hp-Finite Elements with Decoupled Constraints for Elastoplasticity

  • Conference paper
  • First Online:
Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 137))

  • 463 Accesses

Abstract

The paper considers an hp-finite element discretization for a model problem of elastoplasticity with linear kinematic hardening. The use of biorthogonal basis functions for the discretization of a mixed formulation enables the decoupling of the constraints resulting from the involved plasticity functional. This yields a nonlinear equation which allows the application of various solution schemes, e.g. a semi-smooth Newton solver. Numerical experiments demonstrate the robustness of a semi-smooth Newton solver based on the proposed decoupling with respect to mesh size, polynomial degree and projection parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberty, J., Carstensen, C.: Numerical analysis of time-depending primal elastoplasticity with hardening. SIAM J. Numer. Anal. 37, 1271–1294 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bammer, P., Banz, L., Schröder, A.: hp-FEM for a mixed variational approach in elastoplasticity (in preperation)

    Google Scholar 

  3. Bammer, P., Banz, L., Schröder, A.: A posteriori error estimates and a semi-smooth Newton solver for hp-FEM in elastoplasticity (in preperation)

    Google Scholar 

  4. Banz, L., Schröder, A.: Biorthogonal basis functions in hp-adaptive FEM for elliptic obstacle problems. Comput. Math. Appl. 70, 1721–1742 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carstensen, C.: Numerical analysis of the primal problem of elastoplasticity with hardening. Numer. Math. 82, 577–597 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carstensen, C., Schröder, A., Wiedemann, S.: An optimal adaptive finite element method for elastoplasticity. Numer. Math. 132, 131–154 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Christensen, P.W.: A nonsmooth Newton method for elastoplastic problems. Comput. Methods Appl. Mech. Eng. 191, 1189–1219 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gruber, P., Kienesberger, J., Langer, U., Schöberl, J., Valdman, J.: Fast solvers and a posteriori error estimates in elastoplasticity. In: Numerical and Symbolic Scientific Computing, pp. 45–63. Springer, NewYork (2012)

    Google Scholar 

  9. Gwinner, J.: hp-FEM convergence for unilateral contact problems with Tresca friction in plane linear elastostatics. J. Comput. Appl. Math. 254, 175–184 (2013)

    Google Scholar 

  10. W. Han.: Finite element analysis of a holonomic elastic-plastic problem. Numer. Math. 60, 493–508 (1991)

    Google Scholar 

  11. Han, W., Reddy, B.D.: On the finite element method for mixed variational inequalities arising in elastoplasticity. SIAM J. Numer. Anal. 32, 1778–1807 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Han, W., Reddy, B.D.: Plasticity: Mathematical Theory and Numerical Analysis, 2nd edn. Springer, New York (2013)

    Book  MATH  Google Scholar 

  13. Haslinger, J., Panagiotopoulos, P.D.: Finite element method for hemivariational inequalities. In: Theory, Methods and Applications. Springer, Berlin (1999)

    Google Scholar 

  14. Hintermüller, M., Rösel, S.: A duality-based path-following semismooth Newton method for elasto-plastic contact problems. J. Comput. Appl. Math. 292, 150–173 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kienesberger, J., Valdman, J.: An efficient solution algorithm for elastoplasticity and its first implementation towards uniform h- and p- mesh refinements. In: Numerical Mathematics and Advanced Applications, pp. 1117–1125. Springer, Berlin (2006)

    Google Scholar 

  16. A. Schröder, S. Wiedemann.: Error estimates in elastoplasticity using a mixed method. Appl. Numer. Math. 61, 1031–1045 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Bammer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bammer, P., Banz, L., Schröder, A. (2023). hp-Finite Elements with Decoupled Constraints for Elastoplasticity. In: Melenk, J.M., Perugia, I., Schöberl, J., Schwab, C. (eds) Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1. Lecture Notes in Computational Science and Engineering, vol 137. Springer, Cham. https://doi.org/10.1007/978-3-031-20432-6_7

Download citation

Publish with us

Policies and ethics

Navigation