Abstract

Solution processed semiconductors are a matter of research interest due to low fabrication cost, simplicity and evolution of interesting properties during the formation of thin film. Here, we explore recent design approaches of II-VI semiconductor materials like CdS, CdTe, CdSe, ZnS, ZnTe and ZnSe. We further include some recent established applications of solution processed thin films constructed from those materials especially for the purpose of photodetection. Recent studies have been found to get interested with direct synthesis of the materials while other techniques are also being considered for different applications. The constructed film is then further studied for photodetection properties and opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boberl M, Kovalenko MV, Gamerith S, List EJW, Heiss W (2007) Inkjet-printed nanocrystal photodetectors operating up to 3 μm wavelengths. Adv Mater 19:3574–3578

    Article  Google Scholar 

  2. Calvert P (2001) Inkjet printing for materials and devices. Chem Mater 13:329

    Article  Google Scholar 

  3. Chen Y-H, Li W-S, Liu C-Y, Wang C-Y, Chang Y-C, Chen L-J (2013) Three-dimensional heterostructured ZnSe nanoparticles/Si wire arrays with enhanced photodetection and photocatalytic performances. J Mater Chem C 1:1345–1351

    Article  Google Scholar 

  4. Chesman ASR, Duffy NW, Martucci A, De Oliveira Tozi L, Singh TB, Jasieniak JJ (2014) Solution-processed CdS thin films from a single source precursor. J Mater Chem C 2(2014):3247–3253

    Article  Google Scholar 

  5. Cook B, Gong M, Ewing D, Casper M, Stramel A, Elliot A, Wu J (2019) Inkjet printing multicolor pixelated quantum dots on graphene for broadband photodetection. ACS Appl Nano Mater 2:3246–3252

    Article  Google Scholar 

  6. Croucher M, Hair M (1989) Design criteria and future directions in inkjet ink technology. Ind Eng Chem Res 28(11):1712

    Article  Google Scholar 

  7. Da Costa TH, Choi J-W (2020) Low-cost and customizable inkjet printing for microelectrodes fabrication. Micro Nano Syst Lett 8:2

    Article  Google Scholar 

  8. Das S, Dhara S (eds) (2021) Chemical solution synthesis for materials design and thin film device applications. Elsevier, Amsterdam

    Google Scholar 

  9. Dong Y, Zou Y, Song J, Li J, Han B, Shan Q et al (2017) All-inkjet-printed flexible UV photodetector. Nanoscale 9:8580

    Article  Google Scholar 

  10. Eslamian M (2017) Inorganic and organic solution-processed thin film devices. Nano-Micro Lett 9:3

    Google Scholar 

  11. Fukuda K, Someya T (2017) Recent progress in the development of printed thin-film transistors and circuits with high-resolution printing technology. Adv Mater 29(25):1602736

    Article  Google Scholar 

  12. García de Arquer FP, Armin A, Meredith P, Sargent EH (2017) Solution-processed semiconductors for next-generation photodetectors. Nat Rev Mater 2:16100

    Article  Google Scholar 

  13. Graetzel M, Janssen RAJ, Mitzi DB, Sargent EH (2012) Materials interface engineering for solution-processed photovoltaics. Nature 488:304–312

    Article  Google Scholar 

  14. Hankare PP, Bhuse VM, Garadkar KM, Delekar SD, Mulla IS (2004) Chemical deposition of cubic CdSe and HgSe thin films and their characterization. Semicond. Sci. Technol. 19:70.

    Google Scholar 

  15. Haverinen H, Myllyla R, Jabbour G (2009) Inkjet printing of light-emitting quantum dots. Appl Phys Lett 94:073108

    Article  Google Scholar 

  16. Hou X, Aitola K, Lund PD (2021) TiO2 nanotubes for dye-sensitized solar cells—A review. Energy Sci Eng 9:921–937

    Google Scholar 

  17. Hussain S, Iqbal M, Khan AA, Khan MN, Mehboob G, Ajmal S et al (2021) Fabrication of nanostructured cadmium selenide thin films for optoelectronics applications. Front Chem 9:661723

    Article  Google Scholar 

  18. Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295:2425–2427

    Article  Google Scholar 

  19. Ingrosso C, Kim JY, Binetti E, Fakhfouri V, Striccoli M, Agostiano A et al (2009) Drop-on-demand inkjet printing of highly luminescent CdS and CdSe@ZnS nanocrystal based nanocomposites. Microelectron Eng 86:1124–1126

    Article  Google Scholar 

  20. Jain M (1993) II-VI semiconductor compounds. World Scientific, Singapore

    Google Scholar 

  21. Khan S, Lorenzelli L, Dahiya RS (2015) Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sensors J 15:3164–3185

    Article  Google Scholar 

  22. Kim JY, Ingrosso C, Fakhfouri V, Striccoli M, Agostiano A, Curri ML, Brugger J (2009) Inkjet-printed multicolor arrays of highly luminescent nanocrystal-based nanocomposits. Small 5(9):1051–1057

    Article  Google Scholar 

  23. Korotcenkov G (2014) Handbook of gas sensor materials, Vol. 2: new trends and technologies. Springer, New York

    Book  Google Scholar 

  24. Korotcenkov G, Tolstoy V, Schwank J (2006) Successive ionic layer deposition (SILD) as a new sensor technology: synthesis and modification of metal oxides. Meas Sci Technol 17:1861–1869

    Article  Google Scholar 

  25. Kuang W-J, Liu X, Li Q, Liu Y-Z, Su J, Harm TH (2018) Solution-processed solar-blind ultraviolet photodetectors based on ZnS quantum-dots. IEEE Photon Technol Lett 30(15):1384–1387

    Article  Google Scholar 

  26. Kwon J-B, Kim S-W, Kang B-H, Yeom S-H, Lee W-H, Dae-Hyuk Kwon D-H et al (2020) Air-stable and ultrasensitive solution-cast SWIR photodetectors utilizing modified core/shell colloidal quantum dots. Nano Converg 7:28

    Article  Google Scholar 

  27. Kwon HJ, Chung S, Jang J, Grigoropoulos CP (2016) Laser direct writing and inkjet printing for a sub-2 μm channel length MoS2 transistor with high-resolution electrodes. Nanotechnology 27:405301

    Article  Google Scholar 

  28. Le H (1998) Progress and trends in ink-jet printing technology. J Imaging Sci Technol 42(1):49

    Google Scholar 

  29. Lee J-S, Kovalenko MV, Huang J, Chung DS, Talapin DV (2011) Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nat Nanotechnol 6:348–352

    Article  Google Scholar 

  30. Li X, Yang J, Jiang Q, Lai H, Li S, **n J, Chu W, Hou J (2018) Low-temperature solution-processed ZnSe electron transport layer for efficient planar perovskite solar cells with negligible hysteresis and improved photostability. ACS Nano 12:5605–5614

    Article  Google Scholar 

  31. Lin H, Wei L, Wu C, Chen Y, Yan S, Mei L, Jiao J (2016) High-performance self-powered photodetectors based on ZnO/ZnS core-shell nanorod arrays. Nanoscale Res Lett 11(1):420

    Article  Google Scholar 

  32. Magdassi S (ed) (2010) The chemistry of inkjet inks. World Scientific Publishing, Singapore

    Google Scholar 

  33. Marjanovic N, Hammerschmidt J, Perelaer J, Farnsworth S, Rawson I, Kus M et al (2011) Inkjet printing and low temperature sintering of CuO and CdS as functional electronic layers and Schottky diodes. J Mater Chem 21:13634

    Article  Google Scholar 

  34. Mbam SO, Nwonu SE, Orelaja OA, Nwigwe US, Gou XF (2019) Thin-film coating; historical evolution, conventional deposition technologies, stress-state micro/nano-level measurement/models and prospects projection: a critical review. Mater Res Express 6(12):122001

    Google Scholar 

  35. Mei X, Wu B, Guo X, Liu X, Rong Z, Liu S et al (2018) Efficient CdTe nanocrystal/TiO2 hetero-junction solar cells with open circuit voltage breaking 0.8 V by incorporating a thin layer of CdS nanocrystal. Nano 8:614

    Google Scholar 

  36. Miethe JF, Luebkemann F, Schlosser A, Dorfs D, Bigall NC (2020) Revealing the correlation of the electrochemical properties and the hydration of inkjet-printed CdSe/CdS semiconductor gels. Langmuir 36:4757–4765

    Article  Google Scholar 

  37. Miskin CK, Dubois-Camacho A, Reese MO, Agrawal R (2016) A direct solution deposition approach to CdTe thin films. J Mater Chem C 4(2016):9167–9171

    Article  Google Scholar 

  38. Mohammed RY (2021) Annealing effect on the structure and optical properties of CBD-ZnS thin films for windscreen coating. Materials 14:6748

    Article  Google Scholar 

  39. Nikam CP, Gosavi NM, Gosavi SR (2020) Low-cost visible-light photodetector based on Ag/CdSe Schottky diode fabricated using soft chemical solution method. SAMRIDDHI: J Phys Sci Eng Technol 12(2):62–67

    Google Scholar 

  40. Pawar SM, Pawar BS, Kim JH, Joo O-S, Lokhande CD (2011) Recent status of chemical bath deposited metal chalcogenide and metal oxide thin films. Curr Appl Phys 11:117–161

    Article  Google Scholar 

  41. Rahman MF, Hossain J, Kuddus A, Tabassum S, Rubel MHK, Shirai H, Ismail ABM (2020a) A novel synthesis and characterization of transparent CdS thin films for CdTe/CdS solar cells. Appl Phys A Mater Sci Process 126:145

    Article  Google Scholar 

  42. Rahman MF, Hossain J, Kuddus A, Tabassum S, Rubel MHK, Rahman MM et al (2020b) A novel CdTe ink-assisted direct synthesis of CdTe thin films for the solution-processed CdTe solar cells. J Mater Sci 55:7715–7730

    Article  Google Scholar 

  43. Rose DH, Hasoon FS, Dhere RG, Albin DS, Ribelin RM, Li XS, Mahathongdy Y (1999) Fabrication procedures and process sensitivities for CdS/CdTe solar cells. Prog Photovolt Res Appl 7:331–340

    Article  Google Scholar 

  44. Saeed S, Dai R, Janjua RA, Huang D, Wang H, Wang Z, Ding Z, Zhang Z (2021) Fast-response metal−semiconductor−metal junction ultraviolet photodetector based on ZnS:Mn nanorod networks via a cost effective method. ACS Omega 6(48):32930–32937

    Article  Google Scholar 

  45. Sekhar Reddy KC, Selamneni V, Syamala Rao MG, Meza-Arroyo J, Sahatiya P, Ramirez-Bon R (2021) All solution processed flexible p-NiO/n-CdS rectifying junction: applications towards broadband photodetector and human breath monitoring. Appl Surf Sci 568:150944

    Article  Google Scholar 

  46. Sliz R, Lejay M, Fan JZ, Choi M-J, Kinge S, Hoogland S et al (2019) Stable colloidal quantum dot inks enable inkjet-printed high-sensitivity infrared photodetectors. ACS Nano 13(10):11988–11995

    Article  Google Scholar 

  47. Taylor R, Church K, Sluch M (2007) Red light emission from hybrid organic/inorganic quantum dot AC light emitting displays. Displays 28:92

    Article  Google Scholar 

  48. Tekin E, Smith P, Schubert U (2008) Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter 4:703

    Article  Google Scholar 

  49. Tolstoi VP (2009) New routes for the synthesis of nanocomposite layers of inorganic compounds by the Layer-by-Layer scheme. Russ J Gen Chem 79:2578–2583

    Article  Google Scholar 

  50. Wang X, Yuan M, Qin M (2016) Surface energy-modulated inkjet printing of semiconductors. In: Yun I (ed) Printed electronics – current trends and applications. INTECH, pp 5–24

    Google Scholar 

  51. Wu Y, Tamaki T, Volotinen T, Belova L, Rao KV (2010) Enhanced photoresponse of inkjet-printed ZnO thin films capped with CdS nanoparticles. J Phys Chem Lett 1:89–92

    Article  Google Scholar 

  52. Wu Y, Li Y, Ong BS, Liu P, Gardner S, Chiang B (2005) High-performance organic thin-film transistors with solution-printed gold contacts. Adv Mater 17:184–187

    Article  Google Scholar 

  53. **a Y, Zhai G, Zheng Z, Lian L, Liu H, Zhang D et al (2018) Solution-processed solar-blind deep ultraviolet photodetectors based on strongly quantum confined ZnS quantum dots. J Mater Chem C 6:11266–11271

    Article  Google Scholar 

  54. Younus IA, Ezzar AM, Uonis MM (2020) Preparation of ZnTe thin films using chemical bath deposition technique. Nanocomposites, 6:4:165–172

    Google Scholar 

  55. Zhang Y, Hellebusch DJ, Bronstein ND, Ko C, Ogletree DF, Salmeron M, Alivisatos AP (2016) Ultrasensitive photodetectors exploiting electrostatic trap** and percolation transport. Nat Commun 7:11924

    Article  Google Scholar 

  56. Zhou W, Shang Y, de Arquer PG, Xu K, Wang R, Luo S et al (2020) Solution-processed upconversion photodetectors based on quantum dots. Nat Electron 3:251–258

    Article  Google Scholar 

  57. Zhou** Y, Yongan H, Ningbin B, **aomei W, Youlun X (2010) Inkjet printing for flexible electronics: materials, processes, and equipment. Chin Sci Bull 55(30):3383

    Article  Google Scholar 

Download references

Acknowledgments

G. Korotcenkov is grateful to the State Program of the Republic of Moldova, project 20.80009.5007.02, for supporting his research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaker Hossain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mostaque, S.K., Kuddus, A., Rahman, M.F., Korotcenkov, G., Hossain, J. (2023). Solution-Processed Photodetectors. In: Korotcenkov, G. (eds) Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors. Springer, Cham. https://doi.org/10.1007/978-3-031-20510-1_18

Download citation

Publish with us

Policies and ethics

Navigation