Reinforcement Learning Based Plug-and-Play Method for Hyperspectral Image Reconstruction

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13604))

Included in the following conference series:

Abstract

Hyperspectral images have multi-dimensional information and play an important role in many fields. Recently, based on the compressed sensing (CS), spectral snapshot compressive imaging (SCI) can balance spatial and spectral resolution compared with traditional methods, so it has attached more and more attention. The Plug-and-Play (PnP) framework based on spectral SCI can effectively reconstruct high-quality hyperspectral images, but there exists a serious problem of parameter dependence. In this paper, we propose a PnP hyperspectral reconstruction method based on reinforcement learning (RL), where a suitable policy network through deep reinforcement learning can adaptively tune the parameters in the PnP method to adjust the denoising strength, penalty factor of the deep denoising network, and the terminal time of iterative optimization. Compared with other model-based and learning-based methods and methods with different parameters tuning policies, the reconstruction results obtained by the proposed method have advantages in quantitative indicators and visual effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 128.39
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arad, B., Ben-Shahar, O.: Sparse recovery of hyperspectral signal from natural RGB images. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 19–34. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_2

    Chapter  Google Scholar 

  2. Basedow, R.W., Carmer, D.C., Anderson, M.E.: Hydice system: implementation and performance. In: Proceedings of Imaging Spectrometry, vol. 2480, pp. 258–267. SPIE (1995)

    Google Scholar 

  3. Bioucas-Dias, J.M., Figueiredo, M.A.: A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Process. 16(12), 2992–3004 (2007)

    Article  MathSciNet  Google Scholar 

  4. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  MATH  Google Scholar 

  5. Chan, S.H., Wang, X., Elgendy, O.A.: Plug-and-play ADMM for image restoration: fixed-point convergence and applications. IEEE Trans. Comput. Imaging 3(1), 84–98 (2016)

    Article  MathSciNet  Google Scholar 

  6. Choi, I., Kim, M., Gutierrez, D., Jeon, D., Nam, G.: High-quality hyperspectral reconstruction using a spectral prior. Technical report (2017)

    Google Scholar 

  7. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  8. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Feng, Y.Z., Sun, D.W.: Application of hyperspectral imaging in food safety inspection and control: a review. Crit. Rev. Food Sci. Nutr. 52(11), 1039–1058 (2012)

    Article  Google Scholar 

  10. Fu, Y., Lam, A., Sato, I., Sato, Y.: Adaptive spatial-spectral dictionary learning for hyperspectral image restoration. Int. J. Comput. Vision 122(2), 228–245 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fu, Y., Zheng, Y., Sato, I., Sato, Y.: Exploiting spectral-spatial correlation for coded hyperspectral image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3727–3736 (2016)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. Huang, H., Nie, G., Zheng, Y., Fu, Y.: Image restoration from patch-based compressed sensing measurement. Neurocomputing 340, 145–157 (2019)

    Article  Google Scholar 

  14. Lai, Z., Wei, K., Fu, Y.: Deep plug-and-play prior for hyperspectral image restoration. Neurocomputing 481, 281–293 (2022)

    Article  Google Scholar 

  15. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. ar**v preprint ar**v:1509.02971 (2015)

  16. Hohmann, M., et al.: In-vivo multispectral video endoscopy towards in-vivo hyperspectral video endoscopy. J. Biophotonics 10(4), 553–564 (2016)

    Article  Google Scholar 

  17. Ono, S.: Primal-dual plug-and-play image restoration. IEEE Signal Process. Lett. 24(8), 1108–1112 (2017)

    Article  Google Scholar 

  18. Plaza, A., et al.: Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 113, S110–S122 (2009)

    Article  Google Scholar 

  19. Rick Chang, J., Li, C.L., Poczos, B., Vijaya Kumar, B., Sankaranarayanan, A.C.: One network to solve them all-solving linear inverse problems using deep projection models. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5888–5897 (2017)

    Google Scholar 

  20. Tirer, T., Giryes, R.: Image restoration by iterative denoising and backward projections. IEEE Trans. Image Process. 28(3), 1220–1234 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wagadarikar, A., John, R., Willett, R., Brady, D.: Single disperser design for coded aperture snapshot spectral imaging. Appl. Opt. 47(10), B44-51 (2008)

    Article  Google Scholar 

  22. Wald, L.: Quality of high resolution synthesised images: is there a simple criterion? In: Proceedings of Third Conference Fusion of Earth Data: Merging Point Measurements, Raster Maps and Remotely Sensed Images, pp. 99–103. SEE/URISCA (2000)

    Google Scholar 

  23. Wang, L., **ong, Z., Shi, G., Wu, F., Zeng, W.: Adaptive nonlocal sparse representation for dual-camera compressive hyperspectral imaging. IEEE Trans. Pattern Anal. Mach. Intell. 39(10), 2104–2111 (2017)

    Article  Google Scholar 

  24. Wang, L., **ong, Z., Gao, D., Shi, G., Wu, F.: Dual-camera design for coded aperture snapshot spectral imaging. Appl. Opt. 54(4), 848–858 (2015)

    Article  Google Scholar 

  25. Wang, L., **ong, Z., Gao, D., Shi, G., Zeng, W., Wu, F.: High-speed hyperspectral video acquisition with a dual-camera architecture. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4942–4950 (2015)

    Google Scholar 

  26. Wang, L., Zhang, T., Fu, Y., Huang, H.: Hyperreconnet: joint coded aperture optimization and image reconstruction for compressive hyperspectral imaging. IEEE Trans. Image Process. 28(5), 2257–2270 (2018)

    Article  MathSciNet  Google Scholar 

  27. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  28. Wei, K., Fu, Y.: Low-rank Bayesian tensor factorization for hyperspectral image denoising. Neurocomputing 331, 412–423 (2019)

    Article  Google Scholar 

  29. Wei, K., Fu, Y., Huang, H.: 3-D quasi-recurrent neural network for hyperspectral image denoising. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 363–375 (2020)

    Article  Google Scholar 

  30. **ong, Z., Shi, Z., Li, H., Wang, L., Liu, D., Wu, F.: HSCNN: CNN-based hyperspectral image recovery from spectrally undersampled projections. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 518–525 (2017)

    Google Scholar 

  31. Yamaguchi, M., et al.: High-fidelity video and still-image communication based on spectral information: natural vision system and its applications. In: Proceedings of Spectral Imaging: Eighth International Symposium on Multispectral Color Science, vol. 6062, pp. 129–140. SPIE (2006)

    Google Scholar 

  32. Zhang, K., Zuo, W., Gu, S., Zhang, L.: Learning deep CNN denoiser prior for image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3929–3938 (2017)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grants No. 62171038, No. 61827901, and No. 62088101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fu, Y., Zhang, Y. (2022). Reinforcement Learning Based Plug-and-Play Method for Hyperspectral Image Reconstruction. In: Fang, L., Povey, D., Zhai, G., Mei, T., Wang, R. (eds) Artificial Intelligence. CICAI 2022. Lecture Notes in Computer Science(), vol 13604. Springer, Cham. https://doi.org/10.1007/978-3-031-20497-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20497-5_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20496-8

  • Online ISBN: 978-3-031-20497-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation