Hotelling’s Fossil Fuel Economics

  • Chapter
  • First Online:
The Economics of Optimal Growth Pathways
  • 177 Accesses

Abstract

Fossil fuels such as coal, crude oil, and natural gas are some of the most valuable exhaustible non-renewable resources of the planet. In an economically optimal extraction trajectory of a fossil fuel, the sum of the discounted net revenues from the extractions over time will be maximized. In such a trajectory, the resource rent will rise at the rate of the market interest rate. Eventually, fossil-based fuels will be replaced by an alternative energy source and then by a backstop energy technology. The reliance on fossil fuels by humanity will end at some point in the future, on which both critics and economists would largely agree. The critique regarding the harmful unintended environmental and health consequences of fossil fuel burning remains a formidable challenge to humanity. Notwithstanding, the seven novel advances in technology as well as the two economic mechanisms explained in this chapter have helped address this critical issue in rich countries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akasaki, Isamu, Hiroshi Amano, and Shuji Nakamura. 2014. Blue LEDs: Filling the World with New Light. Nobel Prize Lecture. Stockholm, SE: The Nobel Foundation. http://www.nobelprize.org/nobel_prizes/physics/laureates/2014/popular-physicsprize2014.pdf.

    Google Scholar 

  • Arrow, Kenneth J., and Michael D. Intriligator. 1981. Handbook of Mathematical Economics: Volume 1. Amsterdam, NL: North-Holland.

    Google Scholar 

  • Arrow, K.J., M.L. Cropper, G.C. Eads, R.W. Hahn, L.B. Lave, R.G. Noll, et al. 1996. Is There a Role for Benefit-cost Analysis in Environmental, Health, and Safety Regulation? Science 272: 221–222.

    Article  Google Scholar 

  • Baumol, W.J., and W.E. Oates. 1971. The Use of Standards and Prices for Protection of the Environment. Swedish Journal of Economics 73: 42–54.

    Article  Google Scholar 

  • Carson, Rachel. 1962. Silent Spring. Boston, MA: Houghton Mifflin Harcourt.

    Google Scholar 

  • Coase, Ronald. 1960. The Problem of Social Cost. Journal of Law and Economics 3: 1–44.

    Article  Google Scholar 

  • Costanza, R. 2010. What Is Ecological Economics? Yale Insights. Yale School of Management, New Haven, CT. https://insights.som.yale.edu/insights/what-is-ecological-economics.

  • Cropper, Maureen L., and Wallace E. Oates. 1992. Environmental Economics: A Survey. Journal of Economic Literature 30: 675–740.

    Google Scholar 

  • Daly, H.E., and J. Farley. 2003. Ecological Economics: Principles and Applications. 1st ed. Washington, DC: Island Press.

    Google Scholar 

  • Deffeyes, Kenneth S. 2001. Hubbert’s Peak: The Impending World Oil Shortage. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Deutsche Welle (DW). 2022. European Commission Declares Nuclear and Gas to be Green. Published on February 2, 2022. https://www.dw.com/en/european-commission-declares-nuclear-and-gas-to-be-green/a-60614990.

  • Devarajan, Shantayanan, and Anthony C. Fisher. 1981. Hotelling’s ‘Economics of Exhaustible Resources’: Fifty Years Later. Journal of Economic Literature 19: 65–73.

    Google Scholar 

  • Dixit, A.K. 1990. Optimization in Economic Theory. 2nd ed. Oxford, UK: Oxford University Press.

    Google Scholar 

  • European Commission (EC). 2022. EU Taxonomy: Commission Presents Complementary Climate Delegated Act to Accelerate Decarbonization. Brussels, BE: EC.

    Google Scholar 

  • Faustmann, Martin. 1849. On the Determination of the Value Which Forest Land and Immature Stands Pose for Forestry. In Martin Faustmann and the Evolution of Discounted Cash Flow, ed. M. Gane. Oxford, England: Oxford Institute. [1968, Paper 42].

    Google Scholar 

  • Federal Energy Regulatory Commission (FERC). 2015. Energy Primer: A Handbook of Energy Market Basics. Washington, DC: The FERC.

    Google Scholar 

  • Fisher, Irving. 1930. The Theory of Interest. New York, NY: Macmillan.

    Google Scholar 

  • Fisher, Anthony C. 1981. Exhaustible Resources: The Theory of Optimal Depletion. In Resource and Environmental Economics, ed. A.C. Fisher. Cambridge, UK: Cambridge University Press.

    Chapter  Google Scholar 

  • Friedman, Milton. 1962. Capitalism and Freedom. Chicago, IL: The University of Chicago Press.

    Google Scholar 

  • ———. 1968. The Role of Monetary Policy. American Economic Review 58: 1–17.

    Google Scholar 

  • Gray, L.C. 1914. Rent under the Assumption of Exhaustibility. Quarterly Journal of Economics 28: 466–489.

    Article  Google Scholar 

  • Graziano, M., and K. Gillingham. 2015. Spatial Patterns of Solar Photovoltaic System Adoption: The Influence of Neighbors and the Built Environment. Journal of Economic Geography 15: 815–839.

    Article  Google Scholar 

  • Green Climate Fund (GCF). 2011. Governing Instrument for the Green Climate Fund. Songdo City, South Korea: GCF.

    Google Scholar 

  • Griffin, J.M., and S.L. Puller. 2005. Electricity Deregulation: Choices and Challenges. Chicago, IL: University of Chicago Press.

    Book  Google Scholar 

  • Grijsen, J.G. 2022. Rapid Climate Risk Assessment Methodologies for Hydropower Projects: Concepts and Theory. In Handbook of Behavioral Economics and Climate Change, ed. S.N. Seo. Cheltenham, UK: Edward Elgar.

    Google Scholar 

  • Grossman, G.M., and A.B. Krueger. 1995. Economic Growth and the Environment. Quarterly Journal of Economics 110: 353–377.

    Article  Google Scholar 

  • Haxel, G.B., J.B. Hedrick, and G.J. Orris. 2002. Rare Earth Elements: Critical Resources for High Technology. Reston, VA: The US Geological Survey.

    Google Scholar 

  • Heal, G. 2010. Reflections: The Economics of Renewable Energy in the United States. Review of Environmental Economics & Policy 4: 139–154.

    Article  Google Scholar 

  • Heinberg, R. 2011. The End of Growth: Adapting to Our New Economic Reality. British Colombia, Canada: New Society Publishers.

    Google Scholar 

  • Hotelling, H. 1931. The Economics of Exhaustible Resources. Journal of Political Economy 39: 137–175.

    Article  Google Scholar 

  • Hubbert, M. King. 1956. Nuclear Energy and the Fossil Fuels. Presented at the Spring Meeting of the American Petroleum Institute, San Antonio, TX.

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC). 2011. Special Report on Renewable Energy Sources and Climate Change Mitigation. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • ———. 2021. Climate Change 2021: The Physical Science Basis, The Sixth Assessment Report of the IPCC. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • International Energy Agency (IEA). 2020. Global EV Outlook 2020: Entering the Decade of Electric Drive? Paris, FR: IEA.

    Book  Google Scholar 

  • International Hydropower Association (IHA). 2018. Hydropower Status Report. London, UK: IHA.

    Google Scholar 

  • International Thermonuclear Experimental Reactor (ITER). 2022. ITER: The World’s Largest Tokamak. https://www.iter.org/proj/inafewlines

  • Joskow, P.L. 2012. Creating a Smarter U.S. Electricity Grid. Journal of Economic Perspectives 26: 29–48.

    Article  Google Scholar 

  • ———. 2013. Natural Gas: From Shortages to Abundance in the United States. American Economic Review 103: 338–343.

    Article  Google Scholar 

  • Kallis, G., V. Kostakis, S. Lange, B. Muraca, S. Paulson, and M. Schmelzer. 2018. Research on Degrowth. Annual Review of Environment and Resources 43: 291–316.

    Article  Google Scholar 

  • Lanfranco, B., and S.N. Seo. 2022. An Analysis of Biogas, Biomass, Forest Credits, and Renewable Energy Programs in Brazil and Argentina Supported by the Green Climate Fund. In Handbook of Behavioural Economics and Climate Change, ed. S.N. Seo. Cheltenham, UK: Edward Elgar.

    Google Scholar 

  • Le Treut, H., R. Somerville, U. Cubasch, Y. Ding, C. Mauritzen, A. Mokssit, T. Peterson, and M. Prather. 2007. Historical Overview of Climate Change. In Climate Change 2007: The Physical Science Basis. The Fourth Assessment Report of the IPCC, ed. S. Solomon et al. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Lenton, T.M., H. Held, E. Kriegler, J.W. Hall, W. Lucht, W.S. Rahmstorf, et al. 2008. Tip** Elements in the Earth’s Climate System. Proceedings of the National Academy of Science 105: 1786–1793.

    Article  Google Scholar 

  • Likens, G.E., and F.H. Bormann. 1974. Acid Rain: A Serious Regional Environmental Problem. Science 184: 1176–1179.

    Article  Google Scholar 

  • Lucas, Robert. 1972. Expectations and the Neutrality of Money. Journal of Economic Theory 4: 103–124.

    Article  Google Scholar 

  • Mason, C.F., L.A. Muehlenbachs, and S.A. Olmstead. 2015. Economics of Shale Gas Development. RFF, Washington DC: Resources for the Future Discussion Paper.

    Google Scholar 

  • Massachusetts Institute of Technology (MIT). 2003. The Future of Nuclear Power: An Interdisciplinary MIT Study. Cambridge, MA: The MIT.

    Google Scholar 

  • ———. 2015. The Future of Solar Energy: An Interdisciplinary MIT Study. Cambridge, MA: The MIT.

    Google Scholar 

  • McConnell, Virginia. 2013. The New CAFE Standards: Are They Enough on Their Own? The Resources for the Future Discussion Paper 13-14. Washington, DC: The RFF.

    Google Scholar 

  • Mendelsohn, R. 1980. An Economic Analysis of Air Pollution from Coal-fired Power Plants. Journal of Environmental Economics and Management 7: 30–43.

    Article  Google Scholar 

  • Mendelsohn, R., and S. Olmstead. 2009. The Economic Valuation of Environmental Amenities and Disamenities: Methods and Applications. Annual Review of Environment and Resources 34 (1): 325–347.

    Article  Google Scholar 

  • Molina, M.J., and F.S. Rowland. 1974. Stratospheric Sink for Chlorofluoromethanes: Chlorine Atom-catalysed Destruction of Ozone. Nature 249: 810–812.

    Article  Google Scholar 

  • Montgomery, W.D. 1972. Markets in Licenses and Efficient Pollution Control Programs. Journal of Economic Theory 5: 395–418.

    Article  Google Scholar 

  • Muller, N.Z., and R. Mendelsohn. 2009. Efficient Pollution Regulation: Getting the Prices Right. American Economic Review 99: 1714–1739.

    Article  Google Scholar 

  • Muller, N.Z., R. Mendelsohn, and W.D. Nordhaus. 2011. Environmental Accounting for Pollution in the United States Economy. American Economic Review 101: 1649–1675.

    Article  Google Scholar 

  • National Renewable Energy Laboratory (NREL). 2020. Perovskite Solar Cells. Washington, DC: The NREL, Department of Energy. https://www.nrel.gov/pv/perovskite-solar-cells.html.

    Google Scholar 

  • National Research Council (NRC). 2013. Transitions to Alternative Vehicles and Fuels. Washington, DC: The National Academies Press.

    Google Scholar 

  • Nordhaus, W.D. 1973. The Allocation of Energy Resources. Brookings Papers on Economic Activity 1973: 529–576.

    Article  Google Scholar 

  • ———. 1994. Do Real Output and Real Wage Measures Capture Reality? The History of Lighting Suggests Not. Cowles Foundation Discussion Papers 1078, Cowles Foundation for Research in Economics, Yale University.

    Google Scholar 

  • Nordhaus, W.D., and J. Tobin. 1972. Is Growth Obsolete? Cambridge, MA: National Bureau of Economic Research.

    Google Scholar 

  • Our World in Data (OWID). 2022. Energy. https://ourworldindata.org/fossil-fuels.

  • British Petroleum (BP). 2021. Statistical Review of World Energy 2021. London, UK: The BP.

    Google Scholar 

  • Portney, P.R., I.W.H. Parry, H.K. Gruenspecht, and W. Harrington. 2003. The Economics of Fuel Economy Standards. Journal of Economic Perspectives 17: 203–217.

    Article  Google Scholar 

  • Reisch, Mark S. 2017. Solid-state Batteries Inch Their Way Toward Commercialization. Chemical and Engineering News, American Chemical Society 95 (46): 19–21.

    Google Scholar 

  • Ricardo, D. 1817. On the Principles of Political Economy and Taxation. London, UK: John Murray.

    Google Scholar 

  • Samuelson, Paul A. 1954. The Pure theory of Public Expenditure. Review of Economics and Statistics 36: 387–389.

    Article  Google Scholar 

  • Sandel, Michael J. 2000. It is Immoral to Buy the Right to Pollute (with Replies). In Economics of the Environment: Selected Papers, ed. R. Stavins, 4th ed. New York, NY: W.W. Norton & Co.

    Google Scholar 

  • Schmalensee, R., and R.N. Stavins. 2013. The SO2 Allowance Trading System: The Ironic History of a Grand Policy Experiment. Journal of Economic Perspectives 27: 103–122.

    Article  Google Scholar 

  • Selten, R. 1965. Spieltheoretische Behandlung eines Oligopolmodells mit Nachfragetragheit. Z. fu¨r Gesamte Staatsivissenschaft 121: 301–324.

    Google Scholar 

  • Seo, S.N. 2019. The Economics of Global Allocations of the Green Climate Fund: An Assessment from Four Scientific Traditions of Modeling Adaptation Strategies. Cham, CH: Springer Nature.

    Book  Google Scholar 

  • ———. 2020. The Economics of Globally Shared and Public Goods. Amsterdam, NL: Academic Press.

    Google Scholar 

  • ———. 2021a. Energy Revolutions: A Story of the Three Gorges Dam in China. In Climate Change and Economics: Engaging with Future Generations with Action Plans, ed. S.N. Seo. London, UK: Palgrave Macmillan.

    Chapter  Google Scholar 

  • ———. 2021b. Climate Change and Economics: Engaging with Future Generations with Action Plans. London, UK: Palgrave Macmillan.

    Book  Google Scholar 

  • ———. 2022. The Economics of Pandemics: Exploring Globally Shared Experiences. Cham, CH: Palgrave Macmillan.

    Book  Google Scholar 

  • Stand.Earth. 2021. Invest Divest Report 2021. https://www.stand.earth/divestinvest2021

  • Stavins, R. 1998. What Can We Learn from the Grand Policy Experiment? Lessons from SO2 Allowance Trading. Journal of Economic Perspectives 12: 69–88.

    Article  Google Scholar 

  • Tian, X., S.D. Stranks, and F. You. 2020. Life Cycle Energy Use and Environmental Implications of High-performance Perovskite Tandem Solar Cells. Science. Advances 6 (31): eabb0055. https://doi.org/10.1126/sciadv.abb0055.

    Article  Google Scholar 

  • Tietenberg, T.H. 1980. Transferable Discharge Permits and the Control of Stationary Source Air Pollution: A Survey and Synthesis. Land Economics 56: 391–416.

    Article  Google Scholar 

  • United Nations (UN). 2015. Transforming Our World: The 2030 Agenda for Sustainable Development. New York, NY: UN.

    Google Scholar 

  • United Nations Framework Convention on Climate Change (UNFCCC). 2015. The Paris Agreement. New York, NY: UNFCCC.

    Google Scholar 

  • United States Energy Information Administration (USEIA). 2021. Annual Energy Outlook 2021. Washington, DC: US EIA.

    Google Scholar 

  • ———. 2022. Energy Explained. Washington, DC: US EIA.

    Google Scholar 

  • United States Environmental Protection Agency (USEPA). 1990. The Clean Air Act Amendments. Washington, DC: US EPA.

    Google Scholar 

  • ———. 2008. Air Pollution Control Equipment. MACT (Maximum Achievable Control Technology) EEE Training Workshop. Washington, DC: US EPA.

    Google Scholar 

  • ———. 2010. The 40th Anniversary of the Clean Air Act. Washington, DC: US EPA. http://www.epa.gov/airprogm/oar/caa/40th.html.

    Google Scholar 

  • ———. 2011. The Benefits and Costs of the Clean Air Act from 1990 to 2020. Washington, DC: US EPA.

    Google Scholar 

  • ———. 2014. Carbon Pollution Emission Guidelines for Existing Stationary Sources: Electric Utility Generating Units. Washington, DC: US EPA.

    Google Scholar 

  • Unites States House of Representatives. 2019. Resolution: Recognizing the Duty of the Federal Government to Create a Green New Deal. Washington, DC: United States House of Representatives. Published February 7, 2019.

    Google Scholar 

  • Viscusi, W.K., and J.E. Aldy. 2003. The Value of a Statistical Life: A Critical Review of Market Estimates Throughout the World. Journal of Risk and Uncertainty 27: 5–76.

    Article  Google Scholar 

  • Weitzman, M.L. 2009. On Modeling and Interpreting the Economics of Catastrophic Climate Change. Review of Economics and Statistics 91: 1–19.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Niggol Seo .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seo, S.N. (2023). Hotelling’s Fossil Fuel Economics. In: The Economics of Optimal Growth Pathways. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-031-20754-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20754-9_5

  • Published:

  • Publisher Name: Palgrave Macmillan, Cham

  • Print ISBN: 978-3-031-20753-2

  • Online ISBN: 978-3-031-20754-9

  • eBook Packages: Economics and FinanceEconomics and Finance (R0)

Publish with us

Policies and ethics

Navigation