Detection of GNSS-TEC Noise Related to the Tonga Volcanic Eruption Using Optimization Machine Learning Techniques and Integrated Data

  • Conference paper
  • First Online:
Advances in Geospatial Technology in Mining and Earth Sciences (GTER 2022)

Abstract

Total Electron Content (TEC) is the integral of the electron density along the path between receivers and satellites. TEC measured from Global Navigation Satellite Systems (GNSS) data is valuable to monitor space weather and correct ionospheric models. TEC noise detection is also an essential channel to forecast space weather and research the relationship between the atmosphere and natural phenomena like geomagnetic storms, earthquakes, volcanos, and tsunamis. In this study, we apply optimization machine learning techniques and integrated GNSS and solar activity data to determine GNSS-TEC noise at the International GNSS Service (IGS) stations in the Tonga volcanic region. We investigate 38 indices related to the geomagnetic field and solar wind plasma to select the essential parameters for forecast models. The findings show the best-suited parameters to predict vertical TEC time series: plasma temperature (or Plasma speed), proton density, Lyman alpha, R sunspot, Ap index (or Kp, Dst), and F10.7 index. Applying the Ensemble algorithm to build the TEC forecast models at the investigated IGS stations gets the accuracy from 1.01 to 3.17 TECU. The study also shows that machine learning combined with integrated data can provide a robust approach to detecting TEC noise caused by seismic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 192.59
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 229.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 229.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://directory.eoportal.org/web/eoportal.

  2. 2.

    https://cddis.nasa.gov/.

  3. 3.

    https://www.swpc.noaa.gov/.

  4. 4.

    http://wdc.kugi.kyoto-u.ac.jp/.

  5. 5.

    https://www.spaceweatherlive.com/.

  6. 6.

    https://geofon.gfz-potsdam.de/.

  7. 7.

    https://www.usgs.gov/.

References

  1. Nathan, B., Christos, C.: Radio propagation and adaptive antennas for wireless communication links: terrestrial, atmospheric and ionospheric. Wiley, Hoboken, New Jersey (2007)

    Google Scholar 

  2. Robert, D.H., Jonh, K.H.: The high-latitude ionosphere and its effects on radio propagation. Cambridge University Press, New York (2003)

    Google Scholar 

  3. Hornbostel, A.: Propagation problems in satellite navigation. Proc. WFMN07 Chemnitz Ger., pp. 42–49, (2007). Retrieved from http://archiv.tu-chemnitz.de/pub/2007/0210/

  4. Medžida, M., Natraš, R., Džana, H., Dževad, K.: Investigation of ionospheric variations and sudden disturbances as a source of GNSS errors and earthquake precursor. Sci. J. Civ. Eng. (2017). Retrieved from https://publik.tuwien.ac.at/files/publik_270748.pdf

  5. Meyer-Vernet, N.: Basics of the Solar Wind. The United States of America by Cambridge University Press, New York (2007)

    Book  Google Scholar 

  6. Gurnett, D.A., Amitava, B.: Introduction to Plasma Physics with Space and Laboratory Applications, vol. 17997, no. 383 (2017)

    Google Scholar 

  7. Hoffert, M.I.: The effects of solar variability on climate, vol. 19, no. C. The National Academies Press, Washington, D.C. (2012)

    Google Scholar 

  8. Ninla Elmawati Falabiba: The sun solar wind heliosphere. Springer, Dordrecht Heidelberg London New York (2019)

    Google Scholar 

  9. **, S., **, R., Liu, X.: GNSS Atmospheric Seismology. Springer Nature Singapore Pte Ltd. (2019)

    Google Scholar 

  10. Huang, C.Y., Helmboldt, J.F., Park, J., Pedersen, T.R., Willemann, R.: Ionospheric detection of explosive events. Rev. Geophys. 57(1), 78–105 (2019). https://doi.org/10.1029/2017RG000594

    Article  ADS  Google Scholar 

  11. Obayashi, T.: Upper atmospheric disturbances due to high altitude nuclear explosions. Planet. Space Sci. 10, 47–63 (1963). https://doi.org/10.1016/0032-0633(63)90006-0

    Article  ADS  Google Scholar 

  12. Park, J., Grejner-Brzezinska, D.A., Von Frese, R.R.B., Morton, Y., Gaya-Pique, L.R.: On using traveling ionospheric disturbances to detect underground nuclear tests. Inst. Navig. Int. Tech. Meet. (ITM) 2, 1581–1589 (2012)

    Google Scholar 

  13. Mabie, J., Bullett, T., Moore, P., Vieira, G.: Identification of rocket-induced acoustic waves in the ionosphere. Geophys. Res. Lett. 43(20), 11024–11029 (2016). https://doi.org/10.1002/2016GL070820

    Article  ADS  Google Scholar 

  14. Lin, C.H., et al.: Ionospheric shock waves triggered by rockets. Ann. Geophys. 32(9), 1145–1152 (2014). https://doi.org/10.5194/angeo-32-1145-2014

    Article  ADS  Google Scholar 

  15. Heki, K., Fujimoto, T.: Atmospheric modes excited by the 2021 August eruption of the Fukutoku-Okanoba volcano, Izu–Bonin Arc, observed as harmonic TEC oscillations by QZSS. Earth Planets Sp., 74(1) (2022). https://doi.org/10.1186/s40623-022-01587-5

  16. Hasbi, A.M., et al.: Ionospheric and geomagnetic disturbances during the 2005 Sumatran earthquakes. J. Atmos. Solar Terr. Phys. 71(17–18), 1992–2005 (2009). https://doi.org/10.1016/j.jastp.2009.09.004

    Article  ADS  Google Scholar 

  17. Pulinets, S.A., Legen’ka, A.D., Hegai, V.V., Kim, V.P., Korsunova, L.P.: Ionosphere disturbances preceding earthquakes according to the data of ground based station of the vertical ionospheric sounding wakkanai. Geomagn. Aeron. 58(5), 686–692 (2018). https://doi.org/10.1134/S0016793218050110

  18. Korsunova, L.P., Khegai, V.V.: Possible short-term precursors of strong crustal earthquakes in japan based on data from the ground stations of vertical ionospheric sounding. Geomagn. Aeron. (2018). https://doi.org/10.1134/S0016793218010085

    Article  Google Scholar 

  19. Shi, K., Liu, X., Guo, J., Liu, L., You, X., Wang, F.: Pre-earthquake and coseismic ionosphere disturbances of the Mw 6.6 Lushan earthquake on 20 April 2013 monitored by CMONOC. Atmos. (Basel) 10(4), 1–21 (2019). https://doi.org/10.3390/ATMOS10040216

    Article  Google Scholar 

  20. Zlotnicki, J., Li, F., Parrot, M.: Ionospheric disturbances recorded by DEMETER satellite over active volcanoes: from august 2004 to december 2010. Int. J. Geophys. 2013 (2013). https://doi.org/10.1155/2013/530865

  21. Ishii, M.: Extreme Space Weather Research in Japan, vol. 1957. Elsevier Inc. (2018)

    Google Scholar 

  22. Akyol, A.A., Arikan, O., Arikan, F.: A machine learning-based detection of earthquake precursors using ionospheric data. Radio Sci. 55(11), 1–21 (2020). https://doi.org/10.1029/2019RS006931

    Article  Google Scholar 

  23. Sharma, G., Champati ray, P.K., Mohanty, S., Kannaujiya, S.: Ionospheric TEC modelling for earthquakes precursors from GNSS data. Quat. Int. 462, 65–74 (2017). https://doi.org/10.1016/j.quaint.2017.05.007

  24. Ulukavak, M., Yalcinkaya, M.: Precursor analysis of ionospheric GPS-TEC variations before the 2010 M7.2 Baja California earthquake. Geomatics Nat. Hazards Risk, 8(2), 295–308 (2017). https://doi.org/10.1080/19475705.2016.1208684

  25. Goto, S.I., Uchida, R., Igarashi, K., Chen, C.H., Kao, M., Umeno, K.: Preseismic ionospheric anomalies detected before the 2016 Taiwan earthquake. J. Geophys. Res. Sp. Phys. 124(11), 9239–9252 (2019). https://doi.org/10.1029/2019JA026640

    Article  ADS  Google Scholar 

  26. Tariq, M.A., Shah, M., Hernández-Pajares, M., Iqbal, T.: Pre-earthquake ionospheric anomalies before three major earthquakes by GPS-TEC and GIM-TEC data during 2015–2017. Adv. Sp. Res. 63(7), 2088–2099 (2019). https://doi.org/10.1016/j.asr.2018.12.028

    Article  ADS  Google Scholar 

  27. Nina, A. et al.: Variation in natural short-period ionospheric noise, and acoustic and gravity waves revealed by the amplitude analysis of a VLF radio signal on the occasion of the Kraljevo earthquake (Mw = 5.4). Sci. Total Environ. 710, 136406 (2020). https://doi.org/10.1016/j.scitotenv.2019.136406

  28. Zhao, S., Shen, X.H., Zhima, Z., Zhou, C.: The very low-frequency transmitter radio wave anomalies related to the 2010 Ms 7.1 Yushu earthquake observed by the DEMETER satellite and the possible mechanism. Ann. Geophys. 38(5), 969–981 (2020). https://doi.org/10.5194/angeo-38-969-2020

    Article  ADS  Google Scholar 

  29. Sun, W. et al.: Forecasting of ionospheric vertical total electron content (TEC) using LSTM networks. Proc. 2017 Int. Conf. Mach. Learn. Cybern. (ICMLC) 2, 340–344 (2017). https://doi.org/10.1109/ICMLC.2017.8108945

  30. Liu, L., Zou, S., Yao, Y., Wang, Z.: Forecasting global ionospheric TEC using deep learning approach. Sp. Weather 18(11), 1–12 (2020). https://doi.org/10.1029/2020SW002501

    Article  Google Scholar 

  31. Ruwali, A., Kumar, A.J.S., Prakash, K.B., Sivavaraprasad, G., Ratnam, D.V.: Implementation of hybrid deep learning model (LSTM-CNN) for ionospheric TEC forecasting using GPS data. IEEE Geosci. Remote Sens. Lett. 18(6), 1004–1008 (2021). https://doi.org/10.1109/LGRS.2020.2992633

    Article  ADS  Google Scholar 

  32. Cesaroni, C. et al.: Neural network based model for global total electron content forecasting. J. Sp. Weather Sp. Clim. 10 (2020). https://doi.org/10.1051/swsc/2020013

  33. Lin, X. et al.: A Spatiotemporal Network Model for Global Ionospheric TEC Forecasting (2022)

    Google Scholar 

  34. Heki, K.: Advances in Ionospheric Research: Current Understanding and Challenges - Ionospheric Disturbances Related to Earthquakes. Wiley/AGU Online Library (2021)

    Google Scholar 

  35. Mallika, L.I., Ratnam, D.V., Raman, S., Sivavaraprasad, G.: Machine learning algorithm to forecast ionospheric time delays using Global Navigation satellite system observations. Acta Astronaut. 173, 221–231 (2020). https://doi.org/10.1016/j.actaastro.2020.04.048

    Article  ADS  Google Scholar 

  36. Zhukov, A., Sidorov, D., Mylnikova, A., Yasyukevich, Y.: Machine learning methodology for ionosphere total electron content nowcasting. Int. J. Artif. Intell. 16(1), 144–157 (2018). https://doi.org/10.13140/rg.2.2.19349.83685

    Article  Google Scholar 

  37. Global Volcanism Program | Raikoke. Retrieved from https://volcano.si.edu/volcano.cfm?vn=290250

  38. Ripple effect_ What the Tonga eruption could mean for tsunami research _ National Oceanic and Atmospheric Administration. Retrieved from https://volcano.si.edu/volcano.cfm?vn=243040

  39. GEOFON Program GFZ Potsdam: 9C Seismic Network. Retrieved from http://geofon.gfz-potsdam.de/eqinfo/list.php?datemin=2022-01-15&datemax=2022-01-15&latmax=&lonmin=&lonmax=&latmin=&magmin=&fmt=html&nmax=

  40. Stoica, P., Moses, R.L.: Spectral Analysis of Signals, vol. 4, no. 1. Pearson Prentice Hall (2005)

    Google Scholar 

  41. Welch, P.: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15(2), 70–73 (1967). https://doi.org/10.1109/TAU.1967.1161901

    Article  ADS  Google Scholar 

  42. Lilly, J.M.: Element analysis: a wavelet-based method for analyzing time-localized events in noisy time series. Proc. R. Soc. A Math. Phys. Eng. Sci. (2017). https://doi.org/10.1098/rspa.2016.0776

  43. Lilly, J.M., Olhede, S.C.: Generalized morse wavelets as a superfamily of analytic wavelets. IEEE Trans. Signal Process. 60(11), 6036–6041 (2012). https://doi.org/10.1109/TSP.2012.2210890

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Hudson, T.S., Horseman, A., Sugier, J.: Diurnal, seasonal, and 11-yr solar cycle variation effects on the virtual ionosphere reflection height and implications for the Met Office’s lightning detection system, ATDnet. J. Atmos. Ocean. Technol. 33(7), 1429–1441 (2016). https://doi.org/10.1175/JTECH-D-15-0133.1

    Article  ADS  Google Scholar 

  45. Zheng, W., et al.: Diurnal, seasonal, annual, and semi-annual variations of ionospheric parameters at different latitudes in East Asian sector during ascending phase of solar activity. Solar Terr. Phys. 3(2), 45–53 (2017). https://doi.org/10.12737/22594

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nhung Le .

Editor information

Editors and Affiliations

Appendix

Appendix

See Tables 4 and 5.

Table 4 F-test of the feature importance to select the best-fitted predictors for the regression ML models corresponding to four IGS stations AUCK, FTNA, THTI, and WARK
Table 5 The correlation matrix of 20 significant features at station WARK

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Le, N., Männel, B., Bui, L.K., Jarema, M., Nguyen, T.C., Schuh, H. (2023). Detection of GNSS-TEC Noise Related to the Tonga Volcanic Eruption Using Optimization Machine Learning Techniques and Integrated Data. In: Nguyen, L.Q., Bui, L.K., Bui, XN., Tran, H.T. (eds) Advances in Geospatial Technology in Mining and Earth Sciences. GTER 2022. Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-20463-0_9

Download citation

Publish with us

Policies and ethics

Navigation