours regardless of gender. Nat Commun. 2018;9:279. https://doi.org/10.1038/s41467-017-02648-0.

    Article  CAS  Google Scholar 

  114. Chung WCJ, De Vries GJ, Swaab DF. Sexual differentiation of the bed nucleus of the stria terminalis in humans may extend into adulthood. J Neurosci. 2002;22:1027–33. https://doi.org/10.1523/JNEUROSCI.22-03-01027.2002.

    Article  CAS  Google Scholar 

  115. Lebow MA, Chen A. Overshadowed by the amygdala: the bed nucleus of the stria terminalis emerges as key to psychiatric disorders. Mol Psychiatry. 2016;21:450–63. https://doi.org/10.1038/mp.2016.1.

    Article  CAS  Google Scholar 

  116. Tsukahara S, Morishita M. Sexually dimorphic formation of the preoptic area and the bed nucleus of the stria terminalis by neuroestrogens. Front Neurosci. 2020;14:797. https://doi.org/10.3389/fnins.2020.00797.

    Article  Google Scholar 

  117. Uchida K, Otsuka H, Morishita M, Tsukahara S, Sato S, Sato T, Sakimura K, Itoi K. Female-biased sexual dimorphism of corticotropin-releasing factor neurons in the bed nucleus of the stria terminalis. Biol Sex Differ. 2019;10:6. https://doi.org/10.1186/s13293-019-0221-2.

    Article  Google Scholar 

  118. Davis EC, Shryne JE, Gorski RA. Structural sexual dimorphisms in the anteroventral periventricular nucleus of the rat hypothalamus are sensitive to gonadal steroids perinatally, but develop peripubertally. Neuroendocrinology. 1996;63:142–8. https://doi.org/10.1159/000126950.

    Article  CAS  Google Scholar 

  119. Simerly RB, Zee MC, Pendleton JW, Lubahn DB, Korach KS. Estrogen receptor-dependent sexual differentiation of dopaminergic neurons in the preoptic region of the mouse. Proc Natl Acad Sci USA. 1997;94:14077–82. https://doi.org/10.1073/pnas.94.25.14077.

    Article  CAS  Google Scholar 

  120. Krause WC, Ingraham HA. Origins and functions of the ventrolateral VMH: A complex neuronal cluster orchestrating sex differences in metabolism and behaviour. Adv Exp Med Biol. 2017;1043:199–213. https://doi.org/10.1007/978-3-319-70178-3_10.

    Article  CAS  Google Scholar 

  121. Yang CF, Chiang MC, Gray DC, Prabhakaran M, Alvarado M, Juntti SA, Unger EK, Wells JA, Shah NM. Sexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and aggression in males. Cell. 2013;153:896–909. https://doi.org/10.1016/j.cell.2013.04.017.

    Article  CAS  Google Scholar 

  122. Yang CF, Shah NM. Representing sex in the brain, one module at a time. Neuron. 2014;82(2):261–78. https://doi.org/10.1016/j.neuron.2014.03.029.

    Article  CAS  Google Scholar 

  123. Kight KE, McCarthy MM. Androgens and the develo** hippocampus. Biol Sex Differ. 2020;11:30. https://doi.org/10.1186/s13293-020-00307-6.

    Article  CAS  Google Scholar 

  124. Brandt N, Loffler T, Fester L, Rune GM. Sex-specific features of spine densities in the hippocampus. Sci Rep. 2020;10:14405. https://doi.org/10.1038/s41598-020-68371-x.

    Article  CAS  Google Scholar 

  125. Koss WA, Frick KM. Sex differences in hippocampal function. J Neurosci Res. 2017;95:539–62. https://doi.org/10.1002/jnr.23864.

    Article  CAS  Google Scholar 

  126. Siddiqui A, Romeo RD. Sex differences and similarities in hippocampal cellular proliferation and the number of immature neurons during adolescence in rats. Dev Neurosci. 2019;41:132–8. https://doi.org/10.1159/000502056.

    Article  CAS  Google Scholar 

  127. Yagi S, Galea LAM. Sex differences in hippocampal cognition and neurogenesis. Neuropsychopharmacology. 2019;44:200–13. https://doi.org/10.1038/s41386-018-0208-4.

    Article  Google Scholar 

  128. Bundy JL, Vied C, Nowakowski RS. Sex differences in the molecular signature of the develo** mouse hippocampus. BMC Genomics. 2017;18:237. https://doi.org/10.1186/s12864-017-3608-7.

    Article  CAS  Google Scholar 

  129. Bird CM, Burgess N. The hippocampus and memory: Insights from spatial processing. Nat Rev Neurosci. 2008;9:182–94. https://doi.org/10.1038/nrn2335.

    Article  CAS  Google Scholar 

  130. Bubb EJ, Kinnavane L, Aggleton JP. Hippocampal-diencephalic-cingulate networks for memory and emotion: an anatomical guide. Brain Neurosci Adv. 2017;1:1–20. https://doi.org/10.1177/2398212817723443.

    Article  Google Scholar 

  131. Li Y, Shen M, Stockton ME, Zhao X. Hippocampal deficits in neurodevelopmental disorders. Neurobiol Learn Mem. 2019;165:106945. https://doi.org/10.1016/j.nlm.2018.10.001.

    Article  Google Scholar 

  132. Cooke BM. Steroid-dependant plasticity in the medial amygdala. J Neurosci. 2006;138:997–1005. https://doi.org/10.1016/j.neuroscience.2005.06.018.

    Article  CAS  Google Scholar 

  133. Kilpatrick LA, Zald DH, Pardo JV, Cahill LF. Sex-related differences in amygdala functional connectivity during resting conditions. NeuroImage. 2006;30:452–61. https://doi.org/10.1016/j.neuroimage.2005.09.065.

    Article  CAS  Google Scholar 

  134. Uematsu A, Matsui M, Tanaka C, Takahashi T, Noguchi K, Suzuki M, Nishijo H. Developmental trajectories of amygdala and hippocampus from infancy to early adulthood in healthy individuals. PLoS ONE. 2012;7:e46970. https://doi.org/10.1371/journal.pone.0046970.

    Article  CAS  Google Scholar 

  135. Kang N, McCarthy EA, Cherry JA, Baum MJ. A sex comparison of the anatomy and function of the main olfactory bulb-medial amygdala projection in mice. Neuroscience. 2011;172:196–204. https://doi.org/10.1016/j.neuroscience.2010.11.003.

    Article  CAS  Google Scholar 

  136. Bangasser DA, Wiersielis KR, Khantsis S. Sex differences in the locus coeruleus-norepinephrine system and its regulation by stress. Brain Res. 2016;1641:177–88. https://doi.org/10.1016/j.brainres.2015.11.021.

    Article  CAS  Google Scholar 

  137. Guillamón A, de Blas MR, Segovia S. Effects of sex steroids on the development of the locus coeruleus in the rat. Brain Res. 1988;468(2):306–10. https://doi.org/10.1016/0165-3806(88)90143-5.

    Article  Google Scholar 

  138. Pinos H, Collado P, Rodriguez-Zafra M, Rodriguez C, Segovia S, Guillamon A. The development of sex differences in the locus coeruleus of the rat. Brain Res Bull. 2001;56:73–8. https://doi.org/10.1016/s0361-9230(01)00540-8.

    Article  CAS  Google Scholar 

  139. Nieuwenhuys R. Chemoarchitecture of the brain. Berlin Heidelberg, Germany: Springer-Verlag; 1985.

    Book  Google Scholar 

  140. Matos HY, Hernandez-Pineda D, Charpentier CM, Rusk A, Corbin JG, Jones KS. Sex differences in biophysical signatures across molecularly defined medial amygdala neuronal subpopulations. eNeuro. 2020; https://doi.org/10.1523/ENEURO.0035-20.2020.

  141. Polston EK, Simerly RB. Sex-specific patterns of galanin, cholecystokinin, and substance P expression in neurons of the principal bed nucleus of the stria terminalis are differentially reflected within three efferent preoptic pathways in the juvenile rat. The Journal of Comparative neurology. 2003;465:551–9. https://doi.org/10.1002/cne.10841.

    Article  CAS  Google Scholar 

  142. Xu X, Coats JK, Yang CF, Wang A, Ahmed OM, Alvarado M, Izumi T, Shah NM. Modular genetic control of sexually dimorphic behaviours. Cell. 2012;148:596–607. https://doi.org/10.1016/j.cell.2011.12.018.

    Article  CAS  Google Scholar 

  143. Giacobini E, Pepeu G. Sex and gender differences in the brain cholinergic system and in the response to therapy of Alzheimer disease with cholinesterase inhibitors. Curr Alzheimer Res. 2018;15:1077–84. https://doi.org/10.2174/1567205015666180613111504.

    Article  CAS  Google Scholar 

  144. Mitsushima D. Sex differences in the septo-hippocampal cholinergic system in rats: Behavioural consequences. Curr Top Behav Neurosci. 2010;8:57–71. https://doi.org/10.1007/7854_2010_95.

    Article  CAS  Google Scholar 

  145. McCarthy MM, Auger AP, Perrot-Sinal TS. Getting excited about GABA and sex differences in the brain. Trends Neurosci. 2002;25:307–12. https://doi.org/10.1016/s0166-2236(02)02182-3.

    Article  CAS  Google Scholar 

  146. Polston EK, Gu G, Simerly RB. Neurons in the principal nucleus of the bed nuclei of the stria terminalis provide a sexually dimorphic GABAergic input to the anteroventral periventricular nucleus of the hypothalamus. Neuroscience. 2004;123:793–803. https://doi.org/10.1016/j.neuroscience.2003.09.034.

    Article  CAS  Google Scholar 

  147. de Vries GJ. Sex differences in neurotransmitter systems. J Neuroendocrinol. 1990;2:1–13. https://doi.org/10.1111/j.1365-2826.1990.tb00385.x.

    Article  CAS  Google Scholar 

  148. Knoedler JR, Shah NM. Molecular mechanisms underlying sexual differentiation of the nervous system. Curr Opin Neurobiol. 2018;53:193–87. https://doi.org/10.1016/j.conb.2018.09.005.

    Article  CAS  Google Scholar 

  149. Labonte B, Engmann O, Purushothaman I, Menard C, Wang J, Tan C, Scarpa JR, Moy G, Loh Y-HE, Cahill M, Lorsch ZS, Hamilton PJ, Calipari ES, Hodes GE, Issler O, Kronman H, Pfau M, Obradovic ALJ, Dong Y, Neve RL, Russo S, Kasarskis A, Tamminga C, Mechawar N, Turecki G, Zhang B, Shen L, Nestler EJ. Sex-specific transcriptional signatures in human depression. Nat Med. 2017;23:1102–11. https://doi.org/10.1038/nm.4386.

    Article  CAS  Google Scholar 

  150. Bagni C, Zukin SR. A synaptic perspective of fragile X syndrome and autism spectrum disorders. Neuron. 2019;101:1070–88. https://doi.org/10.1016/j.neuron.2019.02.041.

    Article  CAS  Google Scholar 

  151. Reig-Viader R, Sindreu C, Bayes A. Synaptic proteomics as a means to identify the molecular basis of mental illness: Are we getting there? Prog Neuropsychopharmacol Biol Psychiatry. 2018;84:353–61. https://doi.org/10.1016/j.pnpbp.2017.09.011.

    Article  CAS  Google Scholar 

  152. Wang X, Kery R, **ong Q. Synaptopathology in autism spectrum disorders: Complex effects of synaptic genes on neural circuits. Prog Neuropsychopharmacol Biol Psychiatry. 2018b;84:398–415. https://doi.org/10.1016/j.pnpbp.2017.09.026.

    Article  Google Scholar 

  153. Ribic A, Biederer T. Emerging roles of synaptic organizers in the regulation of critical periods. Neural Plast. 2019;2019:1538137. https://doi.org/10.1155/2019/1538137.

    Article  CAS  Google Scholar 

  154. Bonnycastle K, Davenport EC, Cousin MA. Presynaptic dysfunction in neurodevelopmental disorders: insights from the synaptic vesicle life cycle. J Neurochem. 2020:1–29. https://doi.org/10.1111/jnc.15035.

  155. Caldeira GL, Peca J, Carvalho AL. New insights on synaptic dysfunction in neuropsychiatric disorders. Curr Opin Neurobiol. 2019;57:62–70. https://doi.org/10.1016/j.conb.2019.01.004.

    Article  CAS  Google Scholar 

  156. Guang S, Pang N, Deng X, Yang L, He F, Wu L, Chen C, Yin F, Peng J. Synaptopathology involved in autism spectrum disorder. Front Cell Neurosci. 2018;12:470. https://doi.org/10.3389/fncel.2018.00470.

    Article  CAS  Google Scholar 

  157. Parra-Damas A, Saura CA. Synapse-to-nucleus signaling in neurodegenerative and neuropsychiatric disorders. Biol Psychiatry. 2019;86(2):87–96. https://doi.org/10.1016/j.biopsych.2019.01.006.

    Article  CAS  Google Scholar 

  158. Premachandran H, Zhao M, Arruda-Carvalho M. Sex differences in the development of the rodent corticolimbic system. Front Neurosci. 2020;14:583477. https://doi.org/10.3389/fnins.2020.583477.

    Article  Google Scholar 

  159. Rugarn O, Hammar M, Theodorsson A, Theodorsson E, Stenfors C. Sex differences in neuropeptide distribution in the rat brain. Peptides. 1999;20:81–6. https://doi.org/10.1016/S0196-9781(98)00139-9.

    Article  CAS  Google Scholar 

  160. Cosgrove KP, Mazure CM, Staley JK. Evolving knowledge of sex differences in brain structure, function, and chemistry. Biol Psychiatry. 2007;62(8):847–55. https://doi.org/10.1016/j.biopsych.2007.03.001.

    Article  CAS  Google Scholar 

  161. Gatto CL, Broadie K. Genetic controls balancing excitatory and inhibitory synaptogenesis in neurodevelopmental disorder models. Front Synaptic Neurosci. 2010;2:4. https://doi.org/10.3389/fnsyn.2010.00004.

    Article  Google Scholar 

  162. Lopatina OL, Malinovskaya NA, Komleva YK, Gorina YV, Shuvaev AN, Olovyannikova RY, Belozor OS, Belova OA, Higashida H, Salmina AB. Excitation/inhibition imbalance and impaired neurogenesis in neurodevelopmental and neurodegenerative disorders. 2019;30:807–20. https://doi.org/10.1515/revneuro-2019-0014.

    Article  CAS  Google Scholar 

  163. Jašarević E, Morrison KE, Bale TL. Sex differences in the gut microbiome-brain axis across the lifespan. Philos Trans R Soc London. Series B, Biol Sci. 2016;371(1688):20150122. https://doi.org/10.1098/rstb.2015.0122.

    Article  CAS  Google Scholar 

  164. Lenz KM, Nugent BM, Haliyur R, McCarthy MM. Microglia are essential to masculinization of brain and behaviour. J Neurosci. 2013;33:2761–72. https://doi.org/10.1523/JNEUROSCI.1268-12.2013.

    Article  CAS  Google Scholar 

  165. Weinhard L, Neniskyte U, Vadisiute A, di Bartolomei G, Aygun N, Riviere L, Zonfrillo F, Dymecki S, Gross C. Sexual dimorphism of microglia and synapses during mouse postnatal development. Dev Neurobiol. 2018;78:618–26. https://doi.org/10.1002/dneu.22568.

    Article  Google Scholar 

  166. Bar E, Barak B. Microglia roles in synaptic plasticity and myelination in homeostatic conditions and neurodevelopmental disorders. Glia. 2019;67:2125–42. https://doi.org/10.1002/glia.23637.

    Article  Google Scholar 

  167. Petrelli F, Pucci L, Bezzi P. Astrocytes and microglia and their potential link with autism spectrum disorders. Front Cell Neurosci. 2016;10:21. https://doi.org/10.3389/fncel.2016.00021.

    Article  CAS  Google Scholar 

  168. Sloan SA, Barres BA. Mechanisms of astrocyte development and their contributions to neurodevelopmental disorders. Curr Opin Neurobiol. 2014;27:75–81. https://doi.org/10.1016/j.conb.2014.03.005.

    Article  CAS  Google Scholar 

  169. Bordeleau M, Carrier M, Luheshi GN, Tremblay M-E. Microglia along sex lines: from brain colonization, maturation and function, to implication in neurodevelopmental disorders. Semin Cell Dev Biol. 2019;94:152–63. https://doi.org/10.1016/j.semcdb.2019.06.001.

    Article  Google Scholar 

  170. Garcia-Segura LM, Melcangi RC. Steroids and glial cell function. Glia. 2006;54:485–98. https://doi.org/10.1002/glia.20404.

    Article  Google Scholar 

  171. Bollinger JL, Salinas I, Fender E, Sengelaub DR, Wellman CL. Gonadal hormones differentially regulate sex-specific stress effects on glia in the medial prefrontal cortex. J Neuroendocrinol. 2019;31:e12762. https://doi.org/10.1111/jne.12762.

    Article  CAS  Google Scholar 

  172. Duong P, Tenkorang MAA, Trieu J, McCuiston C, Rybalchenko N, Cunningham RL. Neuroprotective and neurotoxic outcomes of androgens and estrogens in an oxidative stress environment. Biol Sex Differ. 2020;11:12. https://doi.org/10.1186/s13293-020-0283-1.

    Article  Google Scholar 

  173. Salas IH, Burgado J, Allen NJ. Glia: Victims or villains of the aging brain? Neurobiol Dis. 2020;143:105008. https://doi.org/10.1016/j.nbd.2020.105008.

    Article  Google Scholar 

  174. Erny D, de Angelis ALH, Prinz M. Communicating systems in the body: how microbiota and microglia cooperate. Immunology. 2016;150:7–15. https://doi.org/10.1111/imm.12645.

    Article  CAS  Google Scholar 

  175. Erny D, Prinz M. How microbiota shape microglia phenotypes and epigenetics. Glia. 2020;68:1655–72. https://doi.org/10.1002/glia.23822.

    Article  Google Scholar 

  176. Kelly JR, Minuto C, Cryan JF, Clarke G, Dinan TG. Cross talk: The microbiota and neurodevelopmental disorders. Front Neurosci. 2017;11:490. https://doi.org/10.3389/fnins.2017.00490.

    Article  Google Scholar 

  177. Holingue C, Budavari AC, Rodriguez KM, Zisman CR, Windheim C, Fallin MD. Sex differences in the gut-brain axis: implications for mental health. Curr Psychiatry Rep. 2020;22:83. https://doi.org/10.1007/s11920-020-01202-y.

    Article  Google Scholar 

  178. Hao X, Pan J, Gao X, Zhang S, Li Y. Gut microbiota on gender bias in autism spectrum disorder. Rev Neurosci. 2021;32:69–77. https://doi.org/10.1515/revneuro-2020-0042.

    Article  CAS  Google Scholar 

  179. Santos-Marcos JA, Haro C, Vega-Rojas A, Alcala-Diaz JF, Molina-Abril H, Leon-Acuna A, Lopez-Moreno J, Landa BB, Tena-Sempere M, Perez-Martinez P, Lopez-Miranda J, Perez-Jimenez F, Camargo A. Sex differences in the gut microbiota as potential determinants of gender predisposition to disease. Mol Nutr Food Res. 2019;64:e1800870. https://doi.org/10.1002/mnfr.201800870.

    Article  CAS  Google Scholar 

  180. Chen J-J, Zheng P, Liu Y-Y, Zhong X-G, Guo Y-J, **e P. Sex differences in gut microbiota in patients with major depressive disorder. Neuropsychiatr Dis Treat. 2018;14:647–55. https://doi.org/10.2147/NDT.S159322.

    Article  CAS  Google Scholar 

  181. Rogers GB, Keating DJ, Young RL, Wong M-L, Licino J, Wesselingh S. From gut dysbiosis to altered brain function and mental illness: Mechanisms and pathways. Mol Psychiatry. 2016;21:738–48. https://doi.org/10.1038/mp.2016.50.

    Article  CAS  Google Scholar 

  182. Rincel M, Aubert P, Chevalier J, Grohard P-A, Basso L, de Oliveira CM, Helbling C, Levy E, Chevalier G, Leboyer M, Eberl G, Laye S, Capuron L, Vergnolle N, Neunlist M, Boudin H, Lepage P, Darnaudery M. Multi-hit early life adversity affects gut microbiota, brain and behavior in a sex-dependant manner. Brain Behav Immun. 2019;80:179–92. https://doi.org/10.1016/j.bbi.2019.03.006.

    Article  Google Scholar 

  183. Li Y, Wei B, Liu X, Shen XZ, Shi P. Microglia, autonomic nervous system, immunity and hypertension: Is there a link? 2020b;155:104451. https://doi.org/10.1016/j.phrs.2019.104451.

  184. Kopec AM, Fiorentino MR, Bilbo SD. Gut-immune-brain dysfunction in autism: Importance of sex. Brain Res. 2018a;1693:214–7. https://doi.org/10.1016/j.brainres.2018.01.009.

    Article  CAS  Google Scholar 

  185. Amar AP, Weiss MH. Pituitary anatomy and physiology. Neurosurg Clin N Am. 2003;13:11–23. https://doi.org/10.1016/s1042-3680(02)00017-7.

    Article  Google Scholar 

  186. Wilkinson M, Brown RE. An introduction to neuroendocrinology. 2nd ed. Cambridge (UK): Cambridge University Press; 2015.

    Google Scholar 

  187. Dorton AM. The pituitary gland: Embryology, physiology and pathophysiology. Neonatal Netw. 2000;19:9–17. https://doi.org/10.1891/0730-0832.19.2.9.

    Article  CAS  Google Scholar 

  188. Dasen JS, Rosenfeld MG. Signaling and transcriptional mechanisms in pituitary development. Annu Rev Neurosci. 2001;24:327–55. https://doi.org/10.1146/annurev.neuro.24.1.327.

    Article  CAS  Google Scholar 

  189. Kioussi C, Carriere C, Rosenfeld MG. A model for the development of the hypothalamic-pituitary axis: Transcribing the hypophysis. Mech Dev. 1999;81:23–35. https://doi.org/10.1016/S0925-4773(98)00229-9.

    Article  CAS  Google Scholar 

  190. Musumeci G, Castorina S, Castrogiovanni P, Loreto C, Leonardi R, Concetta Aiello F, Magro G, Imbesi R. A journey through the pituitary gland: Development, structure and function, with emphasis on embryo-foetal and later development. Acta Histochem. 2015;117:355–66. https://doi.org/10.1016/j.acthis.2015.02.008.

    Article  CAS  Google Scholar 

  191. Simerly RB. Wired on hormones: Endocrine regulation of hypothalamic development. Curr Opin Neurobiol. 2005;15:81–5. https://doi.org/10.1016/j.conb.2005.01.013.

    Article  CAS  Google Scholar 

  192. Treier M, Rosenfeld MG. The hypothalamic-pituitary axis; co-development of two organs. Curr Opin Cell Biol. 1996;8:833–43. https://doi.org/10.1016/S0955-0674(96)80085-8.

    Article  CAS  Google Scholar 

  193. Zhu X, Gleiberman AS, Rosenfeld MG. Molecular physiology of pituitary development: Signaling and transcriptional networks. Physiol Rev. 2007a;87:933–63. https://doi.org/10.1152/physrev.00006.2006.

    Article  CAS  Google Scholar 

  194. Zhu X, Wang J, Ju B-G, Rosenfeld MG. Signaling and epigenetic regulation of pituitary development. Curr Opin Cell Biol. 2007b;19:605–11. https://doi.org/10.1016/j.ceb.2007.09.011.

    Article  CAS  Google Scholar 

  195. Pearson CA, Placzek M. Development of the medial hypothalamus: Forming a functional hypothalamic-neurohypophyseal interface. Curr Top Dev Biol. 2013;106:49–88. https://doi.org/10.1016/B978-0-12-416021-7.00002-X.

    Article  CAS  Google Scholar 

  196. Benarroch EE. Oxytocin and vasopressin: Social neuropeptides with complex neuromodulatory functions. Neurology. 2013;80:1521–18. https://doi.org/10.1212/WNL.0b013e31828cfb15.

    Article  Google Scholar 

  197. Stoop R. Neuromodulation by oxytocin and vasopressin. Neuron. 2012;76:142–59. https://doi.org/10.1016/j.neuron.2012.09.025.

    Article  CAS  Google Scholar 

  198. Stoop R. Neuromodulation by oxytocin and vasopressin in the central nervous system as a basis for their rapid behavioural effects. 2014. Curr Opin Neurobiol. 2014;29:187–93. https://doi.org/10.1016/j.conb.2014.09.012.

    Article  CAS  Google Scholar 

  199. Bredewold R, Veenema AH. Sex differences in the regulation of social and anxiety-related behaviours: Insights from vasopressin and oxytocin brain systems. Curr Opin Neurobiol. 2018;49:132–40. https://doi.org/10.1016/j.conb.2018.02.011.

    Article  CAS  Google Scholar 

  200. Francis SM, Sagar A, Levin-Decanini T, Lui W, Carter CS, Jacob S. Oxytocin and vasopressin systems in genetic syndromes and neurodevelopmental disorders. Brain Res. 2014;1580:199–218. https://doi.org/10.1016/j.brainres.2014.01.021.

    Article  CAS  Google Scholar 

  201. Penagarikano O. Oxytocin in animal models of autism spectrum disorder. Dev Neurobiol. 2017;77:202–2013. https://doi.org/10.1002/dneu.22449.

    Article  CAS  Google Scholar 

  202. Ooi YP, Weng S-J, Kossowsky J, Gerger H, Sung M. Oxytocin and autism spectrum disorders: a systematic review and meta-analysis of randomized controlled trials. Pharmacopsychiatry. 2016;50:5–13. https://doi.org/10.1055/s-0042-109400.

    Article  CAS  Google Scholar 

  203. Yamasue X, Okada T, Munesue T, Kuroda M, Fujioka T, Uno Y, Matsumoto K, Kuwabara H, Mori D, Okamoto Y, Yoshimura Y, Kawakubo Y, Arioka Y, Kojima M, Yuhi T, Owada K, Yassin W, Kushima I, Benner S, Ogawa N, Eriguchi Y, Kawano N, Uemura Y, Yamamoto M, Kano Y, Kasai K, Higashida H, Ozaki N, Kosaka H. Effect of intranasal oxytocin on the core social symptoms of autism spectrum disorder: a randomized clinical trial. Mol Psychiatry. 2020;25:1849–58. https://doi.org/10.1038/s41380-018-0097-2.

    Article  CAS  Google Scholar 

  204. Hornberg H, Perez-Garci E, Schreiner D, Hatstatt-Burkle L, Magara F, Baudouin S, Matter A, Nacro K, Pecho-Vrieseling E, Scheiffele P. Rescue of oxytocin response and social behaviour in a mouse model of autism. Nature. 2020;584:252–6. https://doi.org/10.1038/s41586-020-2563-7.

    Article  CAS  Google Scholar 

  205. Nguyen TA, Lehr AW, Roche KW. Neuroligins and neurodevelopmental disorders: X-linked genetics. Front Synaptic Neurosci. 2020;12:33. https://doi.org/10.3389/fnsyn.2020.00033.

    Article  CAS  Google Scholar 

  206. Andari E, Rilling JK. Genetic and epigenetic modulation of the oxytocin receptor and implications for autism. Neuropsychopharmacology. 2021;46:241–2. https://doi.org/10.1038/s41386-020-00832-3.

    Article  Google Scholar 

  207. Baribeau DA, Dupis A, Paton TA, Scherer SW, Schacher RJ, Arnold PD, Szatmari P, Nicolson R, Georgiades S, Crosbie J, Brian J, Iaboni A, Lerch J, Anagnostou E. Oxytocin receptor polymorphisms are differentially associated with social abilities across neurodevelopmental disorders. Sci Rep. 2017;7:11618. https://doi.org/10.1038/s41598-017-10821-0.

    Article  CAS  Google Scholar 

  208. Hernandez LM, Krasileva K, Green SA, Sherman LE, Ponting C, McCarron R, Lowe JK, Geschwind DH, Bookheimer SY, Dapretto M. Additive effects of oxytocin receptor gene polymorphisms on reward circuitry in youth with autism. Mol Psychiatry. 2017;22:1134–9. https://doi.org/10.1038/mp.2016.209.

    Article  CAS  Google Scholar 

  209. Duan C, Allard J. Gonadotropin-releasing hormone neuron development in vertebrates. Gen Comp Endocrinol. 2020;292:113465. https://doi.org/10.1016/j.ygcen.2020.113465.

    Article  CAS  Google Scholar 

  210. Kaprara A, Huhtaniemi IP. The hypothalamus-pituitary-gonad axis: tales of mice and men. Metabolism. 2018;86:3–17. https://doi.org/10.1016/j.metabol.2017.11.018.

    Article  CAS  Google Scholar 

  211. Matsuda F, Ohkura S, Magata F, Munetomo A, Chen J, Sato M, Inoue N, Uenoyama Y, Tsukamura H. Role of kisspeptin neurons as a GnRH surge generator: comparative aspects in rodents and non-rodent mammals. J Obstet Gynaecol Res. 2019;45:2318–29. https://doi.org/10.1111/jog.14124.

    Article  CAS  Google Scholar 

  212. Saedi S, Khoradmehr A, Reza M, Shirazi J, Tamadon A. The role of neuropeptides and neurotransmitters on kisspeptin/kiss1r-signaling in female reproduction. J Chem Neuroanat. 2018;92:71–82. https://doi.org/10.1016/j.jchemneu.2018.07.001.

    Article  CAS  Google Scholar 

  213. Smith MJ, Jennes L. Neural signals that regulate GnRH neurons directly during the oestrous cycle. Reproduction. 2001;122:1–10. https://doi.org/10.1530/rep.0.1220001.

    Article  CAS  Google Scholar 

  214. Tsukamura H, Homma T, Tomikawa J, Uenoyama Y, Maeda K. Sexual differentiation of kisspeptin neurons responsible for sex difference in gonadotropin release in rats. Ann NY Acad Sci. 2010;1200:95–103. https://doi.org/10.1111/j.1749-6632.2010.05645.x.

    Article  Google Scholar 

  215. Son YL, Ubuka T, Tsutsui K. Molecular mechanisms of gonadotropin-inhibitory hormone (GnIH) actions in target cells and regulation of GnIH expression. Front Endocrinol. 2019;10:110. https://doi.org/10.3389/fendo.2019.00110.

    Article  Google Scholar 

  216. Schafer D, Kane G, Colledge WH, Piet R, Herbison AE. Sex- and sub region-dependant modulation of arcuate kisspeptin neurones by vasopressin and vasoactive intestinal peptide. J Neuroendocrinol. 2018;30:e12660. https://doi.org/10.1111/jne.12660.

    Article  CAS  Google Scholar 

  217. Ke R, Ma X, Lee LTO. Understanding the functions of kisspeptin and kisspeptin receptor (Kiss1R) from clinical case studies. Peptides. 2019;120:170019. https://doi.org/10.1016/j.peptides.2018.09.007.

    Article  CAS  Google Scholar 

  218. Dode C, Hardelin J-P. Kallmann syndrome. Eur J Human Genet. 2009;17:139–46. https://doi.org/10.1038/ejhg.2008.206.

    Article  CAS  Google Scholar 

  219. Abbara A, Eng PC, Phylactou M, Clarke S, Mills E, Chia G, Yang L, Izzi-Engbeaya C, Smith N, Jayasena C, Comninos AN, Anand-Ivell R, Rademaker J, Xu C, Quinton R, Pitteloud N, Dhillo WS. Kisspeptin-54 accurately identifies hypothalamic GnRH neuronal dysfunction in men with congenital hypogonadotropic hypogonadism. Neuroendocrinology. 2020; https://doi.org/10.1159/000513248.

  220. Carpenter T, Grecian SM, Reynolds RM. Sex differences in early-life programming of the hypothalamic-pituitary-adrenal axis in humans suggest increased vulnerability in females: A systematic review. J Dev Orig Health Dis. 2017;8:244–55. https://doi.org/10.1017/S204017441600074X.

    Article  CAS  Google Scholar 

  221. Bangasser DA, Valentino RJ. Sex differences in stress-related psychiatric disorders: Neurobiological perspectives. Front Neuroendocrinol. 2014;35:303–19. https://doi.org/10.1016/j.yfrne.2014.03.008.

    Article  Google Scholar 

  222. Nandem LS, Brazel M, Zhou M, Jhaveri DJ. Cortisol and major depressive disorder-translating findings from humans to animal models and back. Front Psychiatry. 2020;10:974. https://doi.org/10.3389/fpsyt.2019.00974.

    Article  Google Scholar 

  223. Heck AL, Handa RJ. Sex differences in the hypothalamic-pituitary-adrenal axis’ response to stress: an important role for gonadal hormones. Neuropsychopharmacology. 2019;44:45–58. https://doi.org/10.1038/s41386-018-0167-9.

    Article  CAS  Google Scholar 

  224. Hodes RE. A primer on sex differences in the behavioural response to stress. Curr Opin Behav Sci. 2018;23:75–83. https://doi.org/10.1016/j.cobeha.2018.03.012.

    Article  Google Scholar 

  225. Panagiotakopoulos L, Neigh GN. Development of the HPA axis: where and when do sex differences manifest? Front Neuroendocrinol. 2014;35:285–302. https://doi.org/10.1016/j.yfrne.2014.03.002.

    Article  CAS  Google Scholar 

  226. Gifford RM, Reynolds RM. Sex differences in early-life programming of the hypothalamic-pituitary-adrenal axis in humans. Early Hum Dev. 2017;114:7–10. https://doi.org/10.1016/j.earlhumdev.2017.09.011.

    Article  CAS  Google Scholar 

  227. Bangasser DA, Wiersielis KR. Sex differences in stress responses: a critical role for corticotropin-releasing factor. Hormones. 2018;17:5–13. https://doi.org/10.1007/s42000-018-0002z.

    Article  Google Scholar 

  228. Rubinow DR, Schmidt PJ. Sex differences in the neurobiology of affective disorders. Neuropsychopharmacology. 2019;44:111–28. https://doi.org/10.1038/s41386-018-0148-z.

    Article  Google Scholar 

  229. Bale TL. Epigenetic and transgenerational reprogramming of brain development. Nat Rev Neurosci. 2015;16:332–44. https://doi.org/10.1038/nrn3818.

    Article  CAS  Google Scholar 

  230. Martin WN, Pennell CE, Wang CA, Reynolds R. Developmental programming and the hypothalamic-pituitary-adrenal axis. Curr Opin Endocr Metab Res. 2020;13:13–9. https://doi.org/10.1016/j.coemr.2020.07.010.

    Article  CAS  Google Scholar 

  231. Abbink MR, van Deijk A-L, Heine VM, Verheijen MH, Korosi A. The involvement of astrocytes in early-life adversity induced programming of the brain. Glia. 2019;67:1637–53. https://doi.org/10.1002/glia.23625.

    Article  Google Scholar 

  232. Bale TL. Sex differences in prenatal epigenetic programming of stress pathways. Stress. 2011;14:348–56. https://doi.org/10.3109/10253890.2011.586447.

    Article  Google Scholar 

  233. Matthews SG, McGowan PO. Developmental programming of the HPA axis and related behaviours: Epigenetic mechanisms. J Endocrinol. 2019;242:T69–79. https://doi.org/10.1530/JOE-19-0057.

    Article  CAS  Google Scholar 

  234. Kigar SL, Chang L, Guerrero CR, Sehring JR, Cuarenta A, Parker LL, Bakshi VP, Auger AP. N6-methyladenine is an epigenetic marker of mammalian early life stress. Sci Rep. 2017;7:18078. https://doi.org/10.1038/s41598-017-18414-7.

    Article  CAS  Google Scholar 

  235. Garcia-Caceres C, Lagunas N, Calmarza-Font I, Azcoitia I, Diz-Chaves Y, Garcia-Segura LM, Baquedano E, Frago LM, Argente J, Chowen JA. Gender differences in the long-term effects of chronic prenatal stress on the HPA axis and hypothalamic structure in rats. Psychoneuroendocrinology. 2010;35:1525–35. https://doi.org/10.1016/j.psyneuen.2010.05.006.

    Article  CAS  Google Scholar 

  236. Lei L, Wu X, Gu H, Ji M, Yang J. Differences in DNA methylation reprogramming underlie the sexual dimorphism of behavioural disorder caused by prenatal stress in rats. Front Neurosci. 2020;14:573107. https://doi.org/10.3389/fnins.2020.573107.

    Article  Google Scholar 

  237. White JD, Arefin TM, Pugliese A, Lee CH, Gassen J, Zhang J, Kaffman A. Early life stress causes sex-specific changes in adult fronto-limbic connectivity that differentially drive learning. eLife. 2020;9:e58301. https://doi.org/10.7554/eLife.58301.

    Article  CAS  Google Scholar 

  238. Hodes RE, Walker DM, Labonte B, Nestler EJ, Russo SJ. Understanding the epigenetic basis of sex differences in depression. J Neurosci Res. 2017;95:692–702. https://doi.org/10.1002/jnr.23876.

    Article  CAS  Google Scholar 

  239. Eugene D, Djemli A, Van Vliet G. Sexual dimorphism of thyroid function in newborns with congenital hypothyroidism. J Clin Endocrinol Metab. 2005;90:2696–700. https://doi.org/10.1210/jc.2004-2320.

    Article  CAS  Google Scholar 

  240. Calcaterra V, Nappi RE, Regalbuto C, De Silvestri A, Incardona A, Amariti R, Bassanese F, Clemente AM, Vinci F, Albertini R, Larizza D. Gender differences at the onset of autoimmune thyroid diseases in children and adolescents. Front Endocrinol. 2020;11:229. https://doi.org/10.3389/fendo.2020.00229.

    Article  Google Scholar 

  241. Vanderpump MPJ. The epidemiology of thyroid disease. Br Med Bull. 2011;99:39–51. https://doi.org/10.1093/bmb/ldr030.

    Article  Google Scholar 

  242. Hashemipour M, Samei P, Kelishadi R, Hovsepian S, Zavareh NHT. A systemic review on the risk factors of congenital hypothyroidism. J Pediatr Rev. 2019;7:199–210. https://doi.org/10.32598/jpr.7.4.199.

    Article  Google Scholar 

  243. Castello R, Caputo M. Thyroid diseases and gender. Ital J Gender Specific Med. 2019;5:136–41. https://doi.org/10.1723/3245.32148.

    Article  Google Scholar 

  244. Merrill SJ, Mu Y. Thyroid autoimmunity as a window to autoimmunity: An explanation for sex differences in the prevalence of thyroid autoimmunity. J Theor Biol. 2015;375:95–100. https://doi.org/10.1016/j.jtbi.2014.12.015.

    Article  CAS  Google Scholar 

  245. Ortiga-Carvalho TM, Chiamolera MI, Pazos-Moura CC, Wondisford FE. Hypothalamus-pituitary-thyroid axis. Compr Physiol. 2016;6:1387–428. https://doi.org/10.1002/cphy.c150027.

    Article  Google Scholar 

  246. Fleury Y, Van Melle G, Woringer V, Gaillard RC, Portmann L. Sex-dependant variations and timing of thyroid growth during puberty. J Clin Endocrinol Metab. 2001;86:750–4. https://doi.org/10.1210/jcem.86.2.7209.

    Article  CAS  Google Scholar 

  247. Santin AP, Furlanetto TW. The role of estrogen in thyroid function and growth regulation. J Thyroid Res. 2011;2011:875125. https://doi.org/10.4061/2011/875125.

    Article  CAS  Google Scholar 

  248. Bauer M, Glenn T, Pilhatsch M, Pfennig A, Whybrow PC. Gender differences in thyroid system function: Relevance to bipolar disorder and its treatment. Bipolar Disorders. 2014;16:58–71. https://doi.org/10.1111/bdi.12150.

    Article  Google Scholar 

  249. Wang C, Xu Y. Mechanisms for sex differences in energy homeostasis. J Mol Endocrinol. 2019;62:R129–43. https://doi.org/10.1530/JME-18-0165.

    Article  CAS  Google Scholar 

  250. Wang B, Song R, He W, Yao Q, Li Q, Jia X, Zhang J. Sex differences in the associations of obesity with hypothyroidism and thyroid autoimmunity among Chinese adults. Front Physiol. 2018a;9:1397. https://doi.org/10.3389/fphys.2018.01397.

    Article  Google Scholar 

  251. Christen T, Trompet S, Noordam R, van Klinken JB, van Dijk KW, Lamb HJ, Cobbaert CM, den Heijer M, Jazet IM, Jukema JW, Rosendaal FR, de Mutsert R. Sex differences in body fat distribution are related to sex differences in serum leptin and adiponectin. Peptides. 2018;107:25–31. https://doi.org/10.1016/j.peptides.2018.07.008.

    Article  CAS  Google Scholar 

  252. Ahmed ML, Ong KKL, Morrell DJ, Cox L, Drayer N, Perry L, Preece MA, Dunger DB. Longitudinal study of leptin concentrations during puberty: Sex differences and relationship to changes in body composition. J Clin Endocrinol Metab. 1999;84:899–905. https://doi.org/10.1210/jcem.84.3.5559.

    Article  CAS  Google Scholar 

  253. Thvilum M, Brandt F, Almind D, Christensen K, Heiberg Brix T, Hegedus L. Increased psychiatric morbidity before and after the diagnosis of hypothyroidism: a nationwide register study. 2014;24:802–8. https://doi.org/10.1089/thy.2013.0555.

    Article  Google Scholar 

  254. Zhao S, Chen Z, Wang X, Yao Z, Lu Q. Increased prevalence with subclinical hypothyroidism in female hospitalized patients with depression. Endocrine. 2020; https://doi.org/10.1007/s12020-020-02490-3.

  255. Villanger GD, Ystrom E, Engel SM, Longnecker MP, Pettersen R, Rowe AD, Reichborn-Kjennerud T, Aase H. Neonatal thyroid-stimulating hormone and association with attention-deficit/hyperactivity disorder. Paediatr Perinat Epidemiol. 2019;34:590–6. https://doi.org/10.1111/ppe.12643.

    Article  Google Scholar 

  256. Mughal BB, Fini J-B, Demeneix BA. Thyroid-disrupting chemicals and brain development: an update. Endocr Connect. 2018;7:R160–86. https://doi.org/10.1530/EC-18-0029.

    Article  CAS  Google Scholar 

  257. Boas M, Main KM, Feldt-Rasmussen U. Environmental chemicals and thyroid function: an update. Curr Opin Endocrinol Diabetes Obes. 2009;16:385–91. https://doi.org/10.1097/MED.0b013e3283305af7.

    Article  CAS  Google Scholar 

  258. Rubin BS. Bisphenol A: An endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem Mol Biol. 2011;127:27–34. https://doi.org/10.1016/j.jsbmb.2011.05.002.

    Article  CAS  Google Scholar 

  259. MacKay H, Abizaid A. A plurality of molecular targets: the receptor ecosystem for bisphenol-A (BPA). Horm Behav. 2018;101:59–67. https://doi.org/10.1016/j.yhbeh.2017.11.001.

    Article  CAS  Google Scholar 

  260. Goldsby JA, Wolstenholme JT, Rissman EF. Multi- and transgenerational consequences of bisphenol A on sexually dimorphic cell populations in mouse brain. Endocrinology. 2016;158:21–30. https://doi.org/10.1210/en.2016-1188.

    Article  CAS  Google Scholar 

  261. Jocsak G, Ioja E, Sandor Kiss D, Toth I, Barany Z, Bartha T, Frenyo LV, Zsarnovszky A. Endocrine disruptors induced distinct expression of thyroid and estrogen receptors in rat versus mouse primary cerebellar cell cultures. Brain Sci. 2019;9:359. https://doi.org/10.3390/brainsci9120359.

    Article  CAS  Google Scholar 

  262. Ghassabian A, Trasande L. Disruption in thyroid signaling pathway: A mechanism for the effect of endocrine-disrupting chemicals on child neurodevelopment. Front Endocrinol. 2018;9:204. https://doi.org/10.3389/fendo.2018.00204.

    Article  Google Scholar 

  263. Li F, Yang F, Li D-K, Tian Y, Miao M, Zhang Y, Ji H, Yuan W, Liang H. Prenatal bisphenol A exposure, fetal thyroid hormones and neurobehavioral development in children at 2 and 4 years: a prospective cohort study. Sci Total Environ. 2020a;722:137887. https://doi.org/10.1016/j.scitotenv.2020.137887.

    Article  CAS  Google Scholar 

  264. Kundakovic M, Gudsnuk K, Franks B, Madrid J, Miller RL, Perera FP, Champagne FA. Sex-specific epigenetic disruption and behavioural changes following low-dose in utero bisphenol A exposure. PNAS. 2013;110:9956–61. https://doi.org/10.1073/pnas.1214056110.

    Article  Google Scholar 

  265. Cariati F, Carbone L, Conforti A, Bagnulo F, Peluso SR, Carotenuto C, Buonfantino C, Alviggi E, Alviggi C, Strina I. Bisphenol A-induced epigenetic changes and its effects on the male reproductive system. Front Endocrinol. 2020;11:453. https://doi.org/10.3389/fendo.2020.00453.

    Article  Google Scholar 

  266. Amir S, Shah STA, Mamoulakis C, Docea AO, Kalantzi O-I, Zachariou A, Calina D, Carvalho F, Sofikitis N, Makrigiannakis A, Tsatsakis A. Endocrine disruptors acting on estrogen and androgen pathways cause reproductive disorders through multiple mechanisms: A review. Int J Environ Res Public Health. 2021;18:1–20. https://doi.org/10.3390/ijerph18041464.

    Article  CAS  Google Scholar 

  267. Cabrera OH, Gulvezan T, Symmes B, Quillinan N, Jevtovic-Todorovic V. Sex differences in neurodevelopmental abnormalities caused by early-life anesthesia exposure: a narrative review. Br J Anesth. 2020;124:e81–91. https://doi.org/10.1016/j.bja.2019.12.032.

    Article  Google Scholar 

  268. Gasparoni A, Ciardelli L, De Amici D, Castellazzi AM, Autelli M, Bottino R, Polito E, Bartoli A, Rondini G, Chirico G. Effect of general and epidural anaesthesia on thyroid hormones and immunity in neonates. Paediatr Anaesth. 2002;12:59–64. https://doi.org/10.1046/j.1460-9592.2002.00752.x.

    Article  CAS  Google Scholar 

  269. Perenc L, Guzik A, Podgorska-Bednarz J, Druzbicki M. Growth disorders in children and adolescents affected by syndromes or diseases associated with neurodysfunction. Sci Rep. 2019;9:16436. https://doi.org/10.1038/s41598-019-52918-8.

    Article  CAS  Google Scholar 

  270. Benarroch EE. Insulin-like growth factors in the brain and their potential clinical implications. Neurology. 2012;79:2148–53. https://doi.org/10.1212/WNL.0b013e3182752eef.

    Article  Google Scholar 

  271. Riikonen R. Insulin-like growth factors in the pathogenesis of neurological diseases in children. Int J Mol Sci. 2017;18:2056. https://doi.org/10.3390/ijms18102056.

    Article  CAS  Google Scholar 

  272. Vahdatpour C, Dyer AH, Tropea D. Insulin-like growth factor 1 and related compounds in the treatment of childhood-onset neurodevelopmental disorders. Fron Neurosci. 2016;10:450. https://doi.org/10.3389/fnins.2016.00450.

    Article  Google Scholar 

  273. Ittig S, Studerus E, Heitz U, Menghini-Muller S, Beck K, Egloff L, Leanza L, Andreou C, Riecher-Rossler A. Sex differences in prolactin levels in emerging psychosis: indication for enhances stress reactivity in women. Schizophr Res. 2017;189:111–6. https://doi.org/10.1016/j.schres.2017.02.010.

    Article  Google Scholar 

  274. Labad J. The role of cortisol and prolactin in the pathogenesis and clinical expression of psychotic disorders. Psychoneuroendocrinology. 2019;102:29–36. https://doi.org/10.1016/j.psyneuen.2018.11.028.

    Article  CAS  Google Scholar 

  275. Aslam S. Endocrine events involved in puberty: a revisit to existing knowledge. Life Sci. 2020;1:37–48. https://doi.org/10.37185/LnS.1.1.43.

    Article  Google Scholar 

  276. Tena-Sempere. Kee** puberty on time: Novel signals and mechanisms involved. Curr Top Dev Biol. 2013;105:299–329. https://doi.org/10.1016/B978-0-12-396968-2.00011-7.

    Article  CAS  Google Scholar 

  277. Sanchez-Garrido MA, Tena-Sempere M. Metabolic control of puberty: roles of leptin and kisspeptins. Horm Behav. 2013;64:187–94. https://doi.org/10.1016/j.yhbeh.2013.01.014.

    Article  CAS  Google Scholar 

  278. Kauffman AS. Sexual differentiation and the Kiss1 system: hormonal and developmental considerations. Peptides. 2009;30:83–93. https://doi.org/10.1016/j.peptides.2008.06.014.

    Article  CAS  Google Scholar 

  279. Juraska JM, Willing J. Pubertal onset as a critical transition for neural development and cognition. Brain Res. 2017;1654:87–94. https://doi.org/10.1016/j.brainres.2016.04.012.

    Article  CAS  Google Scholar 

  280. Meredith RM. Sensitive and critical periods during neurotypical and aberrant neurodevelopment: a framework for neurodevelopmental disorders. Neurosci Behav Rev. 2015;50:180–8. https://doi.org/10.1016/j.neubiorev.2014.12.001.

    Article  CAS  Google Scholar 

  281. Piekarski DJ, Johnson CM, Boivin JR, Thomas AW, Lin WC, Delevich K, Galarce EM, Wilbrecht L. Does puberty mark a transition in sensitive periods for plasticity in the associative cortex? Brain Res. 2017;1654:123–44. https://doi.org/10.1016/j.brainres.2016.08.042.

    Article  CAS  Google Scholar 

  282. Vijayakumar N, Op de Macks Z, Shirtcliff EA, Pfeifer JH. Puberty and the human brain: Insights into adolescent development. Neurosci Biobehav Rev. 2018;92:417–36. https://doi.org/10.1016/j.neubiorev.2018.06.004.

    Article  Google Scholar 

  283. Peper JS, Hulshoff Pol HE, Crone EA, van Honk J. Sex steroids and brain structure in pubertal boys and girls: a mini-review of neuroimaging studies. Neuroscience. 2011;191:28–37. https://doi.org/10.1016/j.neuroscience.2011.02.014.

    Article  CAS  Google Scholar 

  284. Wierenga LM, Bos MGN, Schreuders E, Kamp FV, Peper JS, Tamnes CK, Crone EA. Unraveling age, puberty and testosterone effects on subcortical brain development across adolescence. Psychoneuroendocrinology. 2018;91:105–14. https://doi.org/10.1016/j.psyneuen.2018.02.034.

    Article  CAS  Google Scholar 

  285. Ahmed EI, Zehr JI, Schulz KM, Lorenz BH, DonCarlos LL, Sisk CL. Pubertal hormones modulate the addition of new cells to sexually dimorphic brain regions. Nat Neurosci. 2008;11:995–7. https://doi.org/10.1038/nn.2178.

    Article  CAS  Google Scholar 

  286. Martins-Afférri MP, Ferreira-Silva IA, Franci CR, Anselmo-Franci JA. LHRH release depends on Locus Coeruleus noradrenergic inputs to the medial preoptic area and median eminence. Brain Res Bull. 2003;61(5):521–7. https://doi.org/10.1016/s0361-9230(03)00190-4.

    Article  Google Scholar 

  287. Garcia-Falgueras A, Pinos H, Collado P, Pasaro E, Fernandez R, Jordan CL, Segovia S, Guillamon A. The role of the androgen receptor in CNS masculinization. Brain Res. 2005;1035:13–23. https://doi.org/10.1016/j.brainres.2004.11.060.

    Article  CAS  Google Scholar 

  288. Peper JS, Burke SM, Wierenga LM. Sex differences and brain development during puberty and adolescence. Handb Clin Neurol. 2020;175:25–54. https://doi.org/10.1016/B978-0-444-64123-6.00003-5.

    Article  Google Scholar 

  289. Rehbein E, Hornung J, Poromaa IS, Derntl B. Sha** of the female human brain by sex hormones: a review. Neuroendocrinology. 2021;111:183–206. https://doi.org/10.1159/000507083.

    Article  CAS  Google Scholar 

  290. Yanguas-Casas N. Physiological sex differences in microglia and their relevance in neurological disorders. Neuroimmunol Neuroinflammation. 2020;7:13–22. https://doi.org/10.20517/2347-8659.2019.31.

    Article  CAS  Google Scholar 

  291. Villa A, Gelosa P, Castiglioni L, Cimino M, Rizzi N, Pepe G, Lolli F, Marcello E, Sironi L, Vegeto E, Maggi A. Sex-specific features of microglia from adult mice. Cell Rep. 2018;23:3501–11. https://doi.org/10.1016/j.celrep.2018.05.048.

    Article  CAS  Google Scholar 

  292. Kopec AM, Smith CJ, Ayre NR, Sweat SC, Bilbo SD. Mircoglial dopamine receptor elimination defines sex-specific nucleus accumbens development and social behavior in adolescent rats. Nat Commun. 2018b;9:3769. https://doi.org/10.1038/s41467-018-06118z.

    Article  Google Scholar 

  293. Clasadonte J, Prevot V. The special relationship: glia-neuron interactions in the neuroendocrine hypothalamus. Nat Rev Endocrinol. 2018;14:25–44. https://doi.org/10.1038/nrendo.2017.124.

    Article  CAS  Google Scholar 

  294. Gegenhuber B, Tollkuhn J. Sex differences in the epigenome: a cause or consequence of sexual differentiation of the brain? Genes. 2019;10:432. https://doi.org/10.3390/genes10060432.

    Article  CAS  Google Scholar 

  295. Gegenhuber B, Tollkuhn J. Signature of sex: sex differences in gene expression in the vertebrae brain. WIREs Dev Biol. 2020;9:e348. https://doi.org/10.1002/wdev.348.

    Article  Google Scholar 

  296. Shi L, Zhang Z, Su B. Sex biased gene expression profiling of human brains at major developmental stages. Sci Rep. 2016;6:21181. https://doi.org/10.1038/srep21181.

    Article  CAS  Google Scholar 

  297. Shalev D, Melamed P. The role of the hypothalamus and pituitary epigenomes in central activation of the reproductive axis at puberty. Mol Cell Endocrinol. 2020;518:111031. https://doi.org/10.1016/j.mce.2020.111031.

    Article  CAS  Google Scholar 

  298. Walker DM, Zhou X, Cunningham AM, Lipschultz AP, Ramakrishnan A, Cates HM, Bagot RC, Shen L, Zhang B, Nestler EJ. Sex-specific transcriptional changes in response to adolescent social stress in the brain’s reward circuitry. Biol Psychiatry. 2021; https://doi.org/10.1016/j.biopsych.2021.02.964.

  299. Acien P, Acien M. Disorders of sex development: classification, review, and impact on fertility. J Clin Med. 2020;9:3555. https://doi.org/10.3390/jcm9113555.

    Article  CAS  Google Scholar 

  300. Bramswig J, Dubbers A. Disorders of pubertal development. Dtsch Arztebl Int. 2009;106:295–304. https://doi.org/10.3238/arztebl.2009.0295.

    Article  Google Scholar 

  301. Sultan C, Gaspari L, Maimoun L, Kalfa N, Paris F. Disorders of puberty. Best Pract Res Clin Obstet Gynaecol. 2018;48:62–9. https://doi.org/10.1016/j.bpobgyn.2017.11.004.

    Article  Google Scholar 

  302. Abbara A, Dhillo WS. Makorin rings the kisspeptin bell to signal pubertal initiation. J Clin Invest. 2020;130:3957–60. https://doi.org/10.1172/JCI139586.

    Article  CAS  Google Scholar 

  303. Silveira LG, Noel SD, Silveira-Neto AP, Abreu AP, Brito VN, Sants MG, Bianco SCD, Kuohung W, Xu S, Gryngarten M, Escobar ME, Arnhold IJP, Mendonca BB, Kaiser UB, Latronico AC. Mutations of the KISS1 gene in disorders of puberty. J Clin Endocrinol Metab. 2010;95:2276–80. https://doi.org/10.1210/jc.2009-2421.

    Article  CAS  Google Scholar 

  304. Papadimitriou A, Chrousos GP. Reconsidering the sex differences in the incidence of pubertal disorders. Horm Metab Res. 2005;37:708–10. https://doi.org/10.1055/s-2005-870586.

    Article  CAS  Google Scholar 

  305. Fattore L, Melis M, Fadda P, Fratta W. Sex differences in addictive disorders. Front Neuroendocrinol. 2014;35:272–84. https://doi.org/10.1016/j.yfrne.2014.04.003.

    Article  Google Scholar 

  306. Becker JB, Chartoff E. Sex differences in neural mechanisms mediating reward and addiction. Neuropsychopharmacol Rev. 2019;44:166–83. https://doi.org/10.1038/s41386-018-0125-6.

    Article  CAS  Google Scholar 

  307. Kokane SS, Perrotti LI. Sex differences and the role of estradiol in mesolimbic reward circuits and vulnerability to cocaine and opiate addiction. Front Behav Neurosci. 2020;14:74. https://doi.org/10.3389/fnbeh.2020.00074.

    Article  CAS  Google Scholar 

  308. Stice E, Figlewicz DP, Gosnell BA, Levine AS, Pratt WE. The contribution of brain reward circuits to the obesity epidemic. Neurosci Biobehav Rev. 2013;37:2047–58. https://doi.org/10.1016/j.neubiorev.2012.12.001.

    Article  Google Scholar 

  309. Culbert KM, Breedlove SM, Sisk CL, Burt SA, Klump KL. The emergence of sex differences in risk for disordered eating attitudes during puberty: A role for prenatal testosterone exposure. J Abnorm Psychol. 2013;122:420–32. https://doi.org/10.1037/a0031791.

    Article  Google Scholar 

  310. Klump KL. Puberty as a critical risk period for eating disorders: a review of human and animal studies. Horm Behav. 2013;64:399–410. https://doi.org/10.1016/j.yhbeh.2013.02.019.

    Article  Google Scholar 

  311. Evans JJ, Anderson GM. Balancing ovulation and anovulation: integration of the reproductive and energy balance axes by neuropeptides. Hum Reprod Update. 2012;18:313–32. https://doi.org/10.1093/humupd/dms004.

    Article  CAS  Google Scholar 

  312. Sominsky L, Jasoni CL, Twigg HR, Spencer SJ. Hormonal and nutritional regulation of postnatal hypothalamic development. J Endocrinol. 2018;237:R47–64. https://doi.org/10.1530/JOE-17-0722.

    Article  CAS  Google Scholar 

  313. Timko AC, DeFilipp, Dakanalis A. Sex differences in adolescent anorexia and bulimia nervosa: Beyond the signs and symptoms. Curr Psychiatry Rep. 2019;21:1. https://doi.org/10.1007/s11920-019-0988-1.

    Article  Google Scholar 

  314. Massa MG, Correa SM. Sexes on the brain: sex as multiple biological variables in the neuronal control of feeding. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165840. https://doi.org/10.1016/j.bbadis.2020.165840.

    Article  CAS  Google Scholar 

  315. Valdearcos M, Douglass JD, Robblee MM, Dorfman MD, Stifler DR, Bennett ML, Gerritse I, Fasnacht R, Barres BA, Thaler JP, Koliwad SK. Microglial inflammatory signaling orchestrates the hypothalamic immune response to dietary excess and mediates obesity susceptibility. Cell Metab. 2017;26:185–97. https://doi.org/10.1016/j.cmet.2017.05.015.

    Article  CAS  Google Scholar 

  316. Valdearcos M, Myers MG Jr, Koliwad SK. Hypothalamic microglia as potential regulators of metabolic physiology. Nat Metab. 2019;1:314–20. https://doi.org/10.1038/s42255-019-0040-0.

    Article  Google Scholar 

  317. Harp SJ, Martini M, Lynch WJ, Rissman EF. Sexual differentiation and substance us: a mini-review. Endocrinology. 2020;161:1–9. https://doi.org/10.1210/endocr/bqaa129.

    Article  CAS  Google Scholar 

  318. Kong G, Smith AE, McMahon TJ, Cavallo DA, Schepis TS, Desai RA, Potenza MN, Krishnan-Sarin S. Pubertal status, sensation-seeking, impulsivity, and substance use in high school–aged boys and girls. J Addict Med. 2013;7:116–21. https://doi.org/10.1097/ADM.0b013e31828230ca.

    Article  Google Scholar 

  319. Kuhn C, Johnson M, Thomae A, Luo B, Simon SA, Zhou G, Walker QD. The emergence of gonadal hormone influences on dopaminergic function during puberty. Horm Behav. 2010;58:122–37. https://doi.org/10.1016/j.yhbeh.2009.10.015.

    Article  CAS  Google Scholar 

  320. Calaprice D, Tona J, Parker-Athill EC, Murphy TK. A survey of pediatric acute-onset neuropsychiatric syndrome characteristics and course. J Child Adolesc Psychopharmacol. 2017;27:607–18. https://doi.org/10.1089/cap.2016.0105.

    Article  Google Scholar 

  321. Ullsperger JM, Nikolas MA. A meta-analytic review of the association between pubertal timing and psychopathology in adolescence: are there sex differences in risk? Psychol Bull. 2017;143(9):903–38. https://doi.org/10.1037/bul0000106.

    Article  Google Scholar 

  322. Donner NC, Lowry CA. Sex differences in anxiety and emotional behaviour. Pflugers Arch Eur J Physiol. 2013;465:601–26. https://doi.org/10.1007/s00424-013-1271-7.

    Article  CAS  Google Scholar 

  323. van Keulen BJ, Dolan CV, van der Voorn B, Andrew R, Walker BR, Pol HH, Boomsma DI, Rotteveel J, Finken MJJ. Sexual dimorphism in cortisol metabolism throughout pubertal development: a longitudinal study. Endocr Connect. 2020;9:542–51. https://doi.org/10.1530/EC-20-0123.

    Article  Google Scholar 

  324. Oyola MG, Handa RJ. Hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes: Sex differences in regulation of stress responsivity. Stress. 2017;20:476–94. https://doi.org/10.1080/10253890.2017.1369523.

    Article  CAS  Google Scholar 

  325. Gao R, Penzes P. Common mechanisms of excitatory and inhibitory imbalance in schizophrenia and autism spectrum disorders. Curr Mol Med. 2015;15:146–67. https://doi.org/10.2174/1566524015666150303003028.

    Article  CAS  Google Scholar 

  326. Goddings A-L, Beltz A, Peper JS, Crone EA, Braams BR. Understanding the role of puberty in structural and functional development of the adolescent brain. J Res Adolesc. 2019;29:32–53. https://doi.org/10.1111/jora.12408.

    Article  Google Scholar 

  327. Juraska JM, Sisk CL, DonCarols LL. Sexual differentiation of the adolescent rodent brain: Hormonal influences and developmental mechanisms. Horm Behav. 2013;64:203–10. https://doi.org/10.1016/j.yhbeh.2013.05.010.

    Article  CAS  Google Scholar 

  328. Ho SM, Cheong A, Adgent MA, Veevers J, Suen AA, Tam N, Leung YK, Jefferson WN, Williams CJ. Environmental factors, epigenetics, and developmental origin of reproductive disorders. Reprod Toxicol (Elmsford, N.Y.). 2017;68:85–104. https://doi.org/10.1016/j.reprotox.2016.07.011.

    Article  CAS  Google Scholar 

  329. Murphy TK, Gerardi DM, Leckman JF. Pediatric acute-onset neuropsychiatric syndrome. Psychiatr Clin N Am. 2014;37:353–74. https://doi.org/10.1016/j.psc.2014.06.001.

    Article  Google Scholar 

  330. Fausto-Sterling A. The five sexes. The Sciences. 1993;33:20–4. https://doi.org/10.1002/j.2326-1951.1993.tb03081.x.

    Article  Google Scholar 

  331. Fausto-Sterling A. The five sexes, revisited. Sciences (New York). 2000;40:18–23. https://doi.org/10.1002/j.2326-1951.2000.tb03504.x.

    Article  CAS  Google Scholar 

  332. Cools M, Nordenstrom A, Robeva R, Hall J, Westerveld P, Fluck C, Kohler B, Berra M, Springer A, Schweizer K, Pasterski V. Caring for individuals with a difference of sex development (DSD): a consensus statement. Nat Rev Endocrinol. 2018;14:415–29. https://doi.org/10.1038/s41574-018-0010-8.

    Article  Google Scholar 

  333. Witchel SF. Disorders of sex development. Best Pract Res Clin Obstet Gynaecol. 2018;48:90–102. https://doi.org/10.1016/j.bpobgyn.2017.11.005.

    Article  Google Scholar 

  334. Hughes IA, Houk C, Ahmed SF, Lee PA. Consensus statement on management of intersex disorders. J Pediatr Urol. 2006;2:148–62. https://doi.org/10.1016/j.jpurol.2006.03.004.

    Article  CAS  Google Scholar 

  335. Lee PA, Houk CP, Ahmed SF, Hughes IA. Consensus statement on management of intersex disorders. Pediatrics. 2006;118:e488-500. https://doi.org/10.1542/peds.2006-0738.

    Article  Google Scholar 

  336. Bakula DM, Mullins AJ, Sharkey CM, Wolfe-Christensen C, Mullins LL, Wisniewski AB. Gender identity outcomes in children with disorders/differences of sex development: predictive factors. Semin Perinatol. 2017; https://doi.org/10.1053/j.semperi.2017.03.010.

  337. Babu R, Shah U. Gender identity disorder (GID) in adolescents and adults with differences of sex development (DSD): a systematic review and meta-analysis. J Pediatr Urol. 2021;17:39–47. https://doi.org/10.1016/j.jpurol.2020.11.017.

    Article  Google Scholar 

  338. Furtado PS, Moraes F, Lago R, Barros LO, Toralles MB, Barroso U Jr. Gender dysphoria associated with disorders of sex development. Nat Rev Urol. 2012;9:620–7. https://doi.org/10.1038/nrurol.2012.182.

    Article  CAS  Google Scholar 

  339. Gonzalez R, Ludwikowski BM. Should CAH in females be classified as DSD? Front Pediatr. 2016;4:48. https://doi.org/10.3389/fped.2016.00048.

    Article  Google Scholar 

  340. Costa R, Dunsford M, Skagerberg E, Holt V, Carmichael P, Colizzi M. Psychological support, puberty suppression, and psychosocial functioning in adolescents with gender dysphoria. J Sex Med. 2015;12:2106–214. https://doi.org/10.1111/jsm.13034.

    Article  CAS  Google Scholar 

  341. de Vries ALC, McGuire JK, Steensma TD, Wagenaar ECF, Doreleijers TAH, Cohen-Kettenis PT. Young adult psychological outcome after puberty suppression and gender reassignment. Pediatrics. 2014;143:696–704. https://doi.org/10.1542/peds.2013-2958.

    Article  Google Scholar 

  342. Kaltiala-Heino R, Bergman H, Työläjärvi M, Frisén L. Gender dysphoria in adolescence: current perspectives. Adolesc Health Med Ther. 2018;9:31–41. https://doi.org/10.2147/AHMT.S135432.

    Article  Google Scholar 

  343. Zucker KJ. Adolescents with gender dysphoria: Reflections on some contemporary clinical and research issues. Arch Sex Behav. 2019;48:1983–92. https://doi.org/10.1007/s10508-019-01518-8.

    Article  Google Scholar 

  344. Littman L. Rapid-onset gender dysphoria in adolescents and young adults: a study of parental reports. PLoS ONE. 2018;13:e0202330. https://doi.org/10.1371/journal.pone.0202330.

    Article  CAS  Google Scholar 

  345. Littman L. Correction: Parent reports of adolescents and young adults perceived to show signs of a rapid onset of gender dysphoria. PLoS ONE. 2019;14:e0214157. https://doi.org/10.1371/journal.pone.0214157.

    Article  Google Scholar 

  346. Hutchinson A, Midgen M, Spiliadis A. In support of research into rapid-onset gender dysphoria. Arch Sex Behav. 2019;49:70–80. https://doi.org/10.1007/s10508-019-01517-9.

    Article  Google Scholar 

  347. Bao A-M, Swaab DF. Sexual differentiation of the human brain: Relation to gender identity, sexual orientation and neuropsychiatric disorders. Front Neuroendocrinol. 2011;32:214–26. https://doi.org/10.1016/j.yfrne.2011.02.007.

    Article  Google Scholar 

  348. Hahn A, Kranz GS, Kublbock M, Kaufmann U, Ganger S, Hummer A, Seiger R, Spies M, Winkler D, Kasper S, Windischberger C, Swaab DF, Lanzenberger R. Structural connectivity networks of transgender people. Cerebral Cortex. 2015;25:3527–34. https://doi.org/10.1093/cercor/bhu194.

    Article  Google Scholar 

  349. Rajkowska G. Dysfunction in neural circuits involved in the pathophysiology of mood disorders. Biol Psychiatry. 2000;48:766–77.

    Article  CAS  Google Scholar 

  350. Savic I, Garcia-Falgueras A, Swaab DF. Sexual differentiation of the human brain in relation to gender identity and sexual orientation. Prog Brain Res. 2010;186:41–62. https://doi.org/10.1016/B978-0-444-53630-3.00004-X.

    Article  Google Scholar 

  351. Smith ES, Junger J, Derntl B, Habel U. The transsexual brain—a review of findings on the neural basis of transsexualism. Neurosci Biobehav Rev. 2015;59:251–66. https://doi.org/10.1016/j.neubiorev.2015.09.008.

    Article  Google Scholar 

  352. Boucher FJO, Chinnah TI. Gender dysphoria: a review investigating the relationship between genetic influences and brain development. Adolesc Health Med Ther. 2020;11:89–99. https://doi.org/10.2147/AHMT.S259168.

    Article  Google Scholar 

  353. Garcia-Acero M, Moreno O, Suarez F, Rojas A. Disorders of sexual development: Current status and progress in the diagnostic approach. Curr Urol. 2019;13:169–78. https://doi.org/10.1159/000499274.

    Article  Google Scholar 

  354. Ristori J, Cocchetti C, Romani A, Mazzoli F, Vignozzi L, Maggi M, Fisher AD. Brain sex differences related to gender identity development: Genes or hormones? Int J Mol Sci. 2020;21:2123. https://doi.org/10.3390/ijms21062123.

    Article  Google Scholar 

  355. Taziaux M, Staphorsius AS, Ghatei MA, Bloom SR, Swaab DF, Bakker K. Kisspeptin expression in the human infundibular nucleus in relation to sex, gender identity, and sexual orientation. J Clin Endocrinol Metab. 2016;101:2380–9. https://doi.org/10.1210/jc.2015-4175.

    Article  CAS  Google Scholar 

  356. Naule L, Maione L, Kaiser US. Puberty, a sensitive window of hypothalamic development and plasticity. Endocrinology. 2021;162:1–14. https://doi.org/10.1210/endocr/bqaa209.

    Article  CAS  Google Scholar 

  357. Lopes-Ramos CM, Chen C-Y, Kuijer ML, Paulson JN, Sonawane AR, Fagny M, Platig J, Glass K, Quackenbush J, DeMeo DL. Sex differences in gene expression and regulatory networks across 29 human tissues. Cell Rep. 2020;31:107795. https://doi.org/10.1016/j.celrep.2020.107795.

    Article  CAS  Google Scholar 

  358. Yang X, Schadt EE, Wang S, Wang H, Arnold AP, Ingram-Drake L, Drake TA, Lusis AJ. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res. 2006;16(8):995–1004. https://doi.org/10.1101/gr.5217506.

    Article  CAS  Google Scholar 

  359. Raznahan A, Disteche CM. X-chromosome regulation and sex differences in brain anatomy. Neurosci Biobehav Rev. 2021;120:28–47. https://doi.org/10.1016/j.neubiorev.2020.10.024.

    Article  CAS  Google Scholar 

  360. Kassam I, Wu Y, Yang J, Visscher PM, McRae AF. Tissue-specific sex differences in human gene expression. Human Mol Genet. 2019;28:2976–86. https://doi.org/10.1093/hmg/ddz090.

    Article  CAS  Google Scholar 

  361. Lopes-Ramos CM, Quackenbush J, DeMeo DL. Genome-wide sex and gender differences in cancer. Front Oncol. 2020b;10:597788. https://doi.org/10.3389/fonc.2020.597788.

    Article  Google Scholar 

  362. Brown RE. An introduction to neuroendocrinology. Cambridge (UK): Cambridge University Press; 1994.

    Book  Google Scholar 

  363. Li Y, Dulac C. Neural coding of sex-specific social information in the mouse brain. Curr Opin Neurobiol. 2018;53:120–30. https://doi.org/10.1016/j.conb.2018.07.005.

    Article  CAS  Google Scholar 

  364. de Vries GJ, Forger NG. Sex differences in the brain: a whole body perspective. Biol Sex Differ. 2015;6(15) https://doi.org/10.1186/s13293-015-0032-z.

  365. American Psychiatric Association. 2013. The diagnostic and statistical manual of mental disorders, fifth edition (DSM-5). Washington DC: APA.

    Google Scholar 

  366. Ritchie H. Neurodevelopmental disorders . Website: https://ourworldindata.org/neurodevelopmental-disorders

  367. National Organization of Rare Disorders: rare disease data base: https://rarediseases.org/rare-diseases/angelman-syndrome/

  368. D'Souza HD, Karmiloff-Smith A. Neurodevelopmental disorders. WIREs Cogn Sci. 2017;8:e1398. https://doi.org/10.1002/wcs.1398.

    Article  Google Scholar 

  369. Terasaki LS, Gomez J, Schwarz JM. An examination of sex differences in the effects of early-life opiate and alcohol exposure. Phil Trans R Soc Lond B Biol Sci. 2016;371(1688):20150123.

    Article  Google Scholar 

  370. Adani S, Cepanec M. Sex differences in early communication development: behavioral and neurobiological indicators of more vulnerable communication system development in boys. Croat Med J. 2019;60(2):141–9.

    Article  Google Scholar 

  371. Santangelo SL, Pauls DL, Goldstein JM, Faraone SV, Tsaung MT, Leckman JF. Tourette's syndrome: what are the influences of gender and comorbid obsessive-compulsive disorder? J Am Acad Child Adolesc Psychiatry. 1994;33(6):795–804.

    Article  CAS  Google Scholar 

  372. Blume SR, Freedberg M, Vantrease JE, Chan R, Padival M, Record MJ, DeJoseph MR, Urban JH, Rosenkranz JA. Sex and estrus-dependant differences in rat basolateral amygdala. J Neurosci. 2017;37:10567–8. https://doi.org/10.1523/JNEUROSCI.0758-17.2017.

    Article  CAS  Google Scholar 

  373. Ortega-Recalde O, Goikoetxea A, Hore TA, Todd EV, Gemmell NJ. The genetics and epigenetics of sex change in fish. Annu Rev Anim Biosci. 2020;8:47–69. https://doi.org/10.1146/annurev-animal-021419-083634.

    Article  Google Scholar 

  374. Wade GN, Schneider JE, Li H-Y. Control of fertility by metabolic cues. Am J Physiol. 1996;270(Endocrinol. Metab. 33):E1–E19. https://doi.org/10.1152/ajpendo.1996.270.1.E1.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Hiyam Gedalia, Kyle Roddick and Jessica Garden for their help in organizing this chapter and Dan Goldowitz for his editorial assistance.

Multiple-Choice Questions

  1. 1.

    If a person has XXY sex chromosomes, they have the disorder A and will have the physical features of B

    1. (a)

      Turner’s syndrome; female

    2. (b)

      Klinefelter syndrome; male

    3. (c)

      Klinefelter syndrome; female

    4. (d)

      Congenital adrenal hyperplasia; female

    5. (e)

      Kallman syndrome; male

  2. 2.

    During the prenatal critical period of development, the hormone A has the effect of B of the brain.

    1. (a)

      Testosterone; masculinization

    2. (b)

      Prolactin; masculinization

    3. (c)

      Testosterone; feminization

    4. (d)

      Progesterone; feminization

    5. (e)

      Corticosterone; masculinization

  3. 3.

    The neuropeptide A regulates the secretion of the hypothalamic hormone B to regulate the sexual differentiation.

    1. (a)

      Substance P; GnRH

    2. (b)

      Galanin; CRH

    3. (c)

      CCK; TRH

    4. (d)

      Kisspeptin; GnRH

    5. (e)

      Kisspeptin; Oxytocin

  4. 4.

    The area of the brain that regulates hormone secretion from the pituitary gland is

    1. (a)

      the prefrontal cortex

    2. (b)

      the amygdala

    3. (c)

      the hippocampus

    4. (d)

      the cerebellum

    5. (e)

      the hypothalamus

  5. 5.

    Bisphenol A is a

    1. (a)

      neurotransmitter

    2. (b)

      neuropeptide

    3. (c)

      endocrine disruptor

    4. (d)

      hypothalamic hormone

    5. (e)

      anterior pituitary hormone

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard E. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brown, R.E. (2023). Sex Differences in Neurodevelopment and Its Disorders. In: Eisenstat, D.D., Goldowitz, D., Oberlander, T.F., Yager, J.Y. (eds) Neurodevelopmental Pediatrics. Springer, Cham. https://doi.org/10.1007/978-3-031-20792-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20792-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20791-4

  • Online ISBN: 978-3-031-20792-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation